[PATCH 2/7] add the common code for GPMI driver
Huang Shijie
b32955 at freescale.com
Tue Mar 15 21:55:16 EDT 2011
These files contain the common code for the GPMI driver.
gpmi-nfc-main.c : the main file of GPMI
mil.c : the MTD interface layer of GPMI
hal-common.c : the hardware abstract layer of GPMI
rom-common.c : the NAND boot support of GPMI
Signed-off-by: Huang Shijie <b32955 at freescale.com>
---
drivers/mtd/nand/gpmi-nfc/Makefile | 10 +
drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c | 524 ++++++++++++++
drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h | 520 ++++++++++++++
drivers/mtd/nand/gpmi-nfc/hal-common.c | 816 +++++++++++++++++++++
drivers/mtd/nand/gpmi-nfc/mil.c | 1104 +++++++++++++++++++++++++++++
drivers/mtd/nand/gpmi-nfc/rom-common.c | 48 ++
6 files changed, 3022 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/gpmi-nfc/Makefile
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
create mode 100644 drivers/mtd/nand/gpmi-nfc/hal-common.c
create mode 100644 drivers/mtd/nand/gpmi-nfc/mil.c
create mode 100644 drivers/mtd/nand/gpmi-nfc/rom-common.c
diff --git a/drivers/mtd/nand/gpmi-nfc/Makefile b/drivers/mtd/nand/gpmi-nfc/Makefile
new file mode 100644
index 0000000..9026313
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/Makefile
@@ -0,0 +1,10 @@
+obj-$(CONFIG_MTD_NAND_GPMI_NFC) += gpmi-nfc.o
+gpmi-nfc-objs += gpmi-nfc-main.o
+gpmi-nfc-objs += hal-common.o
+gpmi-nfc-objs += hal-imx23.o
+gpmi-nfc-objs += hal-imx28.o
+gpmi-nfc-objs += rom-common.o
+gpmi-nfc-objs += rom-imx23.o
+gpmi-nfc-objs += rom-imx28.o
+gpmi-nfc-objs += mil.o
+gpmi-nfc-objs += nand_device_info.o
diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c
new file mode 100644
index 0000000..f22c9d5
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc-main.c
@@ -0,0 +1,524 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include <linux/slab.h>
+#include "gpmi-nfc.h"
+#include "linux/slab.h"
+
+static ssize_t show_ignorebad(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct gpmi_nfc_data *this = dev_get_drvdata(dev);
+ struct mil *mil = &this->mil;
+
+ return sprintf(buf, "%d\n", mil->ignore_bad_block_marks);
+}
+
+/* Sets the value of the 'ignorebad' flag. */
+static ssize_t
+store_ignorebad(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t size)
+{
+ struct gpmi_nfc_data *this = dev_get_drvdata(dev);
+ struct mil *mil = &this->mil;
+ const char *p = buf;
+ unsigned long v;
+
+ /* Try to make sense of what arrived from user space. */
+ if (strict_strtoul(p, 0, &v) < 0)
+ return size;
+
+ if (v > 0)
+ v = 1;
+
+ if (v != mil->ignore_bad_block_marks) {
+ if (v) {
+ /*
+ * If control arrives here, we want to begin ignoring
+ * bad block marks. Reach into the NAND Flash MTD data
+ * structures and set the in-memory BBT pointer to NULL.
+ * This will cause the NAND Flash MTD code to believe
+ * that it never created a BBT and force it to call our
+ * block_bad function.
+ *
+ * See mil_block_bad for more details.
+ */
+ mil->saved_bbt = mil->nand.bbt;
+ mil->nand.bbt = 0;
+ } else {
+ /*
+ * If control arrives here, we want to stop ignoring
+ * bad block marks. Restore the NAND Flash MTD's pointer
+ * to its in-memory BBT.
+ */
+ mil->nand.bbt = mil->saved_bbt;
+ }
+ mil->ignore_bad_block_marks = v;
+ }
+ return size;
+}
+
+/* Device attributes that appear in sysfs. */
+static DEVICE_ATTR(ignorebad, 0644, show_ignorebad, store_ignorebad);
+static struct device_attribute *device_attributes[] = {
+ &dev_attr_ignorebad,
+};
+
+static int acquire_register_block(struct gpmi_nfc_data *this,
+ const char *resource_name, void **reg_block_base)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r;
+ void *p;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_MEM, resource_name);
+ if (!r) {
+ log("Can't get resource information for '%s'", resource_name);
+ return -ENXIO;
+ }
+
+ /* remap the register block */
+ p = ioremap(r->start, r->end - r->start + 1);
+ if (!p) {
+ log("Can't remap %s", resource_name);
+ return -EIO;
+ }
+
+ *reg_block_base = p;
+ return 0;
+}
+
+static void release_register_block(struct gpmi_nfc_data *this,
+ void *reg_block_base)
+{
+ iounmap(reg_block_base);
+}
+
+static int acquire_interrupt(struct gpmi_nfc_data *this,
+ const char *resource_name,
+ irq_handler_t interrupt_handler, int *lno, int *hno)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r;
+ int err = 0;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, resource_name);
+ if (!r) {
+ log("Can't get resource information for '%s'", resource_name);
+ return -ENXIO;
+ }
+
+ BUG_ON(r->start != r->end);
+ err = request_irq(r->start, interrupt_handler, 0, resource_name, this);
+ if (err) {
+ log("Can't own %s", resource_name);
+ return -EIO;
+ }
+
+ *lno = r->start;
+ *hno = r->end;
+ return 0;
+}
+
+static void release_interrupt(struct gpmi_nfc_data *this,
+ int low_interrupt_number, int high_interrupt_number)
+{
+ int i;
+ for (i = low_interrupt_number; i <= high_interrupt_number; i++)
+ free_irq(i, this);
+}
+
+static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
+{
+ struct gpmi_nfc_data *this = param;
+ struct resource *r = this->private;
+
+ if (!mxs_dma_is_apbh(chan))
+ return false;
+ /*
+ * only catch the GPMI dma channels :
+ * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
+ * (These four channels share the same IRQ!)
+ *
+ * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
+ * (These eight channels share the same IRQ!)
+ */
+ if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
+ chan->private = &this->dma_data;
+ return true;
+ }
+ return false;
+}
+
+static void release_dma_channels(struct gpmi_nfc_data *this)
+{
+ unsigned int i;
+ for (i = 0; i <= DMA_CHANS; i++)
+ if (this->dma_chans[i]) {
+ dma_release_channel(this->dma_chans[i]);
+ this->dma_chans[i] = NULL;
+ }
+}
+
+static int acquire_dma_channels(struct gpmi_nfc_data *this,
+ const char *resource_name,
+ unsigned *low_channel, unsigned *high_channel)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r, *r_dma;
+ unsigned int i;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_DMA, resource_name);
+ r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
+ GPMI_NFC_DMA_INTERRUPT_RES_NAME);
+ if (!r || !r_dma) {
+ log("Can't get resource for DMA");
+ return -ENXIO;
+ }
+
+ /* get the DMA interrupt */
+ BUG_ON(r_dma->start != r_dma->end);
+ this->dma_data.chan_irq = r_dma->start;
+
+ /* used in gpmi_dma_filter() */
+ this->private = r;
+
+ for (i = r->start; i <= r->end; i++) {
+ dma_cap_mask_t mask;
+ struct dma_chan *dma_chan;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
+ if (!dma_chan)
+ goto acquire_err;
+ /* fill the first empty item */
+ this->dma_chans[i - r->start] = dma_chan;
+ }
+
+ *low_channel = r->start;
+ *high_channel = r->end;
+ return 0;
+
+acquire_err:
+ log("Can't acquire DMA channel %u", i);
+ release_dma_channels(this);
+ return -EINVAL;
+}
+
+
+static inline int acquire_clock(struct gpmi_nfc_data *this,
+ const char *clock_name, struct clk **clock)
+{
+ struct clk *c;
+
+ c = clk_get(this->dev, clock_name);
+ if (IS_ERR(c)) {
+ log("Can't own clock %s", clock_name);
+ return PTR_ERR(c);
+ }
+ *clock = c;
+ return 0;
+}
+
+static void release_clock(struct gpmi_nfc_data *this, struct clk *clock)
+{
+ clk_disable(clock);
+ clk_put(clock);
+}
+
+static int acquire_resources(struct gpmi_nfc_data *this)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct resources *resources = &this->resources;
+ int error = 0;
+
+ /* Attempt to acquire the GPMI register block. */
+ error = acquire_register_block(this,
+ GPMI_NFC_GPMI_REGS_ADDR_RES_NAME,
+ &resources->gpmi_regs);
+ if (error)
+ goto exit_gpmi_regs;
+
+ /* Attempt to acquire the BCH register block. */
+ error = acquire_register_block(this,
+ GPMI_NFC_BCH_REGS_ADDR_RES_NAME,
+ &resources->bch_regs);
+ if (error)
+ goto exit_bch_regs;
+
+ /* Attempt to acquire the BCH interrupt. */
+ error = acquire_interrupt(this,
+ GPMI_NFC_BCH_INTERRUPT_RES_NAME,
+ bch_irq,
+ &resources->bch_low_interrupt,
+ &resources->bch_high_interrupt);
+ if (error)
+ goto exit_bch_interrupt;
+
+ /* Attempt to acquire the DMA channels. */
+ error = acquire_dma_channels(this,
+ GPMI_NFC_DMA_CHANNELS_RES_NAME,
+ &resources->dma_low_channel,
+ &resources->dma_high_channel);
+ if (error)
+ goto exit_dma_channels;
+
+ /* Attempt to acquire our clock. */
+ error = acquire_clock(this, pdata->clock_name, &resources->clock);
+ if (error)
+ goto exit_clock;
+ return 0;
+
+exit_clock:
+ release_dma_channels(this);
+exit_dma_channels:
+ release_interrupt(this, resources->bch_low_interrupt,
+ resources->bch_high_interrupt);
+exit_bch_interrupt:
+ release_register_block(this, resources->bch_regs);
+exit_bch_regs:
+ release_register_block(this, resources->gpmi_regs);
+exit_gpmi_regs:
+ return error;
+}
+
+static void release_resources(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+
+ release_clock(this, resources->clock);
+ release_register_block(this, resources->gpmi_regs);
+ release_register_block(this, resources->bch_regs);
+ release_interrupt(this, resources->bch_low_interrupt,
+ resources->bch_low_interrupt);
+ release_dma_channels(this);
+}
+
+static void exit_nfc_hal(struct gpmi_nfc_data *this)
+{
+ if (this->nfc)
+ this->nfc->exit(this);
+}
+
+static int set_up_nfc_hal(struct gpmi_nfc_data *this)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct nfc_hal *nfc;
+ int error = 0;
+
+ /*
+ * This structure contains the "safe" GPMI timing that should succeed
+ * with any NAND Flash device
+ * (although, with less-than-optimal performance).
