[PATCH 12/18] UBIFS: tree node cache

Renaud Barbier renaud.barbier at ge.com
Mon Dec 3 13:08:28 EST 2012


This patch implements the tree node cache support. This caches indexing
nodes of the UBIFS B-tree.

Signed-off-by: Renaud Barbier <renaud.barbier at ge.com>
---
 fs/ubifs/tnc.c      | 2767 +++++++++++++++++++++++++++++++++++++++++++++++++++
 fs/ubifs/tnc_misc.c |  435 ++++++++
 2 files changed, 3202 insertions(+), 0 deletions(-)
 create mode 100644 fs/ubifs/tnc.c
 create mode 100644 fs/ubifs/tnc_misc.c

diff --git a/fs/ubifs/tnc.c b/fs/ubifs/tnc.c
new file mode 100644
index 0000000..e3b67ea
--- /dev/null
+++ b/fs/ubifs/tnc.c
@@ -0,0 +1,2767 @@
+/*
+ * This file is part of UBIFS.
+ *
+ * Copyright (C) 2006-2008 Nokia Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 51
+ * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Authors: Adrian Hunter
+ *          Artem Bityutskiy (Битюцкий Артём)
+ */
+
+/*
+ * This file implements TNC (Tree Node Cache) which caches indexing nodes of
+ * the UBIFS B-tree.
+ *
+ * At the moment the locking rules of the TNC tree are quite simple and
+ * straightforward. We just have a mutex and lock it when we traverse the
+ * tree. If a znode is not in memory, we read it from flash while still having
+ * the mutex locked.
+ */
+
+#include "ubifs.h"
+
+/*
+ * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
+ * @NAME_LESS: name corresponding to the first argument is less than second
+ * @NAME_MATCHES: names match
+ * @NAME_GREATER: name corresponding to the second argument is greater than
+ *                first
+ * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
+ *
+ * These constants were introduce to improve readability.
+ */
+enum {
+	NAME_LESS    = 0,
+	NAME_MATCHES = 1,
+	NAME_GREATER = 2,
+	NOT_ON_MEDIA = 3,
+};
+
+/**
+ * insert_old_idx - record an index node obsoleted since the last commit start.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number of obsoleted index node
+ * @offs: offset of obsoleted index node
+ *
+ * Returns %0 on success, and a negative error code on failure.
+ *
+ * For recovery, there must always be a complete intact version of the index on
+ * flash at all times. That is called the "old index". It is the index as at the
+ * time of the last successful commit. Many of the index nodes in the old index
+ * may be dirty, but they must not be erased until the next successful commit
+ * (at which point that index becomes the old index).
+ *
+ * That means that the garbage collection and the in-the-gaps method of
+ * committing must be able to determine if an index node is in the old index.
+ * Most of the old index nodes can be found by looking up the TNC using the
+ * 'lookup_znode()' function. However, some of the old index nodes may have
+ * been deleted from the current index or may have been changed so much that
+ * they cannot be easily found. In those cases, an entry is added to an RB-tree.
+ * That is what this function does. The RB-tree is ordered by LEB number and
+ * offset because they uniquely identify the old index node.
+ */
+static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
+{
+	struct ubifs_old_idx *old_idx, *o;
+	struct rb_node **p, *parent = NULL;
+
+	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
+	if (unlikely(!old_idx))
+		return -ENOMEM;
+	old_idx->lnum = lnum;
+	old_idx->offs = offs;
+
+	p = &c->old_idx.rb_node;
+	while (*p) {
+		parent = *p;
+		o = rb_entry(parent, struct ubifs_old_idx, rb);
+		if (lnum < o->lnum)
+			p = &(*p)->rb_left;
+		else if (lnum > o->lnum)
+			p = &(*p)->rb_right;
+		else if (offs < o->offs)
+			p = &(*p)->rb_left;
+		else if (offs > o->offs)
+			p = &(*p)->rb_right;
+		else {
+			ubifs_err("old idx added twice!");
+			kfree(old_idx);
+			return 0;
+		}
+	}
+	rb_link_node(&old_idx->rb, parent, p);
+	rb_insert_color(&old_idx->rb, &c->old_idx);
+	return 0;
+}
+
+/**
+ * insert_old_idx_znode - record a znode obsoleted since last commit start.
+ * @c: UBIFS file-system description object
+ * @znode: znode of obsoleted index node
+ *
+ * Returns %0 on success, and a negative error code on failure.
+ */
+int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
+{
+	if (znode->parent) {
+		struct ubifs_zbranch *zbr;
+
+		zbr = &znode->parent->zbranch[znode->iip];
+		if (zbr->len)
+			return insert_old_idx(c, zbr->lnum, zbr->offs);
+	} else
+		if (c->zroot.len)
+			return insert_old_idx(c, c->zroot.lnum,
+					      c->zroot.offs);
+	return 0;
+}
+
+/**
+ * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
+ * @c: UBIFS file-system description object
+ * @znode: znode of obsoleted index node
+ *
+ * Returns %0 on success, and a negative error code on failure.
+ */
+static int ins_clr_old_idx_znode(struct ubifs_info *c,
+				 struct ubifs_znode *znode)
+{
+	int err;
+
+	if (znode->parent) {
+		struct ubifs_zbranch *zbr;
+
+		zbr = &znode->parent->zbranch[znode->iip];
+		if (zbr->len) {
+			err = insert_old_idx(c, zbr->lnum, zbr->offs);
+			if (err)
+				return err;
+			zbr->lnum = 0;
+			zbr->offs = 0;
+			zbr->len = 0;
+		}
+	} else
+		if (c->zroot.len) {
+			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
+			if (err)
+				return err;
+			c->zroot.lnum = 0;
+			c->zroot.offs = 0;
+			c->zroot.len = 0;
+		}
+	return 0;
+}
+
+/**
+ * destroy_old_idx - destroy the old_idx RB-tree.
+ * @c: UBIFS file-system description object
+ *
+ * During start commit, the old_idx RB-tree is used to avoid overwriting index
+ * nodes that were in the index last commit but have since been deleted.  This
+ * is necessary for recovery i.e. the old index must be kept intact until the
+ * new index is successfully written.  The old-idx RB-tree is used for the
+ * in-the-gaps method of writing index nodes and is destroyed every commit.
+ */
+void destroy_old_idx(struct ubifs_info *c)
+{
+	struct rb_node *this = c->old_idx.rb_node;
+	struct ubifs_old_idx *old_idx;
+
+	while (this) {
+		if (this->rb_left) {
+			this = this->rb_left;
+			continue;
+		} else if (this->rb_right) {
+			this = this->rb_right;
+			continue;
+		}
+		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
+		this = rb_parent(this);
+		if (this) {
+			if (this->rb_left == &old_idx->rb)
+				this->rb_left = NULL;
+			else
+				this->rb_right = NULL;
+		}
+		kfree(old_idx);
+	}
+	c->old_idx = RB_ROOT;
+}
+
+/**
+ * copy_znode - copy a dirty znode.
+ * @c: UBIFS file-system description object
+ * @znode: znode to copy
+ *
+ * A dirty znode being committed may not be changed, so it is copied.
+ */
+static struct ubifs_znode *copy_znode(struct ubifs_info *c,
+				      struct ubifs_znode *znode)
+{
+	struct ubifs_znode *zn;
+
+	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
+	if (unlikely(!zn))
+		return ERR_PTR(-ENOMEM);
+
+	memcpy(zn, znode, c->max_znode_sz);
+	zn->cnext = NULL;
+	__set_bit(DIRTY_ZNODE, &zn->flags);
+	__clear_bit(COW_ZNODE, &zn->flags);
+
+	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
+	__set_bit(OBSOLETE_ZNODE, &znode->flags);
+
+	if (znode->level != 0) {
+		int i;
+		const int n = zn->child_cnt;
+
+		/* The children now have new parent */
+		for (i = 0; i < n; i++) {
+			struct ubifs_zbranch *zbr = &zn->zbranch[i];
+
+			if (zbr->znode)
+				zbr->znode->parent = zn;
+		}
+	}
+
+	atomic_long_inc(&c->dirty_zn_cnt);
+	return zn;
+}
+
+/**
+ * add_idx_dirt - add dirt due to a dirty znode.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number of index node
+ * @dirt: size of index node
+ *
+ * This function updates lprops dirty space and the new size of the index.
+ */
+static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
+{
+	c->calc_idx_sz -= ALIGN(dirt, 8);
+	return ubifs_add_dirt(c, lnum, dirt);
+}
+
+/**
+ * dirty_cow_znode - ensure a znode is not being committed.
+ * @c: UBIFS file-system description object
+ * @zbr: branch of znode to check
+ *
+ * Returns dirtied znode on success or negative error code on failure.
+ */
+static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
+					   struct ubifs_zbranch *zbr)
+{
+	struct ubifs_znode *znode = zbr->znode;
+	struct ubifs_znode *zn;
+	int err;
+
+	if (!test_bit(COW_ZNODE, &znode->flags)) {
+		/* znode is not being committed */
+		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
+			atomic_long_inc(&c->dirty_zn_cnt);
+			atomic_long_dec(&c->clean_zn_cnt);
+			atomic_long_dec(&ubifs_clean_zn_cnt);
+			err = add_idx_dirt(c, zbr->lnum, zbr->len);
+			if (unlikely(err))
+				return ERR_PTR(err);
+		}
+		return znode;
+	}
+
+	zn = copy_znode(c, znode);
+	if (IS_ERR(zn))
+		return zn;
+
+	if (zbr->len) {
+		err = insert_old_idx(c, zbr->lnum, zbr->offs);
+		if (unlikely(err))
+			return ERR_PTR(err);
+		err = add_idx_dirt(c, zbr->lnum, zbr->len);
+	} else
+		err = 0;
+
+	zbr->znode = zn;
+	zbr->lnum = 0;
+	zbr->offs = 0;
+	zbr->len = 0;
+
+	if (unlikely(err))
+		return ERR_PTR(err);
+	return zn;
+}
+
+/**
+ * lnc_add - add a leaf node to the leaf node cache.
+ * @c: UBIFS file-system description object
+ * @zbr: zbranch of leaf node
+ * @node: leaf node
+ *
+ * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
+ * purpose of the leaf node cache is to save re-reading the same leaf node over
+ * and over again. Most things are cached by VFS, however the file system must
+ * cache directory entries for readdir and for resolving hash collisions. The
+ * present implementation of the leaf node cache is extremely simple, and
+ * allows for error returns that are not used but that may be needed if a more
+ * complex implementation is created.
+ *
+ * Note, this function does not add the @node object to LNC directly, but
+ * allocates a copy of the object and adds the copy to LNC. The reason for this
+ * is that @node has been allocated outside of the TNC subsystem and will be
+ * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
+ * may be changed at any time, e.g. freed by the shrinker.
+ */
+static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+		   const void *node)
+{
+	int err;
+	void *lnc_node;
+	const struct ubifs_dent_node *dent = node;
+
+	ubifs_assert(!zbr->leaf);
+	ubifs_assert(zbr->len != 0);
+	ubifs_assert(is_hash_key(c, &zbr->key));
+
+	err = ubifs_validate_entry(c, dent);
+	if (err) {
+		dbg_dump_stack();
+		dbg_dump_node(c, dent);
+		return err;
+	}
+
+	lnc_node = kmalloc(zbr->len, GFP_NOFS);
+	if (!lnc_node)
+		/* We don't have to have the cache, so no error */
+		return 0;
+
+	memcpy(lnc_node, node, zbr->len);
+	zbr->leaf = lnc_node;
+	return 0;
+}
+
+ /**
+ * lnc_add_directly - add a leaf node to the leaf-node-cache.
+ * @c: UBIFS file-system description object
+ * @zbr: zbranch of leaf node
+ * @node: leaf node
+ *
+ * This function is similar to 'lnc_add()', but it does not create a copy of
+ * @node but inserts @node to TNC directly.