+ */
+ static struct nand_timing safe_timing = {
+ .data_setup_in_ns = 80,
+ .data_hold_in_ns = 60,
+ .address_setup_in_ns = 25,
+ .gpmi_sample_delay_in_ns = 6,
+ .tREA_in_ns = -1,
+ .tRLOH_in_ns = -1,
+ .tRHOH_in_ns = -1,
+ };
+
+ switch (pdata->chip_version) {
+ case CHIP_VERSION_IMX23:
+ nfc = &gpmi_nfc_hal_imx23;
+ break;
+ case CHIP_VERSION_IMX28:
+ nfc = &gpmi_nfc_hal_imx28;
+ break;
+ default:
+ log("Unkown NFC version %u", pdata->chip_version);
+ return -ENXIO;
+ }
+
+ this->nfc = nfc;
+
+ /* Initialize the NFC HAL. */
+ error = nfc->init(this);
+ if (error)
+ return error;
+
+ /* Set up safe timing. */
+ nfc->set_timing(this, &safe_timing);
+ return 0;
+}
+
+static int set_up_boot_rom_helper(struct gpmi_nfc_data *this)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct boot_rom_helper *rom;
+
+ switch (pdata->chip_version) {
+ case CHIP_VERSION_IMX23:
+ rom = &gpmi_nfc_boot_rom_imx23;
+ break;
+ case CHIP_VERSION_IMX28:
+ rom = &gpmi_nfc_boot_rom_imx28;
+ break;
+ default:
+ log("Unkown NFC version %u", pdata->chip_version);
+ return -ENXIO;
+ }
+
+ pr_info("Boot ROM: Version %u, %s\n", rom->version, rom->description);
+ this->rom = rom;
+ return 0;
+}
+
+/* Creates/Removes sysfs files for this device.*/
+static void manage_sysfs_files(struct gpmi_nfc_data *this, int create)
+{
+ struct device *dev = this->dev;
+ int error;
+ unsigned int i;
+ struct device_attribute **attr;
+
+ for (i = 0, attr = device_attributes;
+ i < ARRAY_SIZE(device_attributes); i++, attr++) {
+
+ if (create) {
+ error = device_create_file(dev, *attr);
+ if (error) {
+ while (--attr >= device_attributes)
+ device_remove_file(dev, *attr);
+ return;
+ }
+ } else {
+ device_remove_file(dev, *attr);
+ }
+ }
+}
+
+static int gpmi_nfc_probe(struct platform_device *pdev)
+{
+ struct gpmi_nfc_platform_data *pdata = pdev->dev.platform_data;
+ struct gpmi_nfc_data *this = 0;
+ int error = 0;
+
+ this = kzalloc(sizeof(*this), GFP_KERNEL);
+ if (!this) {
+ log("Failed to allocate per-device memory\n");
+ return -ENOMEM;
+ }
+
+ /* Set up our data structures. */
+ platform_set_drvdata(pdev, this);
+ this->pdev = pdev;
+ this->dev = &pdev->dev;
+ this->pdata = pdata;
+
+ /* Acquire the resources we need. */
+ error = acquire_resources(this);
+ if (error)
+ goto exit_acquire_resources;
+
+ /* Set up the NFC. */
+ error = set_up_nfc_hal(this);
+ if (error)
+ goto exit_nfc_init;
+
+ /* Set up the Boot ROM Helper. */
+ error = set_up_boot_rom_helper(this);
+ if (error)
+ goto exit_boot_rom_helper_init;
+
+ /* Initialize the MTD Interface Layer. */
+ error = gpmi_nfc_mil_init(this);
+ if (error)
+ goto exit_mil_init;
+
+ manage_sysfs_files(this, true);
+ return 0;
+
+exit_mil_init:
+exit_boot_rom_helper_init:
+ exit_nfc_hal(this);
+exit_nfc_init:
+ release_resources(this);
+exit_acquire_resources:
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return error;
+}
+
+static int __exit gpmi_nfc_remove(struct platform_device *pdev)
+{
+ struct gpmi_nfc_data *this = platform_get_drvdata(pdev);
+
+ manage_sysfs_files(this, false);
+ gpmi_nfc_mil_exit(this);
+ exit_nfc_hal(this);
+ release_resources(this);
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int gpmi_nfc_suspend(struct platform_device *pdev, pm_message_t state)
+{
+ return 0;
+}
+
+static int gpmi_nfc_resume(struct platform_device *pdev)
+{
+ return 0;
+}
+#else
+#define suspend NULL
+#define resume NULL
+#endif
+
+/* This structure represents this driver to the platform management system. */
+static struct platform_driver gpmi_nfc_driver = {
+ .driver = {
+ .name = GPMI_NFC_DRIVER_NAME,
+ },
+ .probe = gpmi_nfc_probe,
+ .remove = __exit_p(gpmi_nfc_remove),
+ .suspend = gpmi_nfc_suspend,
+ .resume = gpmi_nfc_resume,
+};
+
+static int __init gpmi_nfc_init(void)
+{
+ printk(KERN_INFO "GPMI NFC driver registered. (IMX)\n");
+ if (platform_driver_register(&gpmi_nfc_driver) != 0) {
+ pr_err("i.MX GPMI NFC driver registration failed\n");
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static void __exit gpmi_nfc_exit(void)
+{
+ platform_driver_unregister(&gpmi_nfc_driver);
+}
+
+module_init(gpmi_nfc_init);
+module_exit(gpmi_nfc_exit);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
new file mode 100644
index 0000000..b5a2d77
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
@@ -0,0 +1,520 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#ifndef __DRIVERS_MTD_NAND_GPMI_NFC_H
+#define __DRIVERS_MTD_NAND_GPMI_NFC_H
+
+/* Linux header files. */
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/concat.h>
+#include <linux/dmaengine.h>
+#include <asm/sizes.h>
+
+/* Platform header files. */
+#include <mach/mxs.h>
+#include <mach/common.h>
+#include <mach/dma.h>
+#include <mach/gpmi-nfc.h>
+#include <mach/system.h>
+#include <mach/clock.h>
+
+/* Driver header files. */
+#include "nand_device_info.h"
+
+/*
+ *------------------------------------------------------------------------------
+ * Fundamental Data Structures
+ *------------------------------------------------------------------------------
+ */
+
+/**
+ * struct resources - The collection of resources the driver needs.
+ *
+ * @gpmi_regs: A pointer to the GPMI registers.
+ * @bch_regs: A pointer to the BCH registers.
+ * @bch_interrupt: The BCH interrupt number.
+ * @dma_low_channel: The low DMA channel.
+ * @dma_high_channel: The high DMA channel.
+ * @clock: A pointer to the struct clk for the NFC's clock.
+ */
+struct resources {
+ void *gpmi_regs;
+ void *bch_regs;
+ unsigned int bch_low_interrupt;
+ unsigned int bch_high_interrupt;
+ unsigned int dma_low_channel;
+ unsigned int dma_high_channel;
+ struct clk *clock;
+};
+
+/**
+ * struct mil - State for the MTD Interface Layer.
+ *
+ * @nand: The NAND Flash MTD data structure that represents
+ * the NAND Flash medium.
+ * @mtd: The MTD data structure that represents the NAND
+ * Flash medium.
+ * @oob_layout: A structure that describes how bytes are laid out
+ * in the OOB.
+ * @general_use_mtd: A pointer to an MTD we export for general use.
+ * This *may* simply be a pointer to the mtd field, if
+ * we've been instructed NOT to protect the boot
+ * areas.
+ * @partitions: A pointer to a set of partitions applied to the
+ * general use MTD.
+ * @partition_count: The number of partitions.
+ * @current_chip: The chip currently selected by the NAND Fash MTD
+ * code. A negative value indicates that no chip is
+ * selected.
+ * @command_length: The length of the command that appears in the
+ * command buffer (see cmd_virt, below).
+ * @ignore_bad_block_marks: Indicates we are ignoring bad block marks.
+ * @saved_bbt: A saved pointer to the in-memory NAND Flash MTD bad
+ * block table. See show_device_ignorebad() for more
+ * details.
+ * @marking_a_bad_block: Indicates the caller is marking a bad block. See
+ * mil_ecc_write_oob() for details.
+ * @hooked_block_markbad: A pointer to the block_markbad() function we
+ * we "hooked." See mil_ecc_write_oob() for details.
+ * @upper_buf: The buffer passed from upper layer.
+ * @upper_len: The buffer len passed from upper layer.
+ * @direct_dma_map_ok: Is the direct DMA map is good for the upper_buf?
+ * @cmd_sgl/cmd_buffer: For NAND command.
+ * @data_sgl/data_buffer_dma:For NAND DATA ops.
+ * @page_buffer_virt: A pointer to a DMA-coherent buffer we use for
+ * reading and writing pages. This buffer includes
+ * space for both the payload data and the auxiliary
+ * data (including status bytes, but not syndrome
+ * bytes).
+ * @page_buffer_phys: The physical address for the page_buffer_virt
+ * buffer.
+ * @page_buffer_size: The size of the page buffer.
+ * @payload_virt: A pointer to a location in the page buffer used
+ * for payload bytes. The size of this buffer is
+ * determined by struct nfc_geometry.
+ * @payload_phys: The physical address for payload_virt.
+ * @auxiliary_virt: A pointer to a location in the page buffer used
+ * for auxiliary bytes. The size of this buffer is
+ * determined by struct nfc_geometry.
+ * @auxiliary_phys: The physical address for auxiliary_virt.
+ */
+struct mil {
+ /* MTD Data Structures */
+ struct nand_chip nand;
+ struct mtd_info mtd;
+ struct nand_ecclayout oob_layout;
+
+ /* Partitioning and Boot Area Protection */
+ struct mtd_info *general_use_mtd;
+ struct mtd_partition *partitions;
+ unsigned int partition_count;
+
+ /* General-use Variables */
+ int current_chip;
+ unsigned int command_length;
+ int ignore_bad_block_marks;
+ void *saved_bbt;
+
+ /* MTD Function Pointer Hooks */
+ int marking_a_bad_block;
+ int (*hooked_block_markbad)(struct mtd_info *mtd,
+ loff_t ofs);
+
+ /* from upper layer */
+ uint8_t *upper_buf;
+ int upper_len;
+
+ /* DMA */
+ bool direct_dma_map_ok;
+
+ struct scatterlist cmd_sgl;
+ char *cmd_buffer;
+
+ struct scatterlist data_sgl;
+ char *data_buffer_dma;
+
+ void *page_buffer_virt;
+ dma_addr_t page_buffer_phys;
+ unsigned int page_buffer_size;
+
+ void *payload_virt;
+ dma_addr_t payload_phys;
+
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+};
+
+/**
+ * struct nfc_geometry - NFC geometry description.
+ *
+ * This structure describes the NFC's view of the medium geometry.
+ *
+ * @ecc_algorithm: The human-readable name of the ECC algorithm
+ * (e.g., "Reed-Solomon" or "BCH").
+ * @ecc_strength: A number that describes the strength of the ECC
+ * algorithm.
+ * @page_size_in_bytes: The size, in bytes, of a physical page, including
+ * both data and OOB.
+ * @metadata_size_in_bytes: The size, in bytes, of the metadata.
+ * @ecc_chunk_size_in_bytes: The size, in bytes, of a single ECC chunk. Note
+ * the first chunk in the page includes both data and
+ * metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count: The number of ECC chunks in the page,
+ * @payload_size_in_bytes: The size, in bytes, of the payload buffer.
+ * @auxiliary_size_in_bytes: The size, in bytes, of the auxiliary buffer.
+ * @auxiliary_status_offset: The offset into the auxiliary buffer at which
+ * the ECC status appears.
+ * @block_mark_byte_offset: The byte offset in the ECC-based page view at
+ * which the underlying physical block mark appears.
+ * @block_mark_bit_offset: The bit offset into the ECC-based page view at
+ * which the underlying physical block mark appears.