+ */
+static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+			    void *node)
+{
+	int err;
+
+	ubifs_assert(!zbr->leaf);
+	ubifs_assert(zbr->len != 0);
+
+	err = ubifs_validate_entry(c, node);
+	if (err) {
+		dbg_dump_stack();
+		dbg_dump_node(c, node);
+		return err;
+	}
+
+	zbr->leaf = node;
+	return 0;
+}
+
+/**
+ * lnc_free - remove a leaf node from the leaf node cache.
+ * @zbr: zbranch of leaf node
+ * @node: leaf node
+ */
+static void lnc_free(struct ubifs_zbranch *zbr)
+{
+	if (!zbr->leaf)
+		return;
+	kfree(zbr->leaf);
+	zbr->leaf = NULL;
+}
+
+/**
+ * tnc_read_node_nm - read a "hashed" leaf node.
+ * @c: UBIFS file-system description object
+ * @zbr: key and position of the node
+ * @node: node is returned here
+ *
+ * This function reads a "hashed" node defined by @zbr from the leaf node cache
+ * (in it is there) or from the hash media, in which case the node is also
+ * added to LNC. Returns zero in case of success or a negative negative error
+ * code in case of failure.
+ */
+static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+			    void *node)
+{
+	int err;
+
+	ubifs_assert(is_hash_key(c, &zbr->key));
+
+	if (zbr->leaf) {
+		/* Read from the leaf node cache */
+		ubifs_assert(zbr->len != 0);
+		memcpy(node, zbr->leaf, zbr->len);
+		return 0;
+	}
+
+	err = ubifs_tnc_read_node(c, zbr, node);
+	if (err)
+		return err;
+
+	/* Add the node to the leaf node cache */
+	err = lnc_add(c, zbr, node);
+	return err;
+}
+
+/**
+ * try_read_node - read a node if it is a node.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to read to
+ * @type: node type
+ * @len: node length (not aligned)
+ * @lnum: LEB number of node to read
+ * @offs: offset of node to read
+ *
+ * This function tries to read a node of known type and length, checks it and
+ * stores it in @buf. This function returns %1 if a node is present and %0 if
+ * a node is not present. A negative error code is returned for I/O errors.
+ * This function performs that same function as ubifs_read_node except that
+ * it does not require that there is actually a node present and instead
+ * the return code indicates if a node was read.
+ *
+ * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
+ * is true (it is controlled by corresponding mount option). However, if
+ * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
+ * checked.
+ */
+static int try_read_node(const struct ubifs_info *c, void *buf, int type,
+			 int len, int lnum, int offs)
+{
+	int err, node_len;
+	struct ubifs_ch *ch = buf;
+	uint32_t crc, node_crc;
+
+	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
+
+	err = ubi_read(c->ubi, lnum, buf, offs, len);
+	if (err) {
+		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
+			  type, lnum, offs, err);
+		return err;
+	}
+
+	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
+		return 0;
+
+	if (ch->node_type != type)
+		return 0;
+
+	node_len = le32_to_cpu(ch->len);
+	if (node_len != len)
+		return 0;
+
+	if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
+		return 1;
+
+	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
+	node_crc = le32_to_cpu(ch->crc);
+	if (crc != node_crc)
+		return 0;
+
+	return 1;
+}
+
+/**
+ * fallible_read_node - try to read a leaf node.
+ * @c: UBIFS file-system description object
+ * @key:  key of node to read
+ * @zbr:  position of node
+ * @node: node returned
+ *
+ * This function tries to read a node and returns %1 if the node is read, %0
+ * if the node is not present, and a negative error code in the case of error.
+ */
+static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
+			      struct ubifs_zbranch *zbr, void *node)
+{
+	int ret;
+
+	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
+
+	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
+			    zbr->offs);
+	if (ret == 1) {
+		union ubifs_key node_key;
+		struct ubifs_dent_node *dent = node;
+
+		/* All nodes have key in the same place */
+		key_read(c, &dent->key, &node_key);
+		if (keys_cmp(c, key, &node_key) != 0)
+			ret = 0;
+	}
+	if (ret == 0 && c->replaying)
+		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
+			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
+	return ret;
+}
+
+/**
+ * matches_name - determine if a direntry or xattr entry matches a given name.
+ * @c: UBIFS file-system description object
+ * @zbr: zbranch of dent
+ * @nm: name to match
+ *
+ * This function checks if xentry/direntry referred by zbranch @zbr matches name
+ * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
+ * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
+ * of failure, a negative error code is returned.
+ */
+static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+			const struct qstr *nm)
+{
+	struct ubifs_dent_node *dent;
+	int nlen, err;
+
+	/* If possible, match against the dent in the leaf node cache */
+	if (!zbr->leaf) {
+		dent = kmalloc(zbr->len, GFP_NOFS);
+		if (!dent)
+			return -ENOMEM;
+
+		err = ubifs_tnc_read_node(c, zbr, dent);
+		if (err)
+			goto out_free;
+
+		/* Add the node to the leaf node cache */
+		err = lnc_add_directly(c, zbr, dent);
+		if (err)
+			goto out_free;
+	} else
+		dent = zbr->leaf;
+
+	nlen = le16_to_cpu(dent->nlen);
+	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
+	if (err == 0) {
+		if (nlen == nm->len)
+			return NAME_MATCHES;
+		else if (nlen < nm->len)
+			return NAME_LESS;
+		else
+			return NAME_GREATER;
+	} else if (err < 0)
+		return NAME_LESS;
+	else
+		return NAME_GREATER;
+
+out_free:
+	kfree(dent);
+	return err;
+}
+
+/**
+ * get_znode - get a TNC znode that may not be loaded yet.
+ * @c: UBIFS file-system description object
+ * @znode: parent znode
+ * @n: znode branch slot number
+ *
+ * This function returns the znode or a negative error code.
+ */
+static struct ubifs_znode *get_znode(struct ubifs_info *c,
+				     struct ubifs_znode *znode, int n)
+{
+	struct ubifs_zbranch *zbr;
+
+	zbr = &znode->zbranch[n];
+	if (zbr->znode)
+		znode = zbr->znode;
+	else
+		znode = ubifs_load_znode(c, zbr, znode, n);
+	return znode;
+}
+
+/**
+ * tnc_next - find next TNC entry.
+ * @c: UBIFS file-system description object
+ * @zn: znode is passed and returned here
+ * @n: znode branch slot number is passed and returned here
+ *
+ * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
+ * no next entry, or a negative error code otherwise.
+ */
+static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
+{
+	struct ubifs_znode *znode = *zn;
+	int nn = *n;
+
+	nn += 1;
+	if (nn < znode->child_cnt) {
+		*n = nn;
+		return 0;
+	}
+	while (1) {
+		struct ubifs_znode *zp;
+
+		zp = znode->parent;
+		if (!zp)
+			return -ENOENT;
+		nn = znode->iip + 1;
+		znode = zp;
+		if (nn < znode->child_cnt) {
+			znode = get_znode(c, znode, nn);
+			if (IS_ERR(znode))
+				return PTR_ERR(znode);
+			while (znode->level != 0) {
+				znode = get_znode(c, znode, 0);
+				if (IS_ERR(znode))
+					return PTR_ERR(znode);
+			}
+			nn = 0;
+			break;
+		}
+	}
+	*zn = znode;
+	*n = nn;
+	return 0;
+}
+
+/**
+ * tnc_prev - find previous TNC entry.
+ * @c: UBIFS file-system description object
+ * @zn: znode is returned here
+ * @n: znode branch slot number is passed and returned here
+ *
+ * This function returns %0 if the previous TNC entry is found, %-ENOENT if
+ * there is no next entry, or a negative error code otherwise.
+ */
+static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
+{
+	struct ubifs_znode *znode = *zn;
+	int nn = *n;
+
+	if (nn > 0) {
+		*n = nn - 1;
+		return 0;
+	}
+	while (1) {
+		struct ubifs_znode *zp;
+
+		zp = znode->parent;
+		if (!zp)
+			return -ENOENT;
+		nn = znode->iip - 1;
+		znode = zp;
+		if (nn >= 0) {
+			znode = get_znode(c, znode, nn);
+			if (IS_ERR(znode))
+				return PTR_ERR(znode);
+			while (znode->level != 0) {
+				nn = znode->child_cnt - 1;
+				znode = get_znode(c, znode, nn);
+				if (IS_ERR(znode))
+					return PTR_ERR(znode);
+			}
+			nn = znode->child_cnt - 1;
+			break;
+		}
+	}
+	*zn = znode;
+	*n = nn;
+	return 0;
+}
+
+/**
+ * resolve_collision - resolve a collision.
+ * @c: UBIFS file-system description object
+ * @key: key of a directory or extended attribute entry
+ * @zn: znode is returned here
+ * @n: zbranch number is passed and returned here
+ * @nm: name of the entry
+ *
+ * This function is called for "hashed" keys to make sure that the found key
+ * really corresponds to the looked up node (directory or extended attribute
+ * entry). It returns %1 and sets @zn and @n if the collision is resolved.
+ * %0 is returned if @nm is not found and @zn and @n are set to the previous
+ * entry, i.e. to the entry after which @nm could follow if it were in TNC.
+ * This means that @n may be set to %-1 if the leftmost key in @zn is the
+ * previous one. A negative error code is returned on failures.
+ */
+static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
+			     struct ubifs_znode **zn, int *n,
+			     const struct qstr *nm)
+{
+	int err;
+
+	err = matches_name(c, &(*zn)->zbranch[*n], nm);
+	if (unlikely(err < 0))
+		return err;
+	if (err == NAME_MATCHES)
+		return 1;
+
+	if (err == NAME_GREATER) {
+		/* Look left */
+		while (1) {
+			err = tnc_prev(c, zn, n);
+			if (err == -ENOENT) {
+				ubifs_assert(*n == 0);
+				*n = -1;
+				return 0;
+			}
+			if (err < 0)
+				return err;
+			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
+				/*
+				 * We have found the branch after which we would
+				 * like to insert, but inserting in this znode
+				 * may still be wrong. Consider the following 3
+				 * znodes, in the case where we are resolving a
+				 * collision with Key2.
+				 *
+				 *                  znode zp
+				 *            ----------------------
+				 * level 1     |  Key0  |  Key1  |
+				 *            -----------------------
+				 *                 |            |
+				 *       znode za  |            |  znode zb
+				 *          ------------      ------------
+				 * level 0  |  Key0  |        |  Key2  |
+				 *          ------------      ------------
+				 *
+				 * The lookup finds Key2 in znode zb. Lets say
+				 * there is no match and the name is greater so
+				 * we look left. When we find Key0, we end up
+				 * here. If we return now, we will insert into
+				 * znode za at slot n = 1.  But that is invalid
+				 * according to the parent's keys.  Key2 must
+				 * be inserted into znode zb.
+				 *
+				 * Note, this problem is not relevant for the
+				 * case when we go right, because
+				 * 'tnc_insert()' would correct the parent key.
+				 */
+				if (*n == (*zn)->child_cnt - 1) {
+					err = tnc_next(c, zn, n);
+					if (err) {
+						/* Should be impossible */
+						ubifs_assert(0);
+						if (err == -ENOENT)
+							err = -EINVAL;
+						return err;
+					}
+					ubifs_assert(*n == 0);
+					*n = -1;
+				}
+				return 0;
+			}
+			err = matches_name(c, &(*zn)->zbranch[*n], nm);
+			if (err < 0)
+				return err;
+			if (err == NAME_LESS)
+				return 0;
+			if (err == NAME_MATCHES)
+				return 1;
+			ubifs_assert(err == NAME_GREATER);
+		}
+	} else {
+		int nn = *n;
+		struct ubifs_znode *znode = *zn;
+
+		/* Look right */
+		while (1) {
+			err = tnc_next(c, &znode, &nn);
+			if (err == -ENOENT)
+				return 0;
+			if (err < 0)
+				return err;
+			if (keys_cmp(c, &znode->zbranch[nn].key, key))
+				return 0;
+			err = matches_name(c, &znode->zbranch[nn], nm);
+			if (err < 0)
+				return err;
+			if (err == NAME_GREATER)
+				return 0;
+			*zn = znode;
+			*n = nn;
+			if (err == NAME_MATCHES)
+				return 1;
+			ubifs_assert(err == NAME_LESS);
+		}
+	}
+}
+
+/**
+ * fallible_matches_name - determine if a dent matches a given name.
+ * @c: UBIFS file-system description object
+ * @zbr: zbranch of dent
+ * @nm: name to match
+ *
+ * This is a "fallible" version of 'matches_name()' function which does not
+ * panic if the direntry/xentry referred by @zbr does not exist on the media.
+ *
+ * This function checks if xentry/direntry referred by zbranch @zbr matches name
+ * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
+ * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
+ * if xentry/direntry referred by @zbr does not exist on the media. A negative
+ * error code is returned in case of failure.
+ */
+static int fallible_matches_name(struct ubifs_info *c,
+				 struct ubifs_zbranch *zbr,
+				 const struct qstr *nm)
+{
+	struct ubifs_dent_node *dent;
+	int nlen, err;
+
+	/* If possible, match against the dent in the leaf node cache */
+	if (!zbr->leaf) {
+		dent = kmalloc(zbr->len, GFP_NOFS);
+		if (!dent)
+			return -ENOMEM;
+
+		err = fallible_read_node(c, &zbr->key, zbr, dent);
+		if (err < 0)
+			goto out_free;
+		if (err == 0) {
+			/* The node was not present */
+			err = NOT_ON_MEDIA;
+			goto out_free;
+		}
+		ubifs_assert(err == 1);
+
+		err = lnc_add_directly(c, zbr, dent);
+		if (err)
+			goto out_free;
+	} else
+		dent = zbr->leaf;
+
+	nlen = le16_to_cpu(dent->nlen);
+	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
+	if (err == 0) {
+		if (nlen == nm->len)
+			return NAME_MATCHES;
+		else if (nlen < nm->len)
+			return NAME_LESS;
+		else
+			return NAME_GREATER;
+	} else if (err < 0)
+		return NAME_LESS;
+	else
+		return NAME_GREATER;
+
+out_free:
+	kfree(dent);
+	return err;
+}
+
+/**
+ * fallible_resolve_collision - resolve a collision even if nodes are missing.
+ * @c: UBIFS file-system description object
+ * @key: key
+ * @zn: znode is returned here
+ * @n: branch number is passed and returned here
+ * @nm: name of directory entry
+ * @adding: indicates caller is adding a key to the TNC
+ *
+ * This is a "fallible" version of the 'resolve_collision()' function which
+ * does not panic if one of the nodes referred to by TNC does not exist on the
+ * media. This may happen when replaying the journal if a deleted node was
+ * Garbage-collected and the commit was not done. A branch that refers to a node
+ * that is not present is called a dangling branch. The following are the return
+ * codes for this function:
+ *  o if @nm was found, %1 is returned and @zn and @n are set to the found
+ *    branch;
+ *  o if we are @adding and @nm was not found, %0 is returned;
+ *  o if we are not @adding and @nm was not found, but a dangling branch was
+ *    found, then %1 is returned and @zn and @n are set to the dangling branch;
+ *  o a negative error code is returned in case of failure.
+ */
+static int fallible_resolve_collision(struct ubifs_info *c,
+				      const union ubifs_key *key,
+				      struct ubifs_znode **zn, int *n,
+				      const struct qstr *nm, int adding)
+{
+	struct ubifs_znode *o_znode = NULL, *znode = *zn;
+	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
+
+	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
+	if (unlikely(cmp < 0))
+		return cmp;
+	if (cmp == NAME_MATCHES)
+		return 1;
+	if (cmp == NOT_ON_MEDIA) {
+		o_znode = znode;
+		o_n = nn;
+		/*
+		 * We are unlucky and hit a dangling branch straight away.
+		 * Now we do not really know where to go to find the needed
+		 * branch - to the left or to the right. Well, let's try left.
+		 */
+		unsure = 1;
+	} else if (!adding)
+		unsure = 1; /* Remove a dangling branch wherever it is */
+
+	if (cmp == NAME_GREATER || unsure) {
+		/* Look left */
+		while (1) {
+			err = tnc_prev(c, zn, n);
+			if (err == -ENOENT) {
+				ubifs_assert(*n == 0);
+				*n = -1;
+				break;
+			}
+			if (err < 0)
+				return err;
+			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
+				/* See comments in 'resolve_collision()' */
+				if (*n == (*zn)->child_cnt - 1) {
+					err = tnc_next(c, zn, n);
+					if (err) {
+						/* Should be impossible */
+						ubifs_assert(0);
+						if (err == -ENOENT)
+							err = -EINVAL;
+						return err;
+					}
+					ubifs_assert(*n == 0);
+					*n = -1;
+				}
+				break;
+			}
+			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
+			if (err < 0)
+				return err;
+			if (err == NAME_MATCHES)
+				return 1;
+			if (err == NOT_ON_MEDIA) {
+				o_znode = *zn;
+				o_n = *n;
+				continue;
+			}
+			if (!adding)
+				continue;
+			if (err == NAME_LESS)
+				break;
+			else
+				unsure = 0;
+		}
+	}
+
+	if (cmp == NAME_LESS || unsure) {
+		/* Look right */
+		*zn = znode;
+		*n = nn;
+		while (1) {
+			err = tnc_next(c, &znode, &nn);
+			if (err == -ENOENT)
+				break;
+			if (err < 0)
+				return err;
+			if (keys_cmp(c, &znode->zbranch[nn].key, key))
+				break;
+			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
+			if (err < 0)
+				return err;
+			if (err == NAME_GREATER)
+				break;
+			*zn = znode;
+			*n = nn;
+			if (err == NAME_MATCHES)
+				return 1;
+			if (err == NOT_ON_MEDIA) {
+				o_znode = znode;
+				o_n = nn;
+			}
+		}
+	}
+
+	/* Never match a dangling branch when adding */
+	if (adding || !o_znode)
+		return 0;
+
+	dbg_mnt("dangling match LEB %d:%d len %d %s",
+		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
+		o_znode->zbranch[o_n].len, DBGKEY(key));
+	*zn = o_znode;
+	*n = o_n;
+	return 1;
+}
+
+/**
+ * matches_position - determine if a zbranch matches a given position.
+ * @zbr: zbranch of dent
+ * @lnum: LEB number of dent to match
+ * @offs: offset of dent to match
+ *
+ * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
+ */
+static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
+{
+	if (zbr->lnum == lnum && zbr->offs == offs)
+		return 1;
+	else
+		return 0;
+}
+
+/**
+ * resolve_collision_directly - resolve a collision directly.
+ * @c: UBIFS file-system description object
+ * @key: key of directory entry
+ * @zn: znode is passed and returned here
+ * @n: zbranch number is passed and returned here
+ * @lnum: LEB number of dent node to match
+ * @offs: offset of dent node to match
+ *
+ * This function is used for "hashed" keys to make sure the found directory or
+ * extended attribute entry node is what was looked for. It is used when the
+ * flash address of the right node is known (@lnum:@offs) which makes it much
+ * easier to resolve collisions (no need to read entries and match full
+ * names). This function returns %1 and sets @zn and @n if the collision is
+ * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
+ * previous directory entry. Otherwise a negative error code is returned.
+ */
+static int resolve_collision_directly(struct ubifs_info *c,
+				      const union ubifs_key *key,
+				      struct ubifs_znode **zn, int *n,
+				      int lnum, int offs)
+{
+	struct ubifs_znode *znode;
+	int nn, err;
+
+	znode = *zn;
+	nn = *n;
+	if (matches_position(&znode->zbranch[nn], lnum, offs))
+		return 1;
+
+	/* Look left */
+	while (1) {
+		err = tnc_prev(c, &znode, &nn);
+		if (err == -ENOENT)
+			break;
+		if (err < 0)
+			return err;
+		if (keys_cmp(c, &znode->zbranch[nn].key, key))
+			break;
+		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
+			*zn = znode;
+			*n = nn;
+			return 1;
+		}
+	}
+
+	/* Look right */
+	znode = *zn;
+	nn = *n;
+	while (1) {
+		err = tnc_next(c, &znode, &nn);
+		if (err == -ENOENT)
+			return 0;
+		if (err < 0)
+			return err;
+		if (keys_cmp(c, &znode->zbranch[nn].key, key))
+			return 0;
+		*zn = znode;
+		*n = nn;
+		if (matches_position(&znode->zbranch[nn], lnum, offs))
+			return 1;
+	}
+}
+
+/**
+ * dirty_cow_bottom_up - dirty a znode and its ancestors.
+ * @c: UBIFS file-system description object
+ * @znode: znode to dirty
+ *
+ * If we do not have a unique key that resides in a znode, then we cannot
+ * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
+ * This function records the path back to the last dirty ancestor, and then
+ * dirties the znodes on that path.
+ */
+static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
+					       struct ubifs_znode *znode)
+{
+	struct ubifs_znode *zp;
+	int *path = c->bottom_up_buf, p = 0;
+
+	ubifs_assert(c->zroot.znode);
+	ubifs_assert(znode);
+	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
+		kfree(c->bottom_up_buf);
+		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
+					   GFP_NOFS);
+		if (!c->bottom_up_buf)
+			return ERR_PTR(-ENOMEM);
+		path = c->bottom_up_buf;
+	}
+	if (c->zroot.znode->level) {
+		/* Go up until parent is dirty */
+		while (1) {
+			int n;
+
+			zp = znode->parent;
+			if (!zp)
+				break;
+			n = znode->iip;
+			ubifs_assert(p < c->zroot.znode->level);
+			path[p++] = n;
+			if (!zp->cnext && ubifs_zn_dirty(znode))
+				break;
+			znode = zp;
+		}
+	}
+
+	/* Come back down, dirtying as we go */
+	while (1) {
+		struct ubifs_zbranch *zbr;
+
+		zp = znode->parent;
+		if (zp) {
+			ubifs_assert(path[p - 1] >= 0);
+			ubifs_assert(path[p - 1] < zp->child_cnt);
+			zbr = &zp->zbranch[path[--p]];
+			znode = dirty_cow_znode(c, zbr);
+		} else {
+			ubifs_assert(znode == c->zroot.znode);
+			znode = dirty_cow_znode(c, &c->zroot);
+		}
+		if (IS_ERR(znode) || !p)
+			break;
+		ubifs_assert(path[p - 1] >= 0);
+		ubifs_assert(path[p - 1] < znode->child_cnt);
+		znode = znode->zbranch[path[p - 1]].znode;
+	}
+
+	return znode;
+}
+
+/**
+ * ubifs_lookup_level0 - search for zero-level znode.
+ * @c: UBIFS file-system description object
+ * @key:  key to lookup
+ * @zn: znode is returned here
+ * @n: znode branch slot number is returned here
+ *
+ * This function looks up the TNC tree and search for zero-level znode which
+ * refers key @key. The found zero-level znode is returned in @zn. There are 3
+ * cases:
+ *   o exact match, i.e. the found zero-level znode contains key @key, then %1
+ *     is returned and slot number of the matched branch is stored in @n;
+ *   o not exact match, which means that zero-level znode does not contain
+ *     @key, then %0 is returned and slot number of the closed branch is stored
+ *     in  @n;
+ *   o @key is so small that it is even less than the lowest key of the
+ *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
+ *
+ * Note, when the TNC tree is traversed, some znodes may be absent, then this
+ * function reads corresponding indexing nodes and inserts them to TNC. In
+ * case of failure, a negative error code is returned.