+ */
+struct nfc_geometry {
+ char *ecc_algorithm;
+ unsigned int ecc_strength;
+ unsigned int page_size_in_bytes;
+ unsigned int metadata_size_in_bytes;
+ unsigned int ecc_chunk_size_in_bytes;
+ unsigned int ecc_chunk_count;
+ unsigned int payload_size_in_bytes;
+ unsigned int auxiliary_size_in_bytes;
+ unsigned int auxiliary_status_offset;
+ unsigned int block_mark_byte_offset;
+ unsigned int block_mark_bit_offset;
+};
+
+/**
+ * struct boot_rom_geometry - Boot ROM geometry description.
+ *
+ * This structure encapsulates decisions made by the Boot ROM Helper.
+ *
+ * @boot_area_count: The number of boot areas. The first boot area
+ * appears at the beginning of chip 0, the next
+ * at the beginning of chip 1, etc.
+ * @boot_area_size_in_bytes: The size, in bytes, of each boot area.
+ * @stride_size_in_pages: The size of a boot block stride, in pages.
+ * @search_area_stride_exponent: The logarithm to base 2 of the size of a
+ * search area in boot block strides.
+ */
+struct boot_rom_geometry {
+ unsigned int boot_area_count;
+ unsigned int boot_area_size_in_bytes;
+ unsigned int stride_size_in_pages;
+ unsigned int search_area_stride_exponent;
+};
+
+/* DMA operations types */
+enum dma_ops_type {
+ DMA_FOR_COMMAND = 1,
+ DMA_FOR_READ_DATA,
+ DMA_FOR_WRITE_DATA,
+ DMA_FOR_READ_ECC_PAGE,
+ DMA_FOR_WRITE_ECC_PAGE
+};
+
+/**
+ * struct gpmi_nfc_data - i.MX NFC per-device data.
+ *
+ * Note that the "device" managed by this driver represents the NAND Flash
+ * controller *and* the NAND Flash medium behind it. Thus, the per-device data
+ * structure has information about the controller, the chips to which it is
+ * connected, and properties of the medium as a whole.
+ *
+ * @dev: A pointer to the owning struct device.
+ * @pdev: A pointer to the owning struct platform_device.
+ * @pdata: A pointer to the device's platform data.
+ * @resources: Information about system resources used by this driver.
+ * @device_info: A structure that contains detailed information about
+ * the NAND Flash device.
+ * @nfc: A pointer to a structure that represents the underlying
+ * NFC hardware.
+ * @nfc_geometry: A description of the medium geometry as viewed by the
+ * NFC.
+ * @rom: A pointer to a structure that represents the underlying
+ * Boot ROM.
+ * @rom_geometry: A description of the medium geometry as viewed by the
+ * Boot ROM.
+ * @mil: A collection of information used by the MTD Interface
+ * Layer.
+ */
+struct gpmi_nfc_data {
+ /* System Interface */
+ struct device *dev;
+ struct platform_device *pdev;
+ struct gpmi_nfc_platform_data *pdata;
+
+ /* Resources */
+ struct resources resources;
+
+ /* Flash Hardware */
+ struct nand_device_info device_info;
+
+ /* NFC HAL */
+ struct nfc_hal *nfc;
+ struct nfc_geometry nfc_geometry;
+
+ /* Boot ROM Helper */
+ struct boot_rom_helper *rom;
+ struct boot_rom_geometry rom_geometry;
+
+ /* MTD Interface Layer */
+ struct mil mil;
+
+ /* DMA channels */
+#define DMA_CHANS 8
+ struct dma_chan *dma_chans[DMA_CHANS];
+ struct mxs_dma_data dma_data;
+ enum dma_ops_type dma_type;
+
+ /* private */
+ void *private;
+};
+
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI NFC hardware timing parameters.
+ *
+ * This structure contains timing information expressed in a form directly
+ * usable by the GPMI NFC hardware.
+ *
+ * @data_setup_in_cycles: The data setup time, in cycles.
+ * @data_hold_in_cycles: The data hold time, in cycles.
+ * @address_setup_in_cycles: The address setup time, in cycles.
+ * @use_half_periods: Indicates the clock is running slowly, so the
+ * NFC DLL should use half-periods.
+ * @sample_delay_factor: The sample delay factor.
+ */
+struct gpmi_nfc_hardware_timing {
+ uint8_t data_setup_in_cycles;
+ uint8_t data_hold_in_cycles;
+ uint8_t address_setup_in_cycles;
+ bool use_half_periods;
+ uint8_t sample_delay_factor;
+};
+
+/**
+ * struct nfc_hal - GPMI NFC HAL
+ *
+ * This structure embodies an abstract interface to the underlying NFC hardware.
+ *
+ * @version: The NFC hardware version.
+ * @description: A pointer to a human-readable description of
+ * the NFC hardware.
+ * @max_chip_count: The maximum number of chips the NFC can
+ * possibly support (this value is a constant for
+ * each NFC version). This may *not* be the actual
+ * number of chips connected.
+ * @max_data_setup_cycles: The maximum number of data setup cycles that
+ * can be expressed in the hardware.
+ * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires
+ * for data read internal setup. In the Reference
+ * Manual, see the chapter "High-Speed NAND
+ * Timing" for more details.
+ * @max_sample_delay_factor: The maximum sample delay factor that can be
+ * expressed in the hardware.
+ * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the
+ * sample delay DLL hardware can possibly work
+ * with (the DLL is unusable with longer periods).
+ * If the full-cycle period is greater than HALF
+ * this value, the DLL must be configured to use
+ * half-periods.
+ * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the
+ * DLL can implement.
+ * @dma_descriptors: A pool of DMA descriptors.
+ * @isr_dma_channel: The DMA channel with which the NFC HAL is
+ * working. We record this here so the ISR knows
+ * which DMA channel to acknowledge.
+ * @dma_done: The completion structure used for DMA
+ * interrupts.
+ * @bch_done: The completion structure used for BCH
+ * interrupts.
+ * @timing: The current timing configuration.
+ * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
+ * I/O transaction. If no I/O transaction is in
+ * progress, this is the clock frequency during
+ * the most recent I/O transaction.
+ * @hardware_timing: The hardware timing configuration in effect
+ * during the current I/O transaction. If no I/O
+ * transaction is in progress, this is the
+ * hardware timing configuration during the most
+ * recent I/O transaction.
+ * @init: Initializes the NFC hardware and data
+ * structures. This function will be called after
+ * everything has been set up for communication
+ * with the NFC itself, but before the platform
+ * has set up off-chip communication. Thus, this
+ * function must not attempt to communicate with
+ * the NAND Flash hardware.
+ * @set_geometry: Configures the NFC hardware and data structures
+ * to match the physical NAND Flash geometry.
+ * @set_geometry: Configures the NFC hardware and data structures
+ * to match the physical NAND Flash geometry.
+ * @set_timing: Configures the NFC hardware and data structures
+ * to match the given NAND Flash bus timing.
+ * @get_timing: Returns the the clock frequency, in Hz, and
+ * the hardware timing configuration during the
+ * current I/O transaction. If no I/O transaction
+ * is in progress, this is the timing state during
+ * the most recent I/O transaction.
+ * @exit: Shuts down the NFC hardware and data
+ * structures. This function will be called after
+ * the platform has shut down off-chip
+ * communication but while communication with the
+ * NFC itself still works.
+ * @clear_bch: Clears a BCH interrupt (intended to be called
+ * by a more general interrupt handler to do
+ * device-specific clearing).
+ * @is_ready: Returns true if the given chip is ready.
+ * @begin: Begins an interaction with the NFC. This
+ * function must be called before *any* of the
+ * following functions so the NFC can prepare
+ * itself.
+ * @end: Ends interaction with the NFC. This function
+ * should be called to give the NFC a chance to,
+ * among other things, enter a lower-power state.
+ * @send_command: Sends the given buffer of command bytes.
+ * @send_data: Sends the given buffer of data bytes.
+ * @read_data: Reads data bytes into the given buffer.
+ * @send_page: Sends the given given data and OOB bytes,
+ * using the ECC engine.
+ * @read_page: Reads a page through the ECC engine and
+ * delivers the data and OOB bytes to the given
+ * buffers.
+ */
+struct nfc_hal {
+ /* Hardware attributes. */
+ const unsigned int version;
+ const char *description;
+ const unsigned int max_chip_count;
+ const unsigned int max_data_setup_cycles;
+ const unsigned int internal_data_setup_in_ns;
+ const unsigned int max_sample_delay_factor;
+ const unsigned int max_dll_clock_period_in_ns;
+ const unsigned int max_dll_delay_in_ns;
+
+ int isr_dma_channel;
+ struct completion dma_done;
+ struct completion bch_done;
+ struct nand_timing timing;
+ unsigned long clock_frequency_in_hz;
+
+ /* Configuration functions. */
+ int (*init) (struct gpmi_nfc_data *);
+ int (*extra_init) (struct gpmi_nfc_data *);
+ int (*set_geometry)(struct gpmi_nfc_data *);
+ int (*set_timing) (struct gpmi_nfc_data *,
+ const struct nand_timing *);
+ void (*get_timing) (struct gpmi_nfc_data *,
+ unsigned long *clock_frequency_in_hz,
+ struct gpmi_nfc_hardware_timing *);
+ void (*exit) (struct gpmi_nfc_data *);
+
+ /* Call these functions to begin and end I/O. */
+ void (*begin) (struct gpmi_nfc_data *);
+ void (*end) (struct gpmi_nfc_data *);
+
+ /* Call these I/O functions only between begin() and end(). */
+ void (*clear_bch) (struct gpmi_nfc_data *);
+ int (*is_ready) (struct gpmi_nfc_data *, unsigned chip);
+ int (*send_command)(struct gpmi_nfc_data *);
+ int (*send_data) (struct gpmi_nfc_data *);
+ int (*read_data) (struct gpmi_nfc_data *);
+ int (*send_page) (struct gpmi_nfc_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+ int (*read_page) (struct gpmi_nfc_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+};
+
+/**
+ * struct boot_rom_helper - Boot ROM Helper
+ *
+ * This structure embodies the interface to an object that assists the driver
+ * in making decisions that relate to the Boot ROM.
+ *
+ * @version: The Boot ROM version.
+ * @description: A pointer to a human-readable description of the
+ * Boot ROM.
+ * @swap_block_mark: Indicates that the Boot ROM will swap the block
+ * mark with the first byte of the OOB.
+ * @set_geometry: Configures the Boot ROM geometry.
+ * @rom_extra_init: Arch-specific init.