+ */
+int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
+			struct ubifs_znode **zn, int *n)
+{
+	int err, exact;
+	struct ubifs_znode *znode;
+	unsigned long time = get_seconds();
+
+	dbg_tnc("search key %s", DBGKEY(key));
+
+	znode = c->zroot.znode;
+	if (unlikely(!znode)) {
+		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
+		if (IS_ERR(znode))
+			return PTR_ERR(znode);
+	}
+
+	znode->time = time;
+
+	while (1) {
+		struct ubifs_zbranch *zbr;
+
+		exact = ubifs_search_zbranch(c, znode, key, n);
+
+		if (znode->level == 0)
+			break;
+
+		if (*n < 0)
+			*n = 0;
+		zbr = &znode->zbranch[*n];
+
+		if (zbr->znode) {
+			znode->time = time;
+			znode = zbr->znode;
+			continue;
+		}
+
+		/* znode is not in TNC cache, load it from the media */
+		znode = ubifs_load_znode(c, zbr, znode, *n);
+		if (IS_ERR(znode))
+			return PTR_ERR(znode);
+	}
+
+	*zn = znode;
+	if (exact || !is_hash_key(c, key) || *n != -1) {
+		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
+		return exact;
+	}
+
+	/*
+	 * Here is a tricky place. We have not found the key and this is a
+	 * "hashed" key, which may collide. The rest of the code deals with
+	 * situations like this:
+	 *
+	 *                  | 3 | 5 |
+	 *                  /       \
+	 *          | 3 | 5 |      | 6 | 7 | (x)
+	 *
+	 * Or more a complex example:
+	 *
+	 *                | 1 | 5 |
+	 *                /       \
+	 *       | 1 | 3 |         | 5 | 8 |
+	 *              \           /
+	 *          | 5 | 5 |   | 6 | 7 | (x)
+	 *
+	 * In the examples, if we are looking for key "5", we may reach nodes
+	 * marked with "(x)". In this case what we have do is to look at the
+	 * left and see if there is "5" key there. If there is, we have to
+	 * return it.
+	 *
+	 * Note, this whole situation is possible because we allow to have
+	 * elements which are equivalent to the next key in the parent in the
+	 * children of current znode. For example, this happens if we split a
+	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
+	 * like this:
+	 *                      | 3 | 5 |
+	 *                       /     \
+	 *                | 3 | 5 |   | 5 | 6 | 7 |
+	 *                              ^
+	 * And this becomes what is at the first "picture" after key "5" marked
+	 * with "^" is removed. What could be done is we could prohibit
+	 * splitting in the middle of the colliding sequence. Also, when
+	 * removing the leftmost key, we would have to correct the key of the
+	 * parent node, which would introduce additional complications. Namely,
+	 * if we changed the the leftmost key of the parent znode, the garbage
+	 * collector would be unable to find it (GC is doing this when GC'ing
+	 * indexing LEBs). Although we already have an additional RB-tree where
+	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
+	 * after the commit. But anyway, this does not look easy to implement
+	 * so we did not try this.
+	 */
+	err = tnc_prev(c, &znode, n);
+	if (err == -ENOENT) {
+		dbg_tnc("found 0, lvl %d, n -1", znode->level);
+		*n = -1;
+		return 0;
+	}
+	if (unlikely(err < 0))
+		return err;
+	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
+		dbg_tnc("found 0, lvl %d, n -1", znode->level);
+		*n = -1;
+		return 0;
+	}
+
+	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
+	*zn = znode;
+	return 1;
+}
+
+/**
+ * lookup_level0_dirty - search for zero-level znode dirtying.
+ * @c: UBIFS file-system description object
+ * @key:  key to lookup
+ * @zn: znode is returned here
+ * @n: znode branch slot number is returned here
+ *
+ * This function looks up the TNC tree and search for zero-level znode which
+ * refers key @key. The found zero-level znode is returned in @zn. There are 3
+ * cases:
+ *   o exact match, i.e. the found zero-level znode contains key @key, then %1
+ *     is returned and slot number of the matched branch is stored in @n;
+ *   o not exact match, which means that zero-level znode does not contain @key
+ *     then %0 is returned and slot number of the closed branch is stored in
+ *     @n;
+ *   o @key is so small that it is even less than the lowest key of the
+ *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
+ *
+ * Additionally all znodes in the path from the root to the located zero-level
+ * znode are marked as dirty.
+ *
+ * Note, when the TNC tree is traversed, some znodes may be absent, then this
+ * function reads corresponding indexing nodes and inserts them to TNC. In
+ * case of failure, a negative error code is returned.
+ */
+static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
+			       struct ubifs_znode **zn, int *n)
+{
+	int err, exact;
+	struct ubifs_znode *znode;
+	unsigned long time = get_seconds();
+
+	dbg_tnc("search and dirty key %s", DBGKEY(key));
+
+	znode = c->zroot.znode;
+	if (unlikely(!znode)) {
+		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
+		if (IS_ERR(znode))
+			return PTR_ERR(znode);
+	}
+
+	znode = dirty_cow_znode(c, &c->zroot);
+	if (IS_ERR(znode))
+		return PTR_ERR(znode);
+
+	znode->time = time;
+
+	while (1) {
+		struct ubifs_zbranch *zbr;
+
+		exact = ubifs_search_zbranch(c, znode, key, n);
+
+		if (znode->level == 0)
+			break;
+
+		if (*n < 0)
+			*n = 0;
+		zbr = &znode->zbranch[*n];
+
+		if (zbr->znode) {
+			znode->time = time;
+			znode = dirty_cow_znode(c, zbr);
+			if (IS_ERR(znode))
+				return PTR_ERR(znode);
+			continue;
+		}
+
+		/* znode is not in TNC cache, load it from the media */
+		znode = ubifs_load_znode(c, zbr, znode, *n);
+		if (IS_ERR(znode))
+			return PTR_ERR(znode);
+		znode = dirty_cow_znode(c, zbr);
+		if (IS_ERR(znode))
+			return PTR_ERR(znode);
+	}
+
+	*zn = znode;
+	if (exact || !is_hash_key(c, key) || *n != -1) {
+		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
+		return exact;
+	}
+
+	/*
+	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
+	 * code.
+	 */
+	err = tnc_prev(c, &znode, n);
+	if (err == -ENOENT) {
+		*n = -1;
+		dbg_tnc("found 0, lvl %d, n -1", znode->level);
+		return 0;
+	}
+	if (unlikely(err < 0))
+		return err;
+	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
+		*n = -1;
+		dbg_tnc("found 0, lvl %d, n -1", znode->level);
+		return 0;
+	}
+
+	if (znode->cnext || !ubifs_zn_dirty(znode)) {
+		znode = dirty_cow_bottom_up(c, znode);
+		if (IS_ERR(znode))
+			return PTR_ERR(znode);
+	}
+
+	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
+	*zn = znode;
+	return 1;
+}
+
+/**
+ * maybe_leb_gced - determine if a LEB may have been garbage collected.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number
+ * @gc_seq1: garbage collection sequence number
+ *
+ * This function determines if @lnum may have been garbage collected since
+ * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
+ * %0 is returned.
+ */
+static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
+{
+	/*
+	 * No garbage collection in the read-only U-Boot implementation
+	 */
+	return 0;
+}
+
+/**
+ * ubifs_tnc_locate - look up a file-system node and return it and its location.
+ * @c: UBIFS file-system description object
+ * @key: node key to lookup
+ * @node: the node is returned here
+ * @lnum: LEB number is returned here
+ * @offs: offset is returned here
+ *
+ * This function look up and reads node with key @key. The caller has to make
+ * sure the @node buffer is large enough to fit the node. Returns zero in case
+ * of success, %-ENOENT if the node was not found, and a negative error code in
+ * case of failure. The node location can be returned in @lnum and @offs.
+ */
+int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
+		     void *node, int *lnum, int *offs)
+{
+	int found, n, err, safely = 0, gc_seq1;
+	struct ubifs_znode *znode;
+	struct ubifs_zbranch zbr, *zt;
+
+again:
+	mutex_lock(&c->tnc_mutex);
+	found = ubifs_lookup_level0(c, key, &znode, &n);
+	if (!found) {
+		err = -ENOENT;
+		goto out;
+	} else if (found < 0) {
+		err = found;
+		goto out;
+	}
+	zt = &znode->zbranch[n];
+	if (lnum) {
+		*lnum = zt->lnum;
+		*offs = zt->offs;
+	}
+	if (is_hash_key(c, key)) {
+		/*
+		 * In this case the leaf node cache gets used, so we pass the
+		 * address of the zbranch and keep the mutex locked
+		 */
+		err = tnc_read_node_nm(c, zt, node);
+		goto out;
+	}
+	if (safely) {
+		err = ubifs_tnc_read_node(c, zt, node);
+		goto out;
+	}
+	/* Drop the TNC mutex prematurely and race with garbage collection */
+	zbr = znode->zbranch[n];
+	gc_seq1 = c->gc_seq;
+	mutex_unlock(&c->tnc_mutex);
+
+	err = fallible_read_node(c, key, &zbr, node);
+	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
+		/*
+		 * The node may have been GC'ed out from under us so try again
+		 * while keeping the TNC mutex locked.
+		 */
+		safely = 1;
+		goto again;
+	}
+	return 0;
+
+out:
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
+ * @c: UBIFS file-system description object
+ * @bu: bulk-read parameters and results
+ *
+ * Lookup consecutive data node keys for the same inode that reside
+ * consecutively in the same LEB. This function returns zero in case of success
+ * and a negative error code in case of failure.
+ *
+ * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
+ * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
+ * maximum possible amount of nodes for bulk-read.
+ */
+int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
+{
+	int n, err = 0, lnum = -1, uninitialized_var(offs);
+	int uninitialized_var(len);
+	unsigned int block = key_block(c, &bu->key);
+	struct ubifs_znode *znode;
+
+	bu->cnt = 0;
+	bu->blk_cnt = 0;
+	bu->eof = 0;
+
+	mutex_lock(&c->tnc_mutex);
+	/* Find first key */
+	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
+	if (err < 0)
+		goto out;
+	if (err) {
+		/* Key found */
+		len = znode->zbranch[n].len;
+		/* The buffer must be big enough for at least 1 node */
+		if (len > bu->buf_len) {
+			err = -EINVAL;
+			goto out;
+		}
+		/* Add this key */
+		bu->zbranch[bu->cnt++] = znode->zbranch[n];
+		bu->blk_cnt += 1;
+		lnum = znode->zbranch[n].lnum;
+		offs = ALIGN(znode->zbranch[n].offs + len, 8);
+	}
+	while (1) {
+		struct ubifs_zbranch *zbr;
+		union ubifs_key *key;
+		unsigned int next_block;
+
+		/* Find next key */
+		err = tnc_next(c, &znode, &n);
+		if (err)
+			goto out;
+		zbr = &znode->zbranch[n];
+		key = &zbr->key;
+		/* See if there is another data key for this file */
+		if (key_inum(c, key) != key_inum(c, &bu->key) ||
+		    key_type(c, key) != UBIFS_DATA_KEY) {
+			err = -ENOENT;
+			goto out;
+		}
+		if (lnum < 0) {
+			/* First key found */
+			lnum = zbr->lnum;
+			offs = ALIGN(zbr->offs + zbr->len, 8);
+			len = zbr->len;
+			if (len > bu->buf_len) {
+				err = -EINVAL;
+				goto out;
+			}
+		} else {
+			/*
+			 * The data nodes must be in consecutive positions in
+			 * the same LEB.
+			 */
+			if (zbr->lnum != lnum || zbr->offs != offs)
+				goto out;
+			offs += ALIGN(zbr->len, 8);
+			len = ALIGN(len, 8) + zbr->len;
+			/* Must not exceed buffer length */
+			if (len > bu->buf_len)
+				goto out;
+		}
+		/* Allow for holes */
+		next_block = key_block(c, key);
+		bu->blk_cnt += (next_block - block - 1);
+		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
+			goto out;
+		block = next_block;
+		/* Add this key */
+		bu->zbranch[bu->cnt++] = *zbr;
+		bu->blk_cnt += 1;
+		/* See if we have room for more */
+		if (bu->cnt >= UBIFS_MAX_BULK_READ)
+			goto out;
+		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
+			goto out;
+	}
+out:
+	if (err == -ENOENT) {
+		bu->eof = 1;
+		err = 0;
+	}
+	bu->gc_seq = c->gc_seq;
+	mutex_unlock(&c->tnc_mutex);
+	if (err)
+		return err;
+	/*
+	 * An enormous hole could cause bulk-read to encompass too many
+	 * page cache pages, so limit the number here.