+ */
+struct boot_rom_helper {
+ const unsigned int version;
+ const char *description;
+ const int swap_block_mark;
+ int (*set_geometry) (struct gpmi_nfc_data *);
+ int (*rom_extra_init) (struct gpmi_nfc_data *);
+};
+
+/*
+ *------------------------------------------------------------------------------
+ * External Symbols
+ *------------------------------------------------------------------------------
+ */
+
+/* NFC HAL Common Services */
+extern irqreturn_t bch_irq(int irq, void *cookie);
+extern int common_nfc_set_geometry(struct gpmi_nfc_data *this);
+extern int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this,
+ struct gpmi_nfc_hardware_timing *hw);
+extern struct dma_chan *get_dma_chan(struct gpmi_nfc_data *this);
+extern void prepare_data_dma(struct gpmi_nfc_data *this,
+ enum dma_data_direction dr);
+extern int start_dma_without_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc);
+extern int start_dma_with_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc);
+/* NFC HAL Structures */
+extern struct nfc_hal gpmi_nfc_hal_imx23;
+extern struct nfc_hal gpmi_nfc_hal_imx28;
+
+/* Boot ROM Helper Common Services */
+extern int gpmi_nfc_rom_helper_set_geometry(struct gpmi_nfc_data *this);
+
+/* Boot ROM Helper Structures */
+extern struct boot_rom_helper gpmi_nfc_boot_rom_imx23;
+extern struct boot_rom_helper gpmi_nfc_boot_rom_imx28;
+
+/* MTD Interface Layer */
+extern int gpmi_nfc_mil_init(struct gpmi_nfc_data *this);
+extern void gpmi_nfc_mil_exit(struct gpmi_nfc_data *this);
+
+/* for log */
+#define log(a, ...) printk(KERN_INFO "[ %s : %.3d ] "a"\n", \
+ __func__, __LINE__, ## __VA_ARGS__)
+
+/* BCH : Status Block Completion Codes */
+#define STATUS_ERASED (0xff)
+#define STATUS_UNCORRECTABLE (0xfe)
+#define STATUS_GOOD (0x00)
+
+#endif
diff --git a/drivers/mtd/nand/gpmi-nfc/hal-common.c b/drivers/mtd/nand/gpmi-nfc/hal-common.c
new file mode 100644
index 0000000..d7e8075
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/hal-common.c
@@ -0,0 +1,816 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include "gpmi-nfc.h"
+
+irqreturn_t bch_irq(int irq, void *cookie)
+{
+ struct gpmi_nfc_data *this = cookie;
+ struct nfc_hal *nfc = this->nfc;
+
+ /* Clear the BCH interrupt */
+ nfc->clear_bch(this);
+
+ complete(&nfc->bch_done);
+ return IRQ_HANDLED;
+}
+
+/* calculate the ECC strength by hand */
+static inline int get_ecc_strength(struct gpmi_nfc_data *this)
+{
+ struct mtd_info *mtd = &this->mil.mtd;
+ int ecc_strength = 0;
+
+ switch (mtd->writesize) {
+ case 2048:
+ ecc_strength = 8;
+ break;
+ case 4096:
+ switch (mtd->oobsize) {
+ case 128:
+ ecc_strength = 8;
+ break;
+ case 218:
+ ecc_strength = 16;
+ break;
+ }
+ break;
+ case 8192:
+ ecc_strength = 24;
+ break;
+ }
+
+ return ecc_strength;
+}
+
+int common_nfc_set_geometry(struct gpmi_nfc_data *this)
+{
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ struct boot_rom_helper *rom = this->rom;
+ struct mtd_info *mtd = &this->mil.mtd;
+ unsigned int metadata_size;
+ unsigned int status_size;
+ unsigned int chunk_data_size_in_bits;
+ unsigned int chunk_ecc_size_in_bits;
+ unsigned int chunk_total_size_in_bits;
+ unsigned int block_mark_chunk_number;
+ unsigned int block_mark_chunk_bit_offset;
+ unsigned int block_mark_bit_offset;
+
+ /* We only support BCH now. */
+ geo->ecc_algorithm = "BCH";
+
+ /*
+ * We always choose a metadata size of 10. Don't try to make sense of
+ * it -- this is really only for historical compatibility.
+ */
+ geo->metadata_size_in_bytes = 10;
+
+ /* ECC chunks */
+ geo->ecc_chunk_size_in_bytes = 512;
+ if (is_ddr_nand(&this->device_info))
+ geo->ecc_chunk_size_in_bytes = 1024;
+
+ /*
+ * Compute the total number of ECC chunks in a page. This includes the
+ * slightly larger chunk at the beginning of the page, which contains
+ * both data and metadata.
+ */
+ geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size_in_bytes;
+
+ /*
+ * We use the same ECC strength for all chunks, including the first one.
+ * At this writing, we base our ECC strength choice entirely on the
+ * the physical page geo. In the future, this should be changed to
+ * pay attention to the detailed device information we gathered earlier.
+ */
+ geo->ecc_strength = get_ecc_strength(this);
+ if (!geo->ecc_strength) {
+ log("Unsupported page geometry.");
+ return !0;
+ }
+
+ /* Compute the page size, include page and oob. */
+ geo->page_size_in_bytes = mtd->writesize + mtd->oobsize;
+ /*
+ * ONFI/TOGGLE nand needs GF14, so re-culculate DMA page size.
+ * The ONFI nand must do the reculation,
+ * else it will fail in DMA in some platform(such as imx50).
+ */
+ if (is_ddr_nand(&this->device_info))
+ geo->page_size_in_bytes = mtd->writesize +
+ geo->metadata_size_in_bytes +
+ (geo->ecc_strength * 14 * 8 / geo->ecc_chunk_count);
+
+ /*
+ * The payload buffer contains the data area of a page. The ECC engine
+ * only needs what's required to hold the data.
+ */
+ geo->payload_size_in_bytes = mtd->writesize;
+
+ /*
+ * In principle, computing the auxiliary buffer geometry is NFC
+ * version-specific. However, at this writing, all versions share the
+ * same model, so this code can also be shared.
+ *
+ * The auxiliary buffer contains the metadata and the ECC status. The
+ * metadata is padded to the nearest 32-bit boundary. The ECC status
+ * contains one byte for every ECC chunk, and is also padded to the
+ * nearest 32-bit boundary.
+ */
+ metadata_size = (geo->metadata_size_in_bytes + 0x3) & ~0x3;
+ status_size = (geo->ecc_chunk_count + 0x3) & ~0x3;
+
+ geo->auxiliary_size_in_bytes = metadata_size + status_size;
+ geo->auxiliary_status_offset = metadata_size;
+
+ /* Check if we're going to do block mark swapping. */
+ if (!rom->swap_block_mark)
+ return 0;
+
+ /*
+ * If control arrives here, we're doing block mark swapping, so we need
+ * to compute the byte and bit offsets of the physical block mark within
+ * the ECC-based view of the page data. In principle, this isn't a
+ * difficult computation -- but it's very important and it's easy to get
+ * it wrong, so we do it carefully.
+ *
+ * Note that this calculation is simpler because we use the same ECC
+ * strength for all chunks, including the zero'th one, which contains
+ * the metadata. The calculation would be slightly more complicated
+ * otherwise.
+ *
+ * We start by computing the physical bit offset of the block mark. We
+ * then subtract the number of metadata and ECC bits appearing before
+ * the mark to arrive at its bit offset within the data alone.
+ */
+
+ /* Compute some important facts about chunk geometry. */
+ chunk_data_size_in_bits = geo->ecc_chunk_size_in_bytes * 8;
+
+ /* ONFI/TOGGLE nand needs GF14 */
+ if (is_ddr_nand(&this->device_info))
+ chunk_ecc_size_in_bits = geo->ecc_strength * 14;
+ else
+ chunk_ecc_size_in_bits = geo->ecc_strength * 13;
+
+ chunk_total_size_in_bits =
+ chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+ /* Compute the bit offset of the block mark within the physical page. */
+ block_mark_bit_offset = mtd->writesize * 8;
+
+ /* Subtract the metadata bits. */
+ block_mark_bit_offset -= geo->metadata_size_in_bytes * 8;
+
+ /*
+ * Compute the chunk number (starting at zero) in which the block mark
+ * appears.
+ */
+ block_mark_chunk_number =
+ block_mark_bit_offset / chunk_total_size_in_bits;
+
+ /*
+ * Compute the bit offset of the block mark within its chunk, and
+ * validate it.
+ */
+ block_mark_chunk_bit_offset =
+ block_mark_bit_offset -
+ (block_mark_chunk_number * chunk_total_size_in_bits);
+
+ if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) {
+ /*
+ * If control arrives here, the block mark actually appears in
+ * the ECC bits of this chunk. This wont' work.
+ */
+ log("Unsupported page geometry (block mark in ECC): %u:%u",
+ mtd->writesize, mtd->oobsize);
+ return !0;
+ }
+
+ /*
+ * Now that we know the chunk number in which the block mark appears,
+ * we can subtract all the ECC bits that appear before it.
+ */
+ block_mark_bit_offset -=
+ block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+ /*
+ * We now know the absolute bit offset of the block mark within the
+ * ECC-based data. We can now compute the byte offset and the bit
+ * offset within the byte.
+ */
+ geo->block_mark_byte_offset = block_mark_bit_offset / 8;
+ geo->block_mark_bit_offset = block_mark_bit_offset % 8;
+
+ return 0;
+}
+
+struct dma_chan *get_dma_chan(struct gpmi_nfc_data *this)
+{
+ int chip = this->mil.current_chip;
+
+ BUG_ON(chip < 0);
+ return this->dma_chans[chip];
+}
+
+/* Can we use the upper's buffer directly for DMA? */
+void prepare_data_dma(struct gpmi_nfc_data *this, enum dma_data_direction dr)
+{
+ struct mil *mil = &this->mil;
+ struct scatterlist *sgl = &mil->data_sgl;
+ int ret = 0;
+
+ mil->direct_dma_map_ok = true;
+
+ /* first try to map the upper buffer directly */
+ sg_init_one(sgl, mil->upper_buf, mil->upper_len);
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ if (ret == 0) {
+ /* We have to use our own DMA buffer. */
+ sg_init_one(sgl, mil->data_buffer_dma, PAGE_SIZE);
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ BUG_ON(ret == 0);
+
+ if (dr == DMA_TO_DEVICE)
+ memcpy(mil->data_buffer_dma, mil->upper_buf,
+ mil->upper_len);
+ mil->direct_dma_map_ok = false;
+ }
+ sgl->length = mil->upper_len;
+}
+
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+ struct gpmi_nfc_data *this = param;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ complete(&nfc->dma_done);
+
+ switch (this->dma_type) {
+ case DMA_FOR_COMMAND:
+ dma_unmap_sg(this->dev, &mil->cmd_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_DATA:
+ if (mil->direct_dma_map_ok == false)
+ memcpy(mil->upper_buf, (char *)mil->data_buffer_dma,
+ mil->upper_len);
+ dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_FROM_DEVICE);
+ break;
+
+ case DMA_FOR_WRITE_DATA:
+ dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_ECC_PAGE:
+ case DMA_FOR_WRITE_ECC_PAGE:
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+int start_dma_without_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct nfc_hal *nfc = this->nfc;
+ int err;
+
+ init_completion(&nfc->dma_done);
+
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ dmaengine_submit(desc);
+
+ /* Wait for the interrupt from the DMA block. */
+ err = wait_for_completion_timeout(&nfc->dma_done,
+ msecs_to_jiffies(1000));
+ err = (!err) ? -ETIMEDOUT : 0;
+ if (err)
+ log("DMA timeout!!!");
+ return err;
+}
+
+/*
+ * This function is used in BCH reading or BCH writing pages.
+ * It will wait for the BCH interrupt as long as ONE second.
+ * Actually, we must wait for two interrupts :
+ * [1] firstly the DMA interrupt and
+ * [2] the BCH interrupt.
+ *
+ * @this: Per-device data structure.
+ * @desc: DMA channel
+ */
+int start_dma_with_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct nfc_hal *nfc = this->nfc;
+ int err = 0;
+
+ /* Prepare to receive an interrupt from the BCH block. */
+ init_completion(&nfc->bch_done);
+
+ /* start the DMA */
+ start_dma_without_bch_irq(this, desc);
+
+ /* Wait for the interrupt from the BCH block. */
+ err = wait_for_completion_timeout(&nfc->bch_done,
+ msecs_to_jiffies(1000));
+ err = (!err) ? -ETIMEDOUT : 0;
+ if (err)
+ log("bch timeout!!!");
+ return err;
+}
+
+/**
+ * ns_to_cycles - Converts time in nanoseconds to cycles.
+ *
+ * @ntime: The time, in nanoseconds.
+ * @period: The cycle period, in nanoseconds.
+ * @min: The minimum allowable number of cycles.
+ */
+static unsigned int ns_to_cycles(unsigned int time,
+ unsigned int period, unsigned int min)
+{
+ unsigned int k;
+
+ /*
+ * Compute the minimum number of cycles that entirely contain the
+ * given time.
+ */
+ k = (time + period - 1) / period;
+ return max(k, min);
+}
+
+/**
+ * gpmi_compute_hardware_timing - Apply timing to current hardware conditions.
+ *
+ * @this: Per-device data.
+ * @hardware_timing: A pointer to a hardware timing structure that will receive
+ * the results of our calculations.
+ */
+int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this,
+ struct gpmi_nfc_hardware_timing *hw)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct nfc_hal *nfc = this->nfc;
+ struct nand_chip *nand = &this->mil.nand;
+ struct nand_timing target = nfc->timing;
+ bool improved_timing_is_available;
+ unsigned long clock_frequency_in_hz;
+ unsigned int clock_period_in_ns;
+ bool dll_use_half_periods;
+ unsigned int dll_delay_shift;
+ unsigned int max_sample_delay_in_ns;
+ unsigned int address_setup_in_cycles;
+ unsigned int data_setup_in_ns;
+ unsigned int data_setup_in_cycles;
+ unsigned int data_hold_in_cycles;
+ int ideal_sample_delay_in_ns;
+ unsigned int sample_delay_factor;
+ int tEYE;
+ unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
+ unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
+
+ /*
+ * If there are multiple chips, we need to relax the timings to allow
+ * for signal distortion due to higher capacitance.
+ */
+ if (nand->numchips > 2) {
+ target.data_setup_in_ns += 10;
+ target.data_hold_in_ns += 10;
+ target.address_setup_in_ns += 10;
+ } else if (nand->numchips > 1) {
+ target.data_setup_in_ns += 5;
+ target.data_hold_in_ns += 5;
+ target.address_setup_in_ns += 5;
+ }
+
+ /* Check if improved timing information is available. */
+ improved_timing_is_available =
+ (target.tREA_in_ns >= 0) &&
+ (target.tRLOH_in_ns >= 0) &&
+ (target.tRHOH_in_ns >= 0) ;
+
+ /* Inspect the clock. */
+ clock_frequency_in_hz = nfc->clock_frequency_in_hz;
+ clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
+
+ /*
+ * The NFC quantizes setup and hold parameters in terms of clock cycles.
+ * Here, we quantize the setup and hold timing parameters to the
+ * next-highest clock period to make sure we apply at least the
+ * specified times.
+ *
+ * For data setup and data hold, the hardware interprets a value of zero
+ * as the largest possible delay. This is not what's intended by a zero
+ * in the input parameter, so we impose a minimum of one cycle.
+ */
+ data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
+ clock_period_in_ns, 1);
+ data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
+ clock_period_in_ns, 1);
+ address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
+ clock_period_in_ns, 0);
+
+ /*
+ * The clock's period affects the sample delay in a number of ways:
+ *
+ * (1) The NFC HAL tells us the maximum clock period the sample delay
+ * DLL can tolerate. If the clock period is greater than half that
+ * maximum, we must configure the DLL to be driven by half periods.
+ *
+ * (2) We need to convert from an ideal sample delay, in ns, to a
+ * "sample delay factor," which the NFC uses. This factor depends on
+ * whether we're driving the DLL with full or half periods.
+ * Paraphrasing the reference manual:
+ *
+ * AD = SDF x 0.125 x RP
+ *
+ * where:
+ *
+ * AD is the applied delay, in ns.
+ * SDF is the sample delay factor, which is dimensionless.
+ * RP is the reference period, in ns, which is a full clock period
+ * if the DLL is being driven by full periods, or half that if
+ * the DLL is being driven by half periods.
+ *
+ * Let's re-arrange this in a way that's more useful to us:
+ *
+ * 8
+ * SDF = AD x ----
+ * RP
+ *
+ * The reference period is either the clock period or half that, so this
+ * is:
+ *
+ * 8 AD x DDF
+ * SDF = AD x ----- = --------
+ * f x P P
+ *
+ * where:
+ *
+ * f is 1 or 1/2, depending on how we're driving the DLL.
+ * P is the clock period.
+ * DDF is the DLL Delay Factor, a dimensionless value that
+ * incorporates all the constants in the conversion.
+ *
+ * DDF will be either 8 or 16, both of which are powers of two. We can
+ * reduce the cost of this conversion by using bit shifts instead of
+ * multiplication or division. Thus:
+ *
+ * AD << DDS
+ * SDF = ---------
+ * P
+ *
+ * or
+ *
+ * AD = (SDF >> DDS) x P
+ *
+ * where:
+ *
+ * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
+ */
+ if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
+ dll_use_half_periods = true;
+ dll_delay_shift = 3 + 1;
+ } else {
+ dll_use_half_periods = false;
+ dll_delay_shift = 3;
+ }
+
+ /*
+ * Compute the maximum sample delay the NFC allows, under current
+ * conditions. If the clock is running too slowly, no sample delay is
+ * possible.
+ */
+ if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
+ max_sample_delay_in_ns = 0;
+ else {
+ /*
+ * Compute the delay implied by the largest sample delay factor
+ * the NFC allows.
+ */
+ max_sample_delay_in_ns =
+ (nfc->max_sample_delay_factor * clock_period_in_ns) >>
+ dll_delay_shift;
+
+ /*
+ * Check if the implied sample delay larger than the NFC
+ * actually allows.
+ */
+ if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
+ max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
+ }
+
+ /*
+ * Check if improved timing information is available. If not, we have to
+ * use a less-sophisticated algorithm.
+ */
+ if (!improved_timing_is_available) {
+ /*
+ * Fold the read setup time required by the NFC into the ideal
+ * sample delay.
+ */
+ ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
+ nfc->internal_data_setup_in_ns;
+
+ /*
+ * The ideal sample delay may be greater than the maximum
+ * allowed by the NFC. If so, we can trade off sample delay time
+ * for more data setup time.
+ *
+ * In each iteration of the following loop, we add a cycle to
+ * the data setup time and subtract a corresponding amount from
+ * the sample delay until we've satisified the constraints or
+ * can't do any better.
+ */
+ while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+
+ data_setup_in_cycles++;
+ ideal_sample_delay_in_ns -= clock_period_in_ns;
+
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+
+ }
+
+ /*
+ * Compute the sample delay factor that corresponds most closely
+ * to the ideal sample delay. If the result is too large for the
+ * NFC, use the maximum value.
+ *
+ * Notice that we use the ns_to_cycles function to compute the
+ * sample delay factor. We do this because the form of the
+ * computation is the same as that for calculating cycles.
+ */
+ sample_delay_factor =
+ ns_to_cycles(
+ ideal_sample_delay_in_ns << dll_delay_shift,
+ clock_period_in_ns, 0);
+
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
+ sample_delay_factor = nfc->max_sample_delay_factor;
+
+ /* Skip to the part where we return our results. */
+ goto return_results;
+ }
+
+ /*
+ * If control arrives here, we have more detailed timing information,
+ * so we can use a better algorithm.
+ */
+
+ /*
+ * Fold the read setup time required by the NFC into the maximum
+ * propagation delay.
+ */
+ max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
+
+ /*
+ * Earlier, we computed the number of clock cycles required to satisfy
+ * the data setup time. Now, we need to know the actual nanoseconds.
+ */
+ data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
+
+ /*
+ * Compute tEYE, the width of the data eye when reading from the NAND
+ * Flash. The eye width is fundamentally determined by the data setup
+ * time, perturbed by propagation delays and some characteristics of the
+ * NAND Flash device.
+ *
+ * start of the eye = max_prop_delay + tREA
+ * end of the eye = min_prop_delay + tRHOH + data_setup
+ */
+ tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
+ (int)data_setup_in_ns;
+
+ tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
+
+ /*
+ * The eye must be open. If it's not, we can try to open it by
+ * increasing its main forcer, the data setup time.
+ *
+ * In each iteration of the following loop, we increase the data setup
+ * time by a single clock cycle. We do this until either the eye is
+ * open or we run into NFC limits.
+ */
+ while ((tEYE <= 0) &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+ /* Give a cycle to data setup. */
+ data_setup_in_cycles++;
+ /* Synchronize the data setup time with the cycles. */
+ data_setup_in_ns += clock_period_in_ns;
+ /* Adjust tEYE accordingly. */
+ tEYE += clock_period_in_ns;
+ }
+
+ /*
+ * When control arrives here, the eye is open. The ideal time to sample
+ * the data is in the center of the eye:
+ *
+ * end of the eye + start of the eye
+ * --------------------------------- - data_setup
+ * 2
+ *
+ * After some algebra, this simplifies to the code immediately below.
+ */
+ ideal_sample_delay_in_ns =
+ ((int)max_prop_delay_in_ns +
+ (int)target.tREA_in_ns +
+ (int)min_prop_delay_in_ns +
+ (int)target.tRHOH_in_ns -
+ (int)data_setup_in_ns) >> 1;
+
+ /*
+ * The following figure illustrates some aspects of a NAND Flash read:
+ *
+ *
+ * __ _____________________________________
+ * RDN \_________________/
+ *
+ * <---- tEYE ----->
+ * /-----------------\
+ * Read Data ----------------------------< >---------
+ * \-----------------/
+ * ^ ^ ^ ^
+ * | | | |
+ * |<--Data Setup -->|<--Delay Time -->| |
+ * | | | |
+ * | | |
+ * | |<-- Quantized Delay Time -->|
+ * | | |
+ *
+ *
+ * We have some issues we must now address:
+ *
+ * (1) The *ideal* sample delay time must not be negative. If it is, we
+ * jam it to zero.
+ *
+ * (2) The *ideal* sample delay time must not be greater than that
+ * allowed by the NFC. If it is, we can increase the data setup
+ * time, which will reduce the delay between the end of the data
+ * setup and the center of the eye. It will also make the eye
+ * larger, which might help with the next issue...
+ *
+ * (3) The *quantized* sample delay time must not fall either before the
+ * eye opens or after it closes (the latter is the problem
+ * illustrated in the above figure).
+ */
+
+ /* Jam a negative ideal sample delay to zero. */
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+
+ /*
+ * Extend the data setup as needed to reduce the ideal sample delay
+ * below the maximum permitted by the NFC.
+ */
+ while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+
+ /* Give a cycle to data setup. */
+ data_setup_in_cycles++;
+ /* Synchronize the data setup time with the cycles. */
+ data_setup_in_ns += clock_period_in_ns;
+ /* Adjust tEYE accordingly. */
+ tEYE += clock_period_in_ns;
+
+ /*
+ * Decrease the ideal sample delay by one half cycle, to keep it
+ * in the middle of the eye.
+ */
+ ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
+
+ /* Jam a negative ideal sample delay to zero. */
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+ }
+
+ /*
+ * Compute the sample delay factor that corresponds to the ideal sample
+ * delay. If the result is too large, then use the maximum allowed
+ * value.