+	 */
+	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
+		bu->blk_cnt = UBIFS_MAX_BULK_READ;
+	/*
+	 * Ensure that bulk-read covers a whole number of page cache
+	 * pages.
+	 */
+	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
+	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
+		return 0;
+	if (bu->eof) {
+		/* At the end of file we can round up */
+		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
+		return 0;
+	}
+	/* Exclude data nodes that do not make up a whole page cache page */
+	block = key_block(c, &bu->key) + bu->blk_cnt;
+	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
+	while (bu->cnt) {
+		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
+			break;
+		bu->cnt -= 1;
+	}
+	return 0;
+}
+
+/**
+ * validate_data_node - validate data nodes for bulk-read.
+ * @c: UBIFS file-system description object
+ * @buf: buffer containing data node to validate
+ * @zbr: zbranch of data node to validate
+ *
+ * This functions returns %0 on success or a negative error code on failure.
+ */
+static int validate_data_node(struct ubifs_info *c, void *buf,
+			      struct ubifs_zbranch *zbr)
+{
+	union ubifs_key key1;
+	struct ubifs_ch *ch = buf;
+	int err, len;
+
+	if (ch->node_type != UBIFS_DATA_NODE) {
+		ubifs_err("bad node type (%d but expected %d)",
+			  ch->node_type, UBIFS_DATA_NODE);
+		goto out_err;
+	}
+
+	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
+	if (err) {
+		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
+		goto out;
+	}
+
+	len = le32_to_cpu(ch->len);
+	if (len != zbr->len) {
+		ubifs_err("bad node length %d, expected %d", len, zbr->len);
+		goto out_err;
+	}
+
+	/* Make sure the key of the read node is correct */
+	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
+	if (!keys_eq(c, &zbr->key, &key1)) {
+		ubifs_err("bad key in node at LEB %d:%d",
+			  zbr->lnum, zbr->offs);
+		dbg_tnc("looked for key %s found node's key %s",
+			DBGKEY(&zbr->key), DBGKEY1(&key1));
+		goto out_err;
+	}
+
+	return 0;
+
+out_err:
+	err = -EINVAL;
+out:
+	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
+	dbg_dump_node(c, buf);
+	dbg_dump_stack();
+	return err;
+}
+
+/**
+ * ubifs_tnc_bulk_read - read a number of data nodes in one go.
+ * @c: UBIFS file-system description object
+ * @bu: bulk-read parameters and results
+ *
+ * This functions reads and validates the data nodes that were identified by the
+ * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
+ * -EAGAIN to indicate a race with GC, or another negative error code on
+ * failure.
+ */
+int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
+{
+	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
+	void *buf;
+
+	len = bu->zbranch[bu->cnt - 1].offs;
+	len += bu->zbranch[bu->cnt - 1].len - offs;
+	if (len > bu->buf_len) {
+		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
+		return -EINVAL;
+	}
+
+	/* Do the read */
+	err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
+
+	/* Check for a race with GC */
+	if (maybe_leb_gced(c, lnum, bu->gc_seq))
+		return -EAGAIN;
+
+	if (err && err != -EBADMSG) {
+		ubifs_err("failed to read from LEB %d:%d, error %d",
+			  lnum, offs, err);
+		dbg_dump_stack();
+		dbg_tnc("key %s", DBGKEY(&bu->key));
+		return err;
+	}
+
+	/* Validate the nodes read */
+	buf = bu->buf;
+	for (i = 0; i < bu->cnt; i++) {
+		err = validate_data_node(c, buf, &bu->zbranch[i]);
+		if (err)
+			return err;
+		buf = buf + ALIGN(bu->zbranch[i].len, 8);
+	}
+
+	return 0;
+}
+
+/**
+ * do_lookup_nm- look up a "hashed" node.
+ * @c: UBIFS file-system description object
+ * @key: node key to lookup
+ * @node: the node is returned here
+ * @nm: node name
+ *
+ * This function look up and reads a node which contains name hash in the key.
+ * Since the hash may have collisions, there may be many nodes with the same
+ * key, so we have to sequentially look to all of them until the needed one is
+ * found. This function returns zero in case of success, %-ENOENT if the node
+ * was not found, and a negative error code in case of failure.
+ */
+static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
+			void *node, const struct qstr *nm)
+{
+	int found, n, err;
+	struct ubifs_znode *znode;
+
+	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
+	mutex_lock(&c->tnc_mutex);
+	found = ubifs_lookup_level0(c, key, &znode, &n);
+	if (!found) {
+		err = -ENOENT;
+		goto out_unlock;
+	} else if (found < 0) {
+		err = found;
+		goto out_unlock;
+	}
+
+	ubifs_assert(n >= 0);
+
+	err = resolve_collision(c, key, &znode, &n, nm);
+	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
+	if (unlikely(err < 0))
+		goto out_unlock;
+	if (err == 0) {
+		err = -ENOENT;
+		goto out_unlock;
+	}
+
+	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
+
+out_unlock:
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * ubifs_tnc_lookup_nm - look up a "hashed" node.
+ * @c: UBIFS file-system description object
+ * @key: node key to lookup
+ * @node: the node is returned here
+ * @nm: node name
+ *
+ * This function look up and reads a node which contains name hash in the key.
+ * Since the hash may have collisions, there may be many nodes with the same
+ * key, so we have to sequentially look to all of them until the needed one is
+ * found. This function returns zero in case of success, %-ENOENT if the node
+ * was not found, and a negative error code in case of failure.
+ */
+int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
+			void *node, const struct qstr *nm)
+{
+	int err, len;
+	const struct ubifs_dent_node *dent = node;
+
+	/*
+	 * We assume that in most of the cases there are no name collisions and
+	 * 'ubifs_tnc_lookup()' returns us the right direntry.
+	 */
+	err = ubifs_tnc_lookup(c, key, node);
+	if (err)
+		return err;
+
+	len = le16_to_cpu(dent->nlen);
+	if (nm->len == len && !memcmp(dent->name, nm->name, len))
+		return 0;
+
+	/*
+	 * Unluckily, there are hash collisions and we have to iterate over
+	 * them look at each direntry with colliding name hash sequentially.
+	 */
+	return do_lookup_nm(c, key, node, nm);
+}
+
+/**
+ * correct_parent_keys - correct parent znodes' keys.
+ * @c: UBIFS file-system description object
+ * @znode: znode to correct parent znodes for
+ *
+ * This is a helper function for 'tnc_insert()'. When the key of the leftmost
+ * zbranch changes, keys of parent znodes have to be corrected. This helper
+ * function is called in such situations and corrects the keys if needed.
+ */
+static void correct_parent_keys(const struct ubifs_info *c,
+				struct ubifs_znode *znode)
+{
+	union ubifs_key *key, *key1;
+
+	ubifs_assert(znode->parent);
+	ubifs_assert(znode->iip == 0);
+
+	key = &znode->zbranch[0].key;
+	key1 = &znode->parent->zbranch[0].key;
+
+	while (keys_cmp(c, key, key1) < 0) {
+		key_copy(c, key, key1);
+		znode = znode->parent;
+		znode->alt = 1;
+		if (!znode->parent || znode->iip)
+			break;
+		key1 = &znode->parent->zbranch[0].key;
+	}
+}
+
+/**
+ * insert_zbranch - insert a zbranch into a znode.
+ * @znode: znode into which to insert
+ * @zbr: zbranch to insert
+ * @n: slot number to insert to
+ *
+ * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
+ * znode's array of zbranches and keeps zbranches consolidated, so when a new
+ * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
+ * slot, zbranches starting from @n have to be moved right.
+ */
+static void insert_zbranch(struct ubifs_znode *znode,
+			   const struct ubifs_zbranch *zbr, int n)
+{
+	int i;
+
+	ubifs_assert(ubifs_zn_dirty(znode));
+
+	if (znode->level) {
+		for (i = znode->child_cnt; i > n; i--) {
+			znode->zbranch[i] = znode->zbranch[i - 1];
+			if (znode->zbranch[i].znode)
+				znode->zbranch[i].znode->iip = i;
+		}
+		if (zbr->znode)
+			zbr->znode->iip = n;
+	} else
+		for (i = znode->child_cnt; i > n; i--)
+			znode->zbranch[i] = znode->zbranch[i - 1];
+
+	znode->zbranch[n] = *zbr;
+	znode->child_cnt += 1;
+
+	/*
+	 * After inserting at slot zero, the lower bound of the key range of
+	 * this znode may have changed. If this znode is subsequently split
+	 * then the upper bound of the key range may change, and furthermore
+	 * it could change to be lower than the original lower bound. If that
+	 * happens, then it will no longer be possible to find this znode in the
+	 * TNC using the key from the index node on flash. That is bad because
+	 * if it is not found, we will assume it is obsolete and may overwrite
+	 * it. Then if there is an unclean unmount, we will start using the
+	 * old index which will be broken.
+	 *
+	 * So we first mark znodes that have insertions at slot zero, and then
+	 * if they are split we add their lnum/offs to the old_idx tree.
+	 */
+	if (n == 0)
+		znode->alt = 1;
+}
+
+/**
+ * tnc_insert - insert a node into TNC.
+ * @c: UBIFS file-system description object
+ * @znode: znode to insert into
+ * @zbr: branch to insert
+ * @n: slot number to insert new zbranch to
+ *
+ * This function inserts a new node described by @zbr into znode @znode. If
+ * znode does not have a free slot for new zbranch, it is split. Parent znodes
+ * are splat as well if needed. Returns zero in case of success or a negative
+ * error code in case of failure.
+ */
+static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
+		      struct ubifs_zbranch *zbr, int n)
+{
+	struct ubifs_znode *zn, *zi, *zp;
+	int i, keep, move, appending = 0;
+	union ubifs_key *key = &zbr->key, *key1;
+
+	ubifs_assert(n >= 0 && n <= c->fanout);
+
+	/* Implement naive insert for now */
+again:
+	zp = znode->parent;
+	if (znode->child_cnt < c->fanout) {
+		ubifs_assert(n != c->fanout);
+		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
+			DBGKEY(key));
+
+		insert_zbranch(znode, zbr, n);
+
+		/* Ensure parent's key is correct */
+		if (n == 0 && zp && znode->iip == 0)
+			correct_parent_keys(c, znode);
+
+		return 0;
+	}
+
+	/*
+	 * Unfortunately, @znode does not have more empty slots and we have to
+	 * split it.
+	 */
+	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
+
+	if (znode->alt)
+		/*
+		 * We can no longer be sure of finding this znode by key, so we
+		 * record it in the old_idx tree.
+		 */
+		ins_clr_old_idx_znode(c, znode);
+
+	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
+	if (!zn)
+		return -ENOMEM;
+	zn->parent = zp;
+	zn->level = znode->level;
+
+	/* Decide where to split */
+	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
+		/* Try not to split consecutive data keys */
+		if (n == c->fanout) {
+			key1 = &znode->zbranch[n - 1].key;
+			if (key_inum(c, key1) == key_inum(c, key) &&
+			    key_type(c, key1) == UBIFS_DATA_KEY)
+				appending = 1;
+		} else
+			goto check_split;
+	} else if (appending && n != c->fanout) {
+		/* Try not to split consecutive data keys */
+		appending = 0;
+check_split:
+		if (n >= (c->fanout + 1) / 2) {
+			key1 = &znode->zbranch[0].key;
+			if (key_inum(c, key1) == key_inum(c, key) &&
+			    key_type(c, key1) == UBIFS_DATA_KEY) {
+				key1 = &znode->zbranch[n].key;
+				if (key_inum(c, key1) != key_inum(c, key) ||
+				    key_type(c, key1) != UBIFS_DATA_KEY) {
+					keep = n;
+					move = c->fanout - keep;
+					zi = znode;
+					goto do_split;
+				}
+			}
+		}
+	}
+
+	if (appending) {
+		keep = c->fanout;
+		move = 0;
+	} else {
+		keep = (c->fanout + 1) / 2;
+		move = c->fanout - keep;
+	}
+
+	/*
+	 * Although we don't at present, we could look at the neighbors and see
+	 * if we can move some zbranches there.