+ *
+ * Notice that we use the ns_to_cycles function to compute the sample
+ * delay factor. We do this because the form of the computation is the
+ * same as that for calculating cycles.
+ */
+ sample_delay_factor =
+ ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
+ clock_period_in_ns, 0);
+
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
+ sample_delay_factor = nfc->max_sample_delay_factor;
+
+ /*
+ * These macros conveniently encapsulate a computation we'll use to
+ * continuously evaluate whether or not the data sample delay is inside
+ * the eye.
+ */
+ #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
+
+ #define QUANTIZED_DELAY \
+ ((int) ((sample_delay_factor * clock_period_in_ns) >> \
+ dll_delay_shift))
+
+ #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
+
+ #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
+
+ /*
+ * While the quantized sample time falls outside the eye, reduce the
+ * sample delay or extend the data setup to move the sampling point back
+ * toward the eye. Do not allow the number of data setup cycles to
+ * exceed the maximum allowed by the NFC.
+ */
+ while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+ /*
+ * If control arrives here, the quantized sample delay falls
+ * outside the eye. Check if it's before the eye opens, or after
+ * the eye closes.
+ */
+ if (QUANTIZED_DELAY > IDEAL_DELAY) {
+ /*
+ * If control arrives here, the quantized sample delay
+ * falls after the eye closes. Decrease the quantized
+ * delay time and then go back to re-evaluate.
+ */
+ if (sample_delay_factor != 0)
+ sample_delay_factor--;
+ continue;
+ }
+
+ /*
+ * If control arrives here, the quantized sample delay falls
+ * before the eye opens. Shift the sample point by increasing
+ * data setup time. This will also make the eye larger.
+ */
+
+ /* Give a cycle to data setup. */
+ data_setup_in_cycles++;
+ /* Synchronize the data setup time with the cycles. */
+ data_setup_in_ns += clock_period_in_ns;
+ /* Adjust tEYE accordingly. */
+ tEYE += clock_period_in_ns;
+
+ /*
+ * Decrease the ideal sample delay by one half cycle, to keep it
+ * in the middle of the eye.
+ */
+ ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
+
+ /* ...and one less period for the delay time. */
+ ideal_sample_delay_in_ns -= clock_period_in_ns;
+
+ /* Jam a negative ideal sample delay to zero. */
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+
+ /*
+ * We have a new ideal sample delay, so re-compute the quantized
+ * delay.
+ */
+ sample_delay_factor =
+ ns_to_cycles(
+ ideal_sample_delay_in_ns << dll_delay_shift,
+ clock_period_in_ns, 0);
+
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
+ sample_delay_factor = nfc->max_sample_delay_factor;
+ }
+
+ /* Control arrives here when we're ready to return our results. */
+return_results:
+ hw->data_setup_in_cycles = data_setup_in_cycles;
+ hw->data_hold_in_cycles = data_hold_in_cycles;
+ hw->address_setup_in_cycles = address_setup_in_cycles;
+ hw->use_half_periods = dll_use_half_periods;
+ hw->sample_delay_factor = sample_delay_factor;
+
+ /* Return success. */
+ return 0;
+}
diff --git a/drivers/mtd/nand/gpmi-nfc/mil.c b/drivers/mtd/nand/gpmi-nfc/mil.c
new file mode 100644
index 0000000..defd19e
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/mil.c
@@ -0,0 +1,1104 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <linux/slab.h>
+#include "gpmi-nfc.h"
+#include "linux/slab.h"
+
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static int read_page_prepare(struct gpmi_nfc_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void **use_virt, dma_addr_t *use_phys)
+{
+ struct device *dev = this->dev;
+ dma_addr_t destination_phys = ~0;
+
+ if (virt_addr_valid(destination))
+ destination_phys = dma_map_single(dev, (void *)destination,
+ length, DMA_FROM_DEVICE);
+
+ if (dma_mapping_error(dev, destination_phys)) {
+ if (alt_size < length) {
+ log("Alternate buffer is too small for incoming I/O.");
+ return -ENOMEM;
+ }
+
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ } else {
+ *use_virt = destination;
+ *use_phys = destination_phys;
+ }
+ return 0;
+}
+
+static void read_page_end(struct gpmi_nfc_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void *used_virt, dma_addr_t used_phys)
+{
+ struct device *dev = this->dev;
+
+ if (used_virt == destination)
+ dma_unmap_single(dev, used_phys, length, DMA_FROM_DEVICE);
+ else
+ memcpy(destination, alt_virt, length);
+}
+
+static int send_page_prepare(struct gpmi_nfc_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void **use_virt, dma_addr_t *use_phys)
+{
+ dma_addr_t source_phys = ~0;
+ struct device *dev = this->dev;
+
+ if (virt_addr_valid(source))
+ source_phys = dma_map_single(dev,
+ (void *)source, length, DMA_TO_DEVICE);
+
+ if (dma_mapping_error(dev, source_phys)) {
+ if (alt_size < length) {
+ log("Alternate buffer is too small for outgoing I/O");
+ return -ENOMEM;
+ }
+
+ /*
+ * Copy the contents of the source buffer into the alternate
+ * buffer and set up the return values accordingly.
+ */
+ memcpy(alt_virt, source, length);
+
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ } else {
+ *use_virt = source;
+ *use_phys = source_phys;
+ }
+ return 0;
+}
+
+static void send_page_end(struct gpmi_nfc_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void *used_virt, dma_addr_t used_phys)
+{
+ struct device *dev = this->dev;
+ if (used_virt == source)
+ dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
+}
+
+static void mil_free_dma_buffer(struct gpmi_nfc_data *this)
+{
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+
+ if (mil->page_buffer_virt && virt_addr_valid(mil->page_buffer_virt))
+ dma_free_coherent(dev, mil->page_buffer_size,
+ mil->page_buffer_virt,
+ mil->page_buffer_phys);
+ kfree(mil->cmd_buffer);
+ kfree(mil->data_buffer_dma);
+
+ mil->cmd_buffer = NULL;
+ mil->data_buffer_dma = NULL;
+ mil->page_buffer_virt = NULL;
+ mil->page_buffer_size = 0;
+ mil->page_buffer_phys = ~0;
+}
+
+/* Allocate the DMA buffers */
+static int mil_alloc_dma_buffer(struct gpmi_nfc_data *this)
+{
+ struct device *dev = this->dev;
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ struct mil *mil = &this->mil;
+
+ /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
+ mil->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (mil->cmd_buffer == NULL)
+ goto error_alloc;
+ sg_init_one(&mil->cmd_sgl, mil->cmd_buffer, PAGE_SIZE);
+
+ /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
+ mil->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (mil->data_buffer_dma == NULL)
+ goto error_alloc;
+
+ /*
+ * [3] Allocate the page buffer.
+ *
+ * Both the payload buffer and the auxiliary buffer must appear on
+ * 32-bit boundaries. We presume the size of the payload buffer is a
+ * power of two and is much larger than four, which guarantees the
+ * auxiliary buffer will appear on a 32-bit boundary.
+ */
+ mil->page_buffer_size = geo->payload_size_in_bytes +
+ geo->auxiliary_size_in_bytes;
+
+ mil->page_buffer_virt = dma_alloc_coherent(dev, mil->page_buffer_size,
+ &mil->page_buffer_phys, GFP_DMA);
+ if (!mil->page_buffer_virt)
+ goto error_alloc;
+
+
+ /* Slice up the page buffer. */
+ mil->payload_virt = mil->page_buffer_virt;
+ mil->payload_phys = mil->page_buffer_phys;
+ mil->auxiliary_virt = ((char *) mil->payload_virt) +
+ geo->payload_size_in_bytes;
+ mil->auxiliary_phys = mil->payload_phys +
+ geo->payload_size_in_bytes;
+ return 0;
+
+error_alloc:
+ mil_free_dma_buffer(this);
+ log("allocate DMA buffer error!!");
+ return -ENOMEM;
+}
+
+static void mil_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+ struct nfc_hal *nfc = this->nfc;
+ int error;
+
+ /*
+ * Every operation begins with a command byte and a series of zero or
+ * more address bytes. These are distinguished by either the Address
+ * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+ * asserted. When MTD is ready to execute the command, it will deassert
+ * both latch enables.
+ *
+ * Rather than run a separate DMA operation for every single byte, we
+ * queue them up and run a single DMA operation for the entire series
+ * of command and data bytes. NAND_CMD_NONE means the END of the queue.
+ */
+ if ((ctrl & (NAND_ALE | NAND_CLE))) {
+ if (data != NAND_CMD_NONE)
+ mil->cmd_buffer[mil->command_length++] = data;
+ return;
+ }
+
+ if (!mil->command_length)
+ return;
+
+ error = nfc->send_command(this);
+ if (error)
+ log("Chip: %u, Error %d", mil->current_chip, error);
+
+ mil->command_length = 0;
+}
+
+static int mil_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ return nfc->is_ready(this, mil->current_chip);
+}
+
+static void mil_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+ struct nfc_hal *nfc = this->nfc;
+
+ if ((mil->current_chip < 0) && (chip >= 0))
+ nfc->begin(this);
+ else if ((mil->current_chip >= 0) && (chip < 0))
+ nfc->end(this);
+ else
+ ;
+
+ mil->current_chip = chip;
+}
+
+static void mil_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ /* save the info in mil{} for future */
+ mil->upper_buf = buf;
+ mil->upper_len = len;
+
+ nfc->read_data(this);
+}
+
+static void mil_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ /* save the info in mil{} for future */
+ mil->upper_buf = (uint8_t *)buf;
+ mil->upper_len = len;
+
+ nfc->send_data(this);
+}
+
+static uint8_t mil_read_byte(struct mtd_info *mtd)
+{
+ uint8_t byte = 0;
+ mil_read_buf(mtd, (uint8_t *)&byte, 1);
+ return byte;
+}
+
+/**
+ * mil_handle_block_mark_swapping() - Handles block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ *
+ * @this: Per-device data.
+ * @payload: A pointer to the payload buffer.
+ * @auxiliary: A pointer to the auxiliary buffer.
+ */
+static void mil_handle_block_mark_swapping(struct gpmi_nfc_data *this,
+ void *payload, void *auxiliary)
+{
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct boot_rom_helper *rom = this->rom;
+ unsigned char *p;
+ unsigned char *a;
+ unsigned int bit;
+ unsigned char mask;
+ unsigned char from_data;
+ unsigned char from_oob;
+
+ /* Check if we're doing block mark swapping. */
+ if (!rom->swap_block_mark)
+ return;
+
+ /*
+ * If control arrives here, we're swapping. Make some convenience
+ * variables.
+ */
+ bit = nfc_geo->block_mark_bit_offset;
+ p = ((unsigned char *) payload) + nfc_geo->block_mark_byte_offset;
+ a = auxiliary;
+
+ /*
+ * Get the byte from the data area that overlays the block mark. Since
+ * the ECC engine applies its own view to the bits in the page, the
+ * physical block mark won't (in general) appear on a byte boundary in
+ * the data.
+ */
+ from_data = (p[0] >> bit) | (p[1] << (8 - bit));
+
+ /* Get the byte from the OOB. */
+ from_oob = a[0];
+
+ /* Swap them. */
+ a[0] = from_data;
+
+ mask = (0x1 << bit) - 1;
+ p[0] = (p[0] & mask) | (from_oob << bit);
+
+ mask = ~0 << bit;
+ p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
+}
+
+static int mil_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+ uint8_t *buf, int page)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct mil *mil = &this->mil;
+ void *payload_virt = 0;
+ dma_addr_t payload_phys = ~0;
+ void *auxiliary_virt = 0;
+ dma_addr_t auxiliary_phys = ~0;
+ unsigned int i;
+ unsigned char *status;
+ unsigned int failed;
+ unsigned int corrected;
+ int error = 0;
+
+ error = read_page_prepare(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ &payload_virt, &payload_phys);
+ if (error) {
+ log("Inadequate DMA buffer");
+ error = -ENOMEM;
+ return error;
+ }
+ auxiliary_virt = mil->auxiliary_virt;
+ auxiliary_phys = mil->auxiliary_phys;
+
+ /* ask the NFC */
+ error = nfc->read_page(this, payload_phys, auxiliary_phys);
+ if (error) {
+ log("Error in ECC-based read: %d", error);
+ goto exit_nfc;
+ }
+
+ /* handle the block mark swapping */
+ mil_handle_block_mark_swapping(this, payload_virt, auxiliary_virt);
+
+ /* Loop over status bytes, accumulating ECC status. */
+ failed = 0;
+ corrected = 0;
+ status = ((unsigned char *) auxiliary_virt) +
+ nfc_geo->auxiliary_status_offset;
+
+ for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+ if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
+ continue;
+
+ if (*status == STATUS_UNCORRECTABLE) {
+ failed++;
+ continue;
+ }
+ corrected += *status;
+ }
+
+ /*
+ * Propagate ECC status to the owning MTD only when failed or
+ * corrected times nearly reaches our ECC correction threshold.
+ */
+ if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
+ mtd->ecc_stats.failed += failed;
+ mtd->ecc_stats.corrected += corrected;
+ }
+
+ /*
+ * It's time to deliver the OOB bytes. See mil_ecc_read_oob() for
+ * details about our policy for delivering the OOB.
+ *
+ * We fill the caller's buffer with set bits, and then copy the block
+ * mark to th caller's buffer. Note that, if block mark swapping was
+ * necessary, it has already been done, so we can rely on the first
+ * byte of the auxiliary buffer to contain the block mark.
+ */
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+ nand->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
+
+exit_nfc:
+ read_page_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+ return error;
+}
+
+static void mil_ecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *nand, const uint8_t *buf)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct boot_rom_helper *rom = this->rom;
+ struct mil *mil = &this->mil;
+ const void *payload_virt = 0;
+ dma_addr_t payload_phys = ~0;
+ const void *auxiliary_virt = 0;
+ dma_addr_t auxiliary_phys = ~0;
+ int error;
+
+ if (rom->swap_block_mark) {
+ /*
+ * If control arrives here, we're doing block mark swapping.
+ * Since we can't modify the caller's buffers, we must copy them
+ * into our own.
+ */
+ memcpy(mil->payload_virt, buf, mtd->writesize);
+ payload_virt = mil->payload_virt;
+ payload_phys = mil->payload_phys;
+
+ memcpy(mil->auxiliary_virt, nand->oob_poi,
+ nfc_geo->auxiliary_size_in_bytes);
+ auxiliary_virt = mil->auxiliary_virt;
+ auxiliary_phys = mil->auxiliary_phys;
+
+ /* Handle block mark swapping. */
+ mil_handle_block_mark_swapping(this,
+ (void *) payload_virt, (void *) auxiliary_virt);
+ } else {
+ /*
+ * If control arrives here, we're not doing block mark swapping,
+ * so we can to try and use the caller's buffers.
+ */
+ error = send_page_prepare(this,
+ buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ &payload_virt, &payload_phys);
+ if (error) {
+ log("Inadequate payload DMA buffer");
+ return;
+ }
+
+ error = send_page_prepare(this,
+ nand->oob_poi, mtd->oobsize,
+ mil->auxiliary_virt, mil->auxiliary_phys,
+ nfc_geo->auxiliary_size_in_bytes,
+ &auxiliary_virt, &auxiliary_phys);
+ if (error) {
+ log("Inadequate auxiliary DMA buffer");
+ goto exit_auxiliary;
+ }
+ }
+
+ /* Ask the NFC. */
+ error = nfc->send_page(this, payload_phys, auxiliary_phys);
+ if (error)
+ log("Error in ECC-based write: %d", error);
+
+ if (!rom->swap_block_mark) {
+ send_page_end(this, nand->oob_poi, mtd->oobsize,
+ mil->auxiliary_virt, mil->auxiliary_phys,
+ nfc_geo->auxiliary_size_in_bytes,
+ auxiliary_virt, auxiliary_phys);
+exit_auxiliary:
+ send_page_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+ }
+}
+
+/**
+ * mil_hook_block_markbad() - Hooked MTD Interface block_markbad().
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code. See the description of the marking_a_bad_block field
+ * in struct mil for more information about this.
+ *
+ * @mtd: A pointer to the MTD.
+ * @ofs: Byte address of the block to mark.
+ */
+static int mil_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ register struct nand_chip *chip = mtd->priv;
+ struct gpmi_nfc_data *this = chip->priv;
+ struct mil *mil = &this->mil;
+ int ret;
+
+ mil->marking_a_bad_block = true;
+ ret = mil->hooked_block_markbad(mtd, ofs);
+ mil->marking_a_bad_block = false;
+ return ret;
+}
+
+/**
+ * mil_ecc_read_oob() - MTD Interface ecc.read_oob().
+ *
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ * write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ * true state of the block mark, no matter where that block mark appears in
+ * the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ * return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ * page, using the conventional definition of which bytes are data and which
+ * are OOB. This gives the caller a way to see the actual, physical bytes
+ * in the page, without the distortions applied by our ECC engine.
+ *
+ *
+ * What we do for this specific read operation depends on two questions:
+ *
+ * 1) Are we doing a "raw" read, or an ECC-based read?
+ *
+ * 2) Are we using block mark swapping or transcription?
+ *
+ * There are four cases, illustrated by the following Karnaugh map:
+ *
+ * | Raw | ECC-based |
+ * -------------+-------------------------+-------------------------+
+ * | Read the conventional | |
+ * | OOB at the end of the | |
+ * Swapping | page and return it. It | |
+ * | contains exactly what | |
+ * | we want. | Read the block mark and |
+ * -------------+-------------------------+ return it in a buffer |
+ * | Read the conventional | full of set bits. |
+ * | OOB at the end of the | |
+ * | page and also the block | |
+ * Transcribing | mark in the metadata. | |
+ * | Copy the block mark | |
+ * | into the first byte of | |
+ * | the OOB. | |
+ * -------------+-------------------------+-------------------------+
+ *
+ * Note that we break rule #4 in the Transcribing/Raw case because we're not
+ * giving an accurate view of the actual, physical bytes in the page (we're
+ * overwriting the block mark). That's OK because it's more important to follow
+ * rule #2.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * @mtd: A pointer to the owning MTD.
+ * @nand: A pointer to the owning NAND Flash MTD.
+ * @page: The page number to read.
+ * @sndcmd: Indicates this function should send a command to the chip before
+ * reading the out-of-band bytes. This is only false for small page
+ * chips that support auto-increment.
+ */
+static int mil_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page, int sndcmd)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct boot_rom_helper *rom = this->rom;
+
+ /* clear the OOB buffer */
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+
+ /* Read out the conventional OOB. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+
+ /*
+ * Now, we want to make sure the block mark is correct. In the
+ * Swapping/Raw case, we already have it. Otherwise, we need to
+ * explicitly read it.
+ */
+ if (!rom->swap_block_mark) {
+ /* Read the block mark into the first byte of the OOB buffer. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+ nand->oob_poi[0] = nand->read_byte(mtd);
+ }
+
+ /*
+ * Return true, indicating that the next call to this function must send
+ * a command.
+ */
+ return true;
+}
+
+static int mil_ecc_write_oob(struct mtd_info *mtd,
+ struct nand_chip *nand, int page)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+ struct boot_rom_helper *rom = this->rom;
+ uint8_t block_mark = 0;
+ int block_mark_column;
+ int status;
+ int error = 0;
+
+ /*
+ * There are fundamental incompatibilities between the i.MX GPMI NFC and
+ * the NAND Flash MTD model that make it essentially impossible to write
+ * the out-of-band bytes.
+ *
+ * We permit *ONE* exception. If the *intent* of writing the OOB is to
+ * mark a block bad, we can do that.
+ */
+ if (!mil->marking_a_bad_block) {
+ dev_emerg(dev, "This driver doesn't support writing the OOB\n");
+ WARN_ON(1);
+ error = -EIO;
+ goto exit;
+ }
+
+ /*
+ * If control arrives here, we're marking a block bad. First, figure out
+ * where the block mark is.
+ *
+ * If we're using swapping, the block mark is in the conventional
+ * location. Otherwise, we're using transcription, and the block mark
+ * appears in the first byte of the page.
+ */
+ if (rom->swap_block_mark)
+ block_mark_column = mtd->writesize;
+ else
+ block_mark_column = 0;
+
+ /* Write the block mark. */
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, block_mark_column, page);
+ nand->write_buf(mtd, &block_mark, 1);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = nand->waitfunc(mtd, nand);
+
+ /* Check if it worked. */
+ if (status & NAND_STATUS_FAIL)
+ error = -EIO;
+exit:
+ return error;
+}
+
+/**
+ * mil_block_bad - Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * We take away the in-memory BBT when the user sets the "ignorebad" parameter,
+ * which indicates that all blocks should be reported good.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ *
+ * @mtd: Ignored.
+ * @ofs: Ignored.
+ * @getchip: Ignored.