+	 */
+
+	if (n < keep) {
+		/* Insert into existing znode */
+		zi = znode;
+		move += 1;
+		keep -= 1;
+	} else {
+		/* Insert into new znode */
+		zi = zn;
+		n -= keep;
+		/* Re-parent */
+		if (zn->level != 0)
+			zbr->znode->parent = zn;
+	}
+
+do_split:
+
+	__set_bit(DIRTY_ZNODE, &zn->flags);
+	atomic_long_inc(&c->dirty_zn_cnt);
+
+	zn->child_cnt = move;
+	znode->child_cnt = keep;
+
+	dbg_tnc("moving %d, keeping %d", move, keep);
+
+	/* Move zbranch */
+	for (i = 0; i < move; i++) {
+		zn->zbranch[i] = znode->zbranch[keep + i];
+		/* Re-parent */
+		if (zn->level != 0)
+			if (zn->zbranch[i].znode) {
+				zn->zbranch[i].znode->parent = zn;
+				zn->zbranch[i].znode->iip = i;
+			}
+	}
+
+	/* Insert new key and branch */
+	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
+
+	insert_zbranch(zi, zbr, n);
+
+	/* Insert new znode (produced by spitting) into the parent */
+	if (zp) {
+		if (n == 0 && zi == znode && znode->iip == 0)
+			correct_parent_keys(c, znode);
+
+		/* Locate insertion point */
+		n = znode->iip + 1;
+
+		/* Tail recursion */
+		zbr->key = zn->zbranch[0].key;
+		zbr->znode = zn;
+		zbr->lnum = 0;
+		zbr->offs = 0;
+		zbr->len = 0;
+		znode = zp;
+
+		goto again;
+	}
+
+	/* We have to split root znode */
+	dbg_tnc("creating new zroot at level %d", znode->level + 1);
+
+	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
+	if (!zi)
+		return -ENOMEM;
+
+	zi->child_cnt = 2;
+	zi->level = znode->level + 1;
+
+	__set_bit(DIRTY_ZNODE, &zi->flags);
+	atomic_long_inc(&c->dirty_zn_cnt);
+
+	zi->zbranch[0].key = znode->zbranch[0].key;
+	zi->zbranch[0].znode = znode;
+	zi->zbranch[0].lnum = c->zroot.lnum;
+	zi->zbranch[0].offs = c->zroot.offs;
+	zi->zbranch[0].len = c->zroot.len;
+	zi->zbranch[1].key = zn->zbranch[0].key;
+	zi->zbranch[1].znode = zn;
+
+	c->zroot.lnum = 0;
+	c->zroot.offs = 0;
+	c->zroot.len = 0;
+	c->zroot.znode = zi;
+
+	zn->parent = zi;
+	zn->iip = 1;
+	znode->parent = zi;
+	znode->iip = 0;
+
+	return 0;
+}
+
+/**
+ * ubifs_tnc_add - add a node to TNC.
+ * @c: UBIFS file-system description object
+ * @key: key to add
+ * @lnum: LEB number of node
+ * @offs: node offset
+ * @len: node length
+ *
+ * This function adds a node with key @key to TNC. The node may be new or it may
+ * obsolete some existing one. Returns %0 on success or negative error code on
+ * failure.
+ */
+int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
+		  int offs, int len)
+{
+	int found, n, err = 0;
+	struct ubifs_znode *znode;
+
+	mutex_lock(&c->tnc_mutex);
+	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
+	found = lookup_level0_dirty(c, key, &znode, &n);
+	if (!found) {
+		struct ubifs_zbranch zbr;
+
+		zbr.znode = NULL;
+		zbr.lnum = lnum;
+		zbr.offs = offs;
+		zbr.len = len;
+		key_copy(c, key, &zbr.key);
+		err = tnc_insert(c, znode, &zbr, n + 1);
+	} else if (found == 1) {
+		struct ubifs_zbranch *zbr = &znode->zbranch[n];
+
+		lnc_free(zbr);
+		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
+		zbr->lnum = lnum;
+		zbr->offs = offs;
+		zbr->len = len;
+	} else
+		err = found;
+	if (!err)
+		err = dbg_check_tnc(c, 0);
+	mutex_unlock(&c->tnc_mutex);
+
+	return err;
+}
+
+/**
+ * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
+ * @c: UBIFS file-system description object
+ * @key: key to add
+ * @old_lnum: LEB number of old node
+ * @old_offs: old node offset
+ * @lnum: LEB number of node
+ * @offs: node offset
+ * @len: node length
+ *
+ * This function replaces a node with key @key in the TNC only if the old node
+ * is found.  This function is called by garbage collection when node are moved.
+ * Returns %0 on success or negative error code on failure.
+ */
+int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
+		      int old_lnum, int old_offs, int lnum, int offs, int len)
+{
+	int found, n, err = 0;
+	struct ubifs_znode *znode;
+
+	mutex_lock(&c->tnc_mutex);
+	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
+		old_offs, lnum, offs, len, DBGKEY(key));
+	found = lookup_level0_dirty(c, key, &znode, &n);
+	if (found < 0) {
+		err = found;
+		goto out_unlock;
+	}
+
+	if (found == 1) {
+		struct ubifs_zbranch *zbr = &znode->zbranch[n];
+
+		found = 0;
+		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
+			lnc_free(zbr);
+			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
+			if (err)
+				goto out_unlock;
+			zbr->lnum = lnum;
+			zbr->offs = offs;
+			zbr->len = len;
+			found = 1;
+		} else if (is_hash_key(c, key)) {
+			found = resolve_collision_directly(c, key, &znode, &n,
+							   old_lnum, old_offs);
+			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
+				found, znode, n, old_lnum, old_offs);
+			if (found < 0) {
+				err = found;
+				goto out_unlock;
+			}
+
+			if (found) {
+				/* Ensure the znode is dirtied */
+				if (znode->cnext || !ubifs_zn_dirty(znode)) {
+					znode = dirty_cow_bottom_up(c, znode);
+					if (IS_ERR(znode)) {
+						err = PTR_ERR(znode);
+						goto out_unlock;
+					}
+				}
+				zbr = &znode->zbranch[n];
+				lnc_free(zbr);
+				err = ubifs_add_dirt(c, zbr->lnum,
+						     zbr->len);
+				if (err)
+					goto out_unlock;
+				zbr->lnum = lnum;
+				zbr->offs = offs;
+				zbr->len = len;
+			}
+		}
+	}
+
+	if (!found)
+		err = ubifs_add_dirt(c, lnum, len);
+
+	if (!err)
+		err = dbg_check_tnc(c, 0);
+
+out_unlock:
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * ubifs_tnc_add_nm - add a "hashed" node to TNC.
+ * @c: UBIFS file-system description object
+ * @key: key to add
+ * @lnum: LEB number of node
+ * @offs: node offset
+ * @len: node length
+ * @nm: node name
+ *
+ * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
+ * may have collisions, like directory entry keys.
+ */
+int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
+		     int lnum, int offs, int len, const struct qstr *nm)
+{
+	int found, n, err = 0;
+	struct ubifs_znode *znode;
+
+	mutex_lock(&c->tnc_mutex);
+	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
+		DBGKEY(key));
+	found = lookup_level0_dirty(c, key, &znode, &n);
+	if (found < 0) {
+		err = found;
+		goto out_unlock;
+	}
+
+	if (found == 1) {
+		if (c->replaying)
+			found = fallible_resolve_collision(c, key, &znode, &n,
+							   nm, 1);
+		else
+			found = resolve_collision(c, key, &znode, &n, nm);
+		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
+		if (found < 0) {
+			err = found;
+			goto out_unlock;
+		}
+
+		/* Ensure the znode is dirtied */
+		if (znode->cnext || !ubifs_zn_dirty(znode)) {
+			znode = dirty_cow_bottom_up(c, znode);
+			if (IS_ERR(znode)) {
+				err = PTR_ERR(znode);
+				goto out_unlock;
+			}
+		}
+
+		if (found == 1) {
+			struct ubifs_zbranch *zbr = &znode->zbranch[n];
+
+			lnc_free(zbr);
+			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
+			zbr->lnum = lnum;
+			zbr->offs = offs;
+			zbr->len = len;
+			goto out_unlock;
+		}
+	}
+
+	if (!found) {
+		struct ubifs_zbranch zbr;
+
+		zbr.znode = NULL;
+		zbr.lnum = lnum;
+		zbr.offs = offs;
+		zbr.len = len;
+		key_copy(c, key, &zbr.key);
+		err = tnc_insert(c, znode, &zbr, n + 1);
+		if (err)
+			goto out_unlock;
+		if (c->replaying) {
+			/*
+			 * We did not find it in the index so there may be a
+			 * dangling branch still in the index. So we remove it
+			 * by passing 'ubifs_tnc_remove_nm()' the same key but
+			 * an unmatchable name.
+			 */
+			struct qstr noname = { .len = 0, .name = "" };
+
+			err = dbg_check_tnc(c, 0);
+			mutex_unlock(&c->tnc_mutex);
+			if (err)
+				return err;
+			return ubifs_tnc_remove_nm(c, key, &noname);
+		}
+	}
+
+out_unlock:
+	if (!err)
+		err = dbg_check_tnc(c, 0);
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * tnc_delete - delete a znode form TNC.
+ * @c: UBIFS file-system description object
+ * @znode: znode to delete from
+ * @n: zbranch slot number to delete
+ *
+ * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
+ * case of success and a negative error code in case of failure.
+ */
+static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
+{
+	struct ubifs_zbranch *zbr;
+	struct ubifs_znode *zp;
+	int i, err;
+
+	/* Delete without merge for now */
+	ubifs_assert(znode->level == 0);
+	ubifs_assert(n >= 0 && n < c->fanout);
+	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
+
+	zbr = &znode->zbranch[n];
+	lnc_free(zbr);
+
+	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
+	if (err) {
+		dbg_dump_znode(c, znode);
+		return err;
+	}
+
+	/* We do not "gap" zbranch slots */
+	for (i = n; i < znode->child_cnt - 1; i++)
+		znode->zbranch[i] = znode->zbranch[i + 1];
+	znode->child_cnt -= 1;
+
+	if (znode->child_cnt > 0)
+		return 0;
+
+	/*
+	 * This was the last zbranch, we have to delete this znode from the
+	 * parent.
+	 */
+
+	do {
+		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
+		ubifs_assert(ubifs_zn_dirty(znode));
+
+		zp = znode->parent;
+		n = znode->iip;
+
+		atomic_long_dec(&c->dirty_zn_cnt);
+
+		err = insert_old_idx_znode(c, znode);
+		if (err)
+			return err;
+
+		if (znode->cnext) {
+			__set_bit(OBSOLETE_ZNODE, &znode->flags);
+			atomic_long_inc(&c->clean_zn_cnt);
+			atomic_long_inc(&ubifs_clean_zn_cnt);
+		} else
+			kfree(znode);
+		znode = zp;
+	} while (znode->child_cnt == 1); /* while removing last child */
+
+	/* Remove from znode, entry n - 1 */
+	znode->child_cnt -= 1;
+	ubifs_assert(znode->level != 0);
+	for (i = n; i < znode->child_cnt; i++) {
+		znode->zbranch[i] = znode->zbranch[i + 1];
+		if (znode->zbranch[i].znode)
+			znode->zbranch[i].znode->iip = i;
+	}
+
+	/*
+	 * If this is the root and it has only 1 child then
+	 * collapse the tree.
+	 */
+	if (!znode->parent) {
+		while (znode->child_cnt == 1 && znode->level != 0) {
+			zp = znode;
+			zbr = &znode->zbranch[0];
+			znode = get_znode(c, znode, 0);
+			if (IS_ERR(znode))
+				return PTR_ERR(znode);
+			znode = dirty_cow_znode(c, zbr);
+			if (IS_ERR(znode))
+				return PTR_ERR(znode);
+			znode->parent = NULL;
+			znode->iip = 0;
+			if (c->zroot.len) {
+				err = insert_old_idx(c, c->zroot.lnum,
+						     c->zroot.offs);
+				if (err)
+					return err;
+			}
+			c->zroot.lnum = zbr->lnum;
+			c->zroot.offs = zbr->offs;
+			c->zroot.len = zbr->len;
+			c->zroot.znode = znode;
+			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
+				     &zp->flags));
+			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
+			atomic_long_dec(&c->dirty_zn_cnt);
+
+			if (zp->cnext) {
+				__set_bit(OBSOLETE_ZNODE, &zp->flags);
+				atomic_long_inc(&c->clean_zn_cnt);
+				atomic_long_inc(&ubifs_clean_zn_cnt);
+			} else
+				kfree(zp);
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * ubifs_tnc_remove - remove an index entry of a node.
+ * @c: UBIFS file-system description object
+ * @key: key of node
+ *
+ * Returns %0 on success or negative error code on failure.
+ */
+int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
+{
+	int found, n, err = 0;
+	struct ubifs_znode *znode;
+
+	mutex_lock(&c->tnc_mutex);
+	dbg_tnc("key %s", DBGKEY(key));
+	found = lookup_level0_dirty(c, key, &znode, &n);
+	if (found < 0) {
+		err = found;
+		goto out_unlock;
+	}
+	if (found == 1)
+		err = tnc_delete(c, znode, n);
+	if (!err)
+		err = dbg_check_tnc(c, 0);
+
+out_unlock:
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
+ * @c: UBIFS file-system description object
+ * @key: key of node
+ * @nm: directory entry name
+ *
+ * Returns %0 on success or negative error code on failure.
+ */
+int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
+			const struct qstr *nm)
+{
+	int n, err;
+	struct ubifs_znode *znode;
+
+	mutex_lock(&c->tnc_mutex);
+	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
+	err = lookup_level0_dirty(c, key, &znode, &n);
+	if (err < 0)
+		goto out_unlock;
+
+	if (err) {
+		if (c->replaying)
+			err = fallible_resolve_collision(c, key, &znode, &n,
+							 nm, 0);
+		else
+			err = resolve_collision(c, key, &znode, &n, nm);
+		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
+		if (err < 0)
+			goto out_unlock;
+		if (err) {
+			/* Ensure the znode is dirtied */
+			if (znode->cnext || !ubifs_zn_dirty(znode)) {
+				znode = dirty_cow_bottom_up(c, znode);
+				if (IS_ERR(znode)) {
+					err = PTR_ERR(znode);
+					goto out_unlock;
+				}
+			}
+			err = tnc_delete(c, znode, n);
+		}
+	}
+
+out_unlock:
+	if (!err)
+		err = dbg_check_tnc(c, 0);
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * key_in_range - determine if a key falls within a range of keys.
+ * @c: UBIFS file-system description object
+ * @key: key to check
+ * @from_key: lowest key in range
+ * @to_key: highest key in range
+ *
+ * This function returns %1 if the key is in range and %0 otherwise.
+ */
+static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
+			union ubifs_key *from_key, union ubifs_key *to_key)
+{
+	if (keys_cmp(c, key, from_key) < 0)
+		return 0;
+	if (keys_cmp(c, key, to_key) > 0)
+		return 0;
+	return 1;
+}
+
+/**
+ * ubifs_tnc_remove_range - remove index entries in range.
+ * @c: UBIFS file-system description object
+ * @from_key: lowest key to remove
+ * @to_key: highest key to remove
+ *
+ * This function removes index entries starting at @from_key and ending at
+ * @to_key.  This function returns zero in case of success and a negative error
+ * code in case of failure.
+ */
+int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
+			   union ubifs_key *to_key)
+{
+	int i, n, k, err = 0;
+	struct ubifs_znode *znode;
+	union ubifs_key *key;
+
+	mutex_lock(&c->tnc_mutex);
+	while (1) {
+		/* Find first level 0 znode that contains keys to remove */
+		err = ubifs_lookup_level0(c, from_key, &znode, &n);
+		if (err < 0)
+			goto out_unlock;
+
+		if (err)
+			key = from_key;
+		else {
+			err = tnc_next(c, &znode, &n);
+			if (err == -ENOENT) {
+				err = 0;
+				goto out_unlock;
+			}
+			if (err < 0)
+				goto out_unlock;
+			key = &znode->zbranch[n].key;
+			if (!key_in_range(c, key, from_key, to_key)) {
+				err = 0;
+				goto out_unlock;
+			}
+		}
+
+		/* Ensure the znode is dirtied */
+		if (znode->cnext || !ubifs_zn_dirty(znode)) {
+			znode = dirty_cow_bottom_up(c, znode);
+			if (IS_ERR(znode)) {
+				err = PTR_ERR(znode);
+				goto out_unlock;
+			}
+		}
+
+		/* Remove all keys in range except the first */
+		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
+			key = &znode->zbranch[i].key;
+			if (!key_in_range(c, key, from_key, to_key))
+				break;
+			lnc_free(&znode->zbranch[i]);
+			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
+					     znode->zbranch[i].len);
+			if (err) {
+				dbg_dump_znode(c, znode);
+				goto out_unlock;
+			}
+			dbg_tnc("removing %s", DBGKEY(key));
+		}
+		if (k) {
+			for (i = n + 1 + k; i < znode->child_cnt; i++)
+				znode->zbranch[i - k] = znode->zbranch[i];
+			znode->child_cnt -= k;
+		}
+
+		/* Now delete the first */
+		err = tnc_delete(c, znode, n);
+		if (err)
+			goto out_unlock;
+	}
+
+out_unlock:
+	if (!err)
+		err = dbg_check_tnc(c, 0);
+	mutex_unlock(&c->tnc_mutex);
+	return err;
+}
+
+/**
+ * ubifs_tnc_remove_ino - remove an inode from TNC.
+ * @c: UBIFS file-system description object
+ * @inum: inode number to remove
+ *
+ * This function remove inode @inum and all the extended attributes associated
+ * with the anode from TNC and returns zero in case of success or a negative
+ * error code in case of failure.
+ */
+int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
+{
+	union ubifs_key key1, key2;
+	struct ubifs_dent_node *xent, *pxent = NULL;
+	struct qstr nm = { .name = NULL };
+
+	dbg_tnc("ino %lu", (unsigned long)inum);
+
+	/*
+	 * Walk all extended attribute entries and remove them together with
+	 * corresponding extended attribute inodes.
+	 */
+	lowest_xent_key(c, &key1, inum);
+	while (1) {
+		ino_t xattr_inum;
+		int err;
+
+		xent = ubifs_tnc_next_ent(c, &key1, &nm);
+		if (IS_ERR(xent)) {
+			err = PTR_ERR(xent);
+			if (err == -ENOENT)
+				break;
+			return err;
+		}
+
+		xattr_inum = le64_to_cpu(xent->inum);
+		dbg_tnc("xent '%s', ino %lu", xent->name,
+			(unsigned long)xattr_inum);
+
+		nm.name = (char *)xent->name;
+		nm.len = le16_to_cpu(xent->nlen);
+		err = ubifs_tnc_remove_nm(c, &key1, &nm);
+		if (err) {
+			kfree(xent);
+			return err;
+		}
+
+		lowest_ino_key(c, &key1, xattr_inum);
+		highest_ino_key(c, &key2, xattr_inum);
+		err = ubifs_tnc_remove_range(c, &key1, &key2);
+		if (err) {
+			kfree(xent);
+			return err;
+		}
+
+		kfree(pxent);
+		pxent = xent;
+		key_read(c, &xent->key, &key1);
+	}
+
+	kfree(pxent);
+	lowest_ino_key(c, &key1, inum);
+	highest_ino_key(c, &key2, inum);
+
+	return ubifs_tnc_remove_range(c, &key1, &key2);
+}
+
+/**
+ * ubifs_tnc_next_ent - walk directory or extended attribute entries.
+ * @c: UBIFS file-system description object
+ * @key: key of last entry
+ * @nm: name of last entry found or %NULL
+ *
+ * This function finds and reads the next directory or extended attribute entry
+ * after the given key (@key) if there is one. @nm is used to resolve
+ * collisions.
+ *
+ * If the name of the current entry is not known and only the key is known,
+ * @nm->name has to be %NULL. In this case the semantics of this function is a
+ * little bit different and it returns the entry corresponding to this key, not
+ * the next one. If the key was not found, the closest "right" entry is
+ * returned.
+ *
+ * If the fist entry has to be found, @key has to contain the lowest possible
+ * key value for this inode and @name has to be %NULL.
+ *
+ * This function returns the found directory or extended attribute entry node
+ * in case of success, %-ENOENT is returned if no entry was found, and a
+ * negative error code is returned in case of failure.
+ */
+struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
+					   union ubifs_key *key,
+					   const struct qstr *nm)
+{
+	int n, err, type = key_type(c, key);
+	struct ubifs_znode *znode;
+	struct ubifs_dent_node *dent;
+	struct ubifs_zbranch *zbr;
+	union ubifs_key *dkey;
+
+	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
+	ubifs_assert(is_hash_key(c, key));
+
+	mutex_lock(&c->tnc_mutex);
+	err = ubifs_lookup_level0(c, key, &znode, &n);
+	if (unlikely(err < 0))
+		goto out_unlock;
+
+	if (nm->name) {
+		if (err) {
+			/* Handle collisions */
+			err = resolve_collision(c, key, &znode, &n, nm);
+			dbg_tnc("rc returned %d, znode %p, n %d",
+				err, znode, n);
+			if (unlikely(err < 0))
+				goto out_unlock;
+		}
+
+		/* Now find next entry */
+		err = tnc_next(c, &znode, &n);
+		if (unlikely(err))
+			goto out_unlock;
+	} else {
+		/*
+		 * The full name of the entry was not given, in which case the
+		 * behavior of this function is a little different and it
+		 * returns current entry, not the next one.
+		 */
+		if (!err) {
+			/*
+			 * However, the given key does not exist in the TNC
+			 * tree and @znode/@n variables contain the closest
+			 * "preceding" element. Switch to the next one.
+			 */
+			err = tnc_next(c, &znode, &n);
+			if (err)
+				goto out_unlock;
+		}
+	}
+
+	zbr = &znode->zbranch[n];
+	dent = kmalloc(zbr->len, GFP_NOFS);
+	if (unlikely(!dent)) {
+		err = -ENOMEM;
+		goto out_unlock;
+	}
+
+	/*
+	 * The above 'tnc_next()' call could lead us to the next inode, check
+	 * this.
+	 */
+	dkey = &zbr->key;
+	if (key_inum(c, dkey) != key_inum(c, key) ||
+	    key_type(c, dkey) != type) {
+		err = -ENOENT;
+		goto out_free;
+	}
+
+	err = tnc_read_node_nm(c, zbr, dent);
+	if (unlikely(err))
+		goto out_free;
+
+	mutex_unlock(&c->tnc_mutex);
+	return dent;
+
+out_free:
+	kfree(dent);
+out_unlock:
+	mutex_unlock(&c->tnc_mutex);
+	return ERR_PTR(err);
+}
diff --git a/fs/ubifs/tnc_misc.c b/fs/ubifs/tnc_misc.c
new file mode 100644
index 0000000..955219f
--- /dev/null
+++ b/fs/ubifs/tnc_misc.c
@@ -0,0 +1,435 @@
+/*
+ * This file is part of UBIFS.