+ */
+static int mil_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+/* Set up the Boot ROM Helper geometry. */
+static int mil_set_boot_rom_helper_geometry(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_helper *rom = this->rom;
+ struct boot_rom_geometry *geo = &this->rom_geometry;
+
+ if (rom->set_geometry(this))
+ return !0;
+
+ pr_info("--------------------------------------------\n");
+ pr_info(" Boot ROM Geometry\n");
+ pr_info("--------------------------------------------\n");
+ pr_info("Boot Area Count : %u\n", geo->boot_area_count);
+ pr_info("Boot Area Size in Bytes : %u (0x%x)\n",
+ geo->boot_area_size_in_bytes,
+ geo->boot_area_size_in_bytes);
+ pr_info("Stride Size in Pages : %u\n", geo->stride_size_in_pages);
+ pr_info("Search Area Stride Exponent: %u\n",
+ geo->search_area_stride_exponent);
+ return 0;
+}
+
+static int mil_set_geometry(struct gpmi_nfc_data *this)
+{
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *geo = &this->nfc_geometry;
+
+ /* Free the temporary DMA memory for read ID case */
+ mil_free_dma_buffer(this);
+
+ /* Set up the NFC geometry which is used by BCH. */
+ if (nfc->set_geometry(this))
+ return -ENXIO;
+ pr_info("---------------------------------------\n");
+ pr_info(" NFC Geometry (used by BCH)\n");
+ pr_info("---------------------------------------\n");
+ pr_info("ECC Algorithm : %s\n", geo->ecc_algorithm);
+ pr_info("ECC Strength : %u\n", geo->ecc_strength);
+ pr_info("Page Size in Bytes : %u\n", geo->page_size_in_bytes);
+ pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
+ pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
+ pr_info("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
+ pr_info("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes);
+ pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
+ pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
+ pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
+ pr_info("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
+
+ /* Alloc the new DMA buffers according to the pagesize and oobsize */
+ return mil_alloc_dma_buffer(this);
+}
+
+static int mil_pre_bbt_scan(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_helper *rom = this->rom;
+ int error = 0;
+
+ if (mil_set_boot_rom_helper_geometry(this))
+ return -ENXIO;
+
+ /* This is ROM arch-specific initilization before the BBT scanning. */
+ if (rom->rom_extra_init)
+ error = rom->rom_extra_init(this);
+ return error;
+}
+
+static int mil_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ int error;
+
+ /* Prepare for the BBT scan. */
+ error = mil_pre_bbt_scan(this);
+ if (error)
+ return error;
+
+ /* use the default BBT implementation */
+ return nand_default_bbt(mtd);
+}
+
+static int mil_boot_areas_init(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_geometry *rom = &this->rom_geometry;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+
+ if (rom->boot_area_count == 0) {
+ mil->general_use_mtd = &mil->mtd;
+ pr_info("There is no Boot area.\n");
+ } else if (rom->boot_area_count == 1) {
+ static char *chip_0_boot_name = "gpmi-nfc-0-boot";
+ static char *general_use_name = "gpmi-nfc-general-use";
+ struct mtd_partition partitions[2];
+
+ pr_info("Boot area protection is enabled.\n");
+ /*
+ * We partition the medium like so:
+ *
+ * +------+----------------------------------------------------+
+ * | Boot | General Use |
+ * +------+----------------------------------------------------+
+ */
+
+ /* Chip 0 Boot */
+ partitions[0].name = chip_0_boot_name;
+ partitions[0].offset = 0;
+ partitions[0].size = rom->boot_area_size_in_bytes;
+ partitions[0].mask_flags = 0;
+
+ /* General Use */
+ partitions[1].name = general_use_name;
+ partitions[1].offset = rom->boot_area_size_in_bytes;
+ partitions[1].size = MTDPART_SIZ_FULL;
+ partitions[1].mask_flags = 0;
+
+ /* Construct and register the partitions. */
+ add_mtd_partitions(mtd, partitions, 2);
+
+ /* Find the general use MTD. */
+ mil->general_use_mtd = get_mtd_device_nm(general_use_name);
+ if (IS_ERR(mil->general_use_mtd)) {
+ log("Can't find general use MTD");
+ BUG();
+ }
+ } else {
+ log("Boot area count greater than one is unimplemented.");
+ return -ENXIO;
+ }
+ return 0;
+}
+
+static void mil_boot_areas_exit(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_geometry *rom = &this->rom_geometry;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+
+ if (!rom->boot_area_count) {
+ mil->general_use_mtd = NULL;
+ return;
+ }
+ del_mtd_partitions(mtd);
+ mil->general_use_mtd = NULL;
+}
+
+static int construct_general_use_partitions(struct gpmi_nfc_data *this)
+{
+ struct mil *mil = &this->mil;
+ unsigned int partition_count;
+ struct mtd_partition *partitions;
+ unsigned int name_size;
+ char *names;
+ unsigned int size;
+ unsigned int i;
+ static const char *name_prefix = "gpmi-nfc-ubi-";
+
+ /* Only handle the MTD which is larger than 2GiB. */
+ if (mil->general_use_mtd->size <= SZ_2G)
+ return 0;
+
+ /* Split it by 2G for historical reason*/
+ partition_count = mil->general_use_mtd->size >> 31;
+ if (mil->general_use_mtd->size & ((1 << 30) - 1))
+ partition_count++;
+
+ /* construct the partitions */
+ name_size = strlen(name_prefix) + 4;
+ size = (sizeof(*partitions) + name_size) * partition_count;
+ partitions = kzalloc(size, GFP_KERNEL);
+ if (!partitions) {
+ log("Could not allocate memory for UBI partitions.");
+ return -ENOMEM;
+ }
+
+ names = (char *)(partitions + partition_count);
+ for (i = 0; i < partition_count; i++) {
+ partitions[i].name = names;
+ partitions[i].size = SZ_2G;
+ partitions[i].offset = MTDPART_OFS_NXTBLK;
+
+ sprintf(names, "%s%u", name_prefix, i);
+ names += name_size;
+ }
+ /* Adjust the last partition to take up the remainder. */
+ partitions[i - 1].size = MTDPART_SIZ_FULL;
+
+ mil->partitions = partitions;
+ mil->partition_count = partition_count;
+ return 0;
+}
+
+static int mil_partitions_init(struct gpmi_nfc_data *this)
+{
+ struct mil *mil = &this->mil;
+ int error;
+
+ error = mil_boot_areas_init(this);
+ if (error)
+ return error;
+
+ /* Construct partitions */
+ error = construct_general_use_partitions(this);
+ if (error) {
+ log("error : %d", error);
+ return error;
+ }
+ if (mil->partition_count)
+ add_mtd_partitions(mil->general_use_mtd, mil->partitions,
+ mil->partition_count);
+ return 0;
+}
+
+static void mil_partitions_exit(struct gpmi_nfc_data *this)
+{
+ struct mil *mil = &this->mil;
+
+ if (mil->partition_count) {
+ del_mtd_partitions(mil->general_use_mtd);
+ kfree(mil->partitions);
+ mil->partition_count = 0;
+ }
+ mil_boot_areas_exit(this);
+}
+
+/*
+ * This function is used to set the mtd->pagesize, mtd->oobsize,
+ * mtd->erasesize. Yes, we also do some initialization.
+ *
+ * Return with the bus width. 0 for 8-bit, -1 for error.
+ */
+static int gpmi_init_size(struct mtd_info *mtd, struct nand_chip *nand,
+ u8 *id_bytes)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+ struct nand_ecclayout *layout = &mil->oob_layout;
+ struct nand_device_info *info;
+ struct nand_attr *attr;
+ int error;
+
+ /* Look up this device in our own database. */
+ info = nand_device_get_info(id_bytes);
+ if (!info) {
+ pr_err("Unrecognized NAND Flash device.\n");
+ return -1;
+ }
+
+ attr = &info->attr;
+ /*
+ * Init the right NAND/MTD parameters which will be used
+ * in the following mil_set_geometry().
+ */
+ mtd->writesize = 1 << (fls(attr->page_total_size_in_bytes) - 1);
+ mtd->erasesize = mtd->writesize * attr->block_size_in_pages;
+ mtd->oobsize = attr->page_total_size_in_bytes - mtd->writesize;
+ nand->chipsize = attr->chip_size_in_bytes;
+
+ /* Configure the struct nand_ecclayout. */
+ layout->eccbytes = 0;
+ layout->oobavail = mtd->oobsize;
+ layout->oobfree[0].offset = 0;
+ layout->oobfree[0].length = mtd->oobsize;
+
+ nand->ecc.layout = layout;
+
+ /*
+ * Copy the device info into the per-device data. We can't just keep
+ * the pointer because that storage is reclaimed after initialization.
+ */
+ this->device_info = *info;
+ this->device_info.desc = kstrdup(info->desc, GFP_KERNEL);
+
+ /* Set up the medium geometry */
+ error = mil_set_geometry(this);
+ if (error)
+ return -1;
+
+ /* Set up timing. */
+ error = nfc->set_timing(this, &info->timing);
+ if (error)
+ return -1;
+
+ if (nfc->extra_init) {
+ error = nfc->extra_init(this);
+ if (error != 0)
+ return -1;
+ }
+
+ /* We only use 8-bit bus now, not 16-bit. */
+ return 0;
+}
+
+/* Initializes the MTD Interface Layer */
+int gpmi_nfc_mil_init(struct gpmi_nfc_data *this)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ int error = 0;
+
+ /* Initialize MIL data */
+ mil->current_chip = -1;
+ mil->command_length = 0;
+ mil->page_buffer_virt = 0;
+ mil->page_buffer_phys = ~0;
+ mil->page_buffer_size = 0;
+
+ /* Initialize the MTD data structures */
+ mtd->priv = nand;
+ mtd->name = "gpmi-nfc-main";
+ mtd->owner = THIS_MODULE;
+ nand->priv = this;
+
+ /* Controls */
+ nand->select_chip = mil_select_chip;
+ nand->cmd_ctrl = mil_cmd_ctrl;
+ nand->dev_ready = mil_dev_ready;
+
+ /*
+ * Low-level I/O :
+ * We don't support a 16-bit NAND Flash bus,
+ * so we don't implement read_word.
+ */
+ nand->read_byte = mil_read_byte;
+ nand->read_buf = mil_read_buf;
+ nand->write_buf = mil_write_buf;
+
+ /* ECC-aware I/O */
+ nand->ecc.read_page = mil_ecc_read_page;
+ nand->ecc.write_page = mil_ecc_write_page;
+
+ /* High-level I/O */
+ nand->ecc.read_oob = mil_ecc_read_oob;
+ nand->ecc.write_oob = mil_ecc_write_oob;
+
+ /* Bad Block Management */
+ nand->block_bad = mil_block_bad;
+ nand->scan_bbt = mil_scan_bbt;
+ nand->init_size = gpmi_init_size;
+ nand->badblock_pattern = &gpmi_bbt_descr;
+
+ /* Disallow partial page writes */
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+ /*
+ * Tell the NAND Flash MTD system that we'll be handling ECC with our
+ * own hardware. It turns out that we still have to fill in the ECC size
+ * because the MTD code will divide by it -- even though it doesn't
+ * actually care.
+ */
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.size = 1;
+
+ /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
+ this->nfc_geometry.payload_size_in_bytes = 1024;
+ this->nfc_geometry.auxiliary_size_in_bytes = 128;
+ error = mil_alloc_dma_buffer(this);
+ if (error)
+ goto exit_dma_allocation;
+
+ pr_info("Scanning for NAND Flash chips...\n");
+ error = nand_scan(mtd, pdata->max_chip_count);
+ if (error) {
+ log("Chip scan failed");
+ goto exit_nand_scan;
+ }
+
+ /* Take over the management of the OOB */
+ mil->hooked_block_markbad = mtd->block_markbad;
+ mtd->block_markbad = mil_hook_block_markbad;
+
+ /* Construct partitions as necessary. */
+ error = mil_partitions_init(this);
+ if (error)
+ goto exit_partitions;
+ return 0;
+
+exit_partitions:
+ nand_release(&mil->mtd);
+exit_nand_scan:
+ mil_free_dma_buffer(this);
+exit_dma_allocation:
+ return error;
+}
+
+void gpmi_nfc_mil_exit(struct gpmi_nfc_data *this)
+{
+ struct mil *mil = &this->mil;
+
+ mil_partitions_exit(this);
+ nand_release(&mil->mtd);
+ mil_free_dma_buffer(this);
+}
diff --git a/drivers/mtd/nand/gpmi-nfc/rom-common.c b/drivers/mtd/nand/gpmi-nfc/rom-common.c
new file mode 100644
index 0000000..6d11447
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/rom-common.c
@@ -0,0 +1,48 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include "gpmi-nfc.h"
+
+int gpmi_nfc_rom_helper_set_geometry(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_geometry *geometry = &this->rom_geometry;
+
+ /*
+ * Set the boot block stride size.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->stride_size_in_pages = 64;
+
+ /*
+ * Set the search area stride exponent.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->search_area_stride_exponent = 2;
+
+ return 0;
+}
--
1.7.0.4
More information about the linux-arm-kernel
mailing list