+ *
+ * Copyright (C) 2006-2008 Nokia Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 51
+ * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Authors: Adrian Hunter
+ *          Artem Bityutskiy (Битюцкий Артём)
+ */
+
+/*
+ * This file contains miscelanious TNC-related functions shared betweend
+ * different files. This file does not form any logically separate TNC
+ * sub-system. The file was created because there is a lot of TNC code and
+ * putting it all in one file would make that file too big and unreadable.
+ */
+
+#include "ubifs.h"
+
+/**
+ * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
+ * @zr: root of the subtree to traverse
+ * @znode: previous znode
+ *
+ * This function implements levelorder TNC traversal. The LNC is ignored.
+ * Returns the next element or %NULL if @znode is already the last one.
+ */
+struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
+					      struct ubifs_znode *znode)
+{
+	int level, iip, level_search = 0;
+	struct ubifs_znode *zn;
+
+	ubifs_assert(zr);
+
+	if (unlikely(!znode))
+		return zr;
+
+	if (unlikely(znode == zr)) {
+		if (znode->level == 0)
+			return NULL;
+		return ubifs_tnc_find_child(zr, 0);
+	}
+
+	level = znode->level;
+
+	iip = znode->iip;
+	while (1) {
+		ubifs_assert(znode->level <= zr->level);
+
+		/*
+		 * First walk up until there is a znode with next branch to
+		 * look at.
+		 */
+		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
+			znode = znode->parent;
+			iip = znode->iip;
+		}
+
+		if (unlikely(znode->parent == zr &&
+			     iip >= znode->parent->child_cnt)) {
+			/* This level is done, switch to the lower one */
+			level -= 1;
+			if (level_search || level < 0)
+				/*
+				 * We were already looking for znode at lower
+				 * level ('level_search'). As we are here
+				 * again, it just does not exist. Or all levels
+				 * were finished ('level < 0').
+				 */
+				return NULL;
+
+			level_search = 1;
+			iip = -1;
+			znode = ubifs_tnc_find_child(zr, 0);
+			ubifs_assert(znode);
+		}
+
+		/* Switch to the next index */
+		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
+		if (!zn) {
+			/* No more children to look at, we have walk up */
+			iip = znode->parent->child_cnt;
+			continue;
+		}
+
+		/* Walk back down to the level we came from ('level') */
+		while (zn->level != level) {
+			znode = zn;
+			zn = ubifs_tnc_find_child(zn, 0);
+			if (!zn) {
+				/*
+				 * This path is not too deep so it does not
+				 * reach 'level'. Try next path.
+				 */
+				iip = znode->iip;
+				break;
+			}
+		}
+
+		if (zn) {
+			ubifs_assert(zn->level >= 0);
+			return zn;
+		}
+	}
+}
+
+/**
+ * ubifs_search_zbranch - search znode branch.
+ * @c: UBIFS file-system description object
+ * @znode: znode to search in
+ * @key: key to search for
+ * @n: znode branch slot number is returned here
+ *
+ * This is a helper function which search branch with key @key in @znode using
+ * binary search. The result of the search may be:
+ *   o exact match, then %1 is returned, and the slot number of the branch is
+ *     stored in @n;
+ *   o no exact match, then %0 is returned and the slot number of the left
+ *     closest branch is returned in @n; the slot if all keys in this znode are
+ *     greater than @key, then %-1 is returned in @n.
+ */
+int ubifs_search_zbranch(const struct ubifs_info *c,
+			 const struct ubifs_znode *znode,
+			 const union ubifs_key *key, int *n)
+{
+	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
+	int uninitialized_var(cmp);
+	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
+
+	ubifs_assert(end > beg);
+
+	while (end > beg) {
+		mid = (beg + end) >> 1;
+		cmp = keys_cmp(c, key, &zbr[mid].key);
+		if (cmp > 0)
+			beg = mid + 1;
+		else if (cmp < 0)
+			end = mid;
+		else {
+			*n = mid;
+			return 1;
+		}
+	}
+
+	*n = end - 1;
+
+	/* The insert point is after *n */
+	ubifs_assert(*n >= -1 && *n < znode->child_cnt);
+	if (*n == -1)
+		ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
+	else
+		ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
+	if (*n + 1 < znode->child_cnt)
+		ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
+
+	return 0;
+}
+
+/**
+ * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
+ * @znode: znode to start at (root of the sub-tree to traverse)
+ *
+ * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
+ * ignored.
+ */
+struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
+{
+	if (unlikely(!znode))
+		return NULL;
+
+	while (znode->level > 0) {
+		struct ubifs_znode *child;
+
+		child = ubifs_tnc_find_child(znode, 0);
+		if (!child)
+			return znode;
+		znode = child;
+	}
+
+	return znode;
+}
+
+/**
+ * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
+ * @znode: previous znode
+ *
+ * This function implements postorder TNC traversal. The LNC is ignored.
+ * Returns the next element or %NULL if @znode is already the last one.
+ */
+struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
+{
+	struct ubifs_znode *zn;
+
+	ubifs_assert(znode);
+	if (unlikely(!znode->parent))
+		return NULL;
+
+	/* Switch to the next index in the parent */
+	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
+	if (!zn)
+		/* This is in fact the last child, return parent */
+		return znode->parent;
+
+	/* Go to the first znode in this new subtree */
+	return ubifs_tnc_postorder_first(zn);
+}
+
+/**
+ * read_znode - read an indexing node from flash and fill znode.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB of the indexing node to read
+ * @offs: node offset
+ * @len: node length
+ * @znode: znode to read to
+ *
+ * This function reads an indexing node from the flash media and fills znode
+ * with the read data. Returns zero in case of success and a negative error
+ * code in case of failure. The read indexing node is validated and if anything
+ * is wrong with it, this function prints complaint messages and returns
+ * %-EINVAL.
+ */
+static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
+		      struct ubifs_znode *znode)
+{
+	int i, err, type, cmp;
+	struct ubifs_idx_node *idx;
+
+	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
+	if (!idx)
+		return -ENOMEM;
+
+	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
+	if (err < 0) {
+		kfree(idx);
+		return err;
+	}
+
+	znode->child_cnt = le16_to_cpu(idx->child_cnt);
+	znode->level = le16_to_cpu(idx->level);
+
+	dbg_tnc("LEB %d:%d, level %d, %d branch",
+		lnum, offs, znode->level, znode->child_cnt);
+
+	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
+		dbg_err("current fanout %d, branch count %d",
+			c->fanout, znode->child_cnt);
+		dbg_err("max levels %d, znode level %d",
+			UBIFS_MAX_LEVELS, znode->level);
+		err = 1;
+		goto out_dump;
+	}
+
+	for (i = 0; i < znode->child_cnt; i++) {
+		const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
+		struct ubifs_zbranch *zbr = &znode->zbranch[i];
+
+		key_read(c, &br->key, &zbr->key);
+		zbr->lnum = le32_to_cpu(br->lnum);
+		zbr->offs = le32_to_cpu(br->offs);
+		zbr->len  = le32_to_cpu(br->len);
+		zbr->znode = NULL;
+
+		/* Validate branch */
+
+		if (zbr->lnum < c->main_first ||
+		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
+		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
+			dbg_err("bad branch %d", i);
+			err = 2;
+			goto out_dump;
+		}
+
+		switch (key_type(c, &zbr->key)) {
+		case UBIFS_INO_KEY:
+		case UBIFS_DATA_KEY:
+		case UBIFS_DENT_KEY:
+		case UBIFS_XENT_KEY:
+			break;
+		default:
+			dbg_msg("bad key type at slot %d: %s", i,
+				DBGKEY(&zbr->key));
+			err = 3;
+			goto out_dump;
+		}
+
+		if (znode->level)
+			continue;
+
+		type = key_type(c, &zbr->key);
+		if (c->ranges[type].max_len == 0) {
+			if (zbr->len != c->ranges[type].len) {
+				dbg_err("bad target node (type %d) length (%d)",
+					type, zbr->len);
+				dbg_err("have to be %d", c->ranges[type].len);
+				err = 4;
+				goto out_dump;
+			}
+		} else if (zbr->len < c->ranges[type].min_len ||
+			   zbr->len > c->ranges[type].max_len) {
+			dbg_err("bad target node (type %d) length (%d)",
+				type, zbr->len);
+			dbg_err("have to be in range of %d-%d",
+				c->ranges[type].min_len,
+				c->ranges[type].max_len);
+			err = 5;
+			goto out_dump;
+		}
+	}
+
+	/*
+	 * Ensure that the next key is greater or equivalent to the
+	 * previous one.
+	 */
+	for (i = 0; i < znode->child_cnt - 1; i++) {
+		const union ubifs_key *key1, *key2;
+
+		key1 = &znode->zbranch[i].key;
+		key2 = &znode->zbranch[i + 1].key;
+
+		cmp = keys_cmp(c, key1, key2);
+		if (cmp > 0) {
+			dbg_err("bad key order (keys %d and %d)", i, i + 1);
+			err = 6;
+			goto out_dump;
+		} else if (cmp == 0 && !is_hash_key(c, key1)) {
+			/* These can only be keys with colliding hash */
+			dbg_err("keys %d and %d are not hashed but equivalent",
+				i, i + 1);
+			err = 7;
+			goto out_dump;
+		}
+	}
+
+	kfree(idx);
+	return 0;
+
+out_dump:
+	ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
+	dbg_dump_node(c, idx);
+	kfree(idx);
+	return -EINVAL;
+}
+
+/**
+ * ubifs_load_znode - load znode to TNC cache.
+ * @c: UBIFS file-system description object
+ * @zbr: znode branch
+ * @parent: znode's parent
+ * @iip: index in parent
+ *
+ * This function loads znode pointed to by @zbr into the TNC cache and
+ * returns pointer to it in case of success and a negative error code in case
+ * of failure.
+ */
+struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
+				     struct ubifs_zbranch *zbr,
+				     struct ubifs_znode *parent, int iip)
+{
+	int err;
+	struct ubifs_znode *znode;
+
+	ubifs_assert(!zbr->znode);
+	/*
+	 * A slab cache is not presently used for znodes because the znode size
+	 * depends on the fanout which is stored in the superblock.
+	 */
+	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
+	if (!znode)
+		return ERR_PTR(-ENOMEM);
+
+	err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
+	if (err)
+		goto out;
+
+	zbr->znode = znode;
+	znode->parent = parent;
+	znode->time = get_seconds();
+	znode->iip = iip;
+
+	return znode;
+
+out:
+	kfree(znode);
+	return ERR_PTR(err);
+}
+
+/**
+ * ubifs_tnc_read_node - read a leaf node from the flash media.
+ * @c: UBIFS file-system description object
+ * @zbr: key and position of the node
+ * @node: node is returned here
+ *
+ * This function reads a node defined by @zbr from the flash media. Returns
+ * zero in case of success or a negative negative error code in case of
+ * failure.
+ */
+int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+			void *node)
+{
+	union ubifs_key key1, *key = &zbr->key;
+	int err, type = key_type(c, key);
+
+	err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, zbr->offs);
+
+	if (err) {
+		dbg_tnc("key %s", DBGKEY(key));
+		return err;
+	}
+
+	/* Make sure the key of the read node is correct */
+	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
+	if (!keys_eq(c, key, &key1)) {
+		ubifs_err("bad key in node at LEB %d:%d",
+			  zbr->lnum, zbr->offs);
+		dbg_tnc("looked for key %s found node's key %s",
+			DBGKEY(key), DBGKEY1(&key1));
+		dbg_dump_node(c, node);
+		return -EINVAL;
+	}
+
+	return 0;
+}
-- 
1.7.1




More information about the barebox mailing list