[PATCH v3 3/4] PHY: add APM X-Gene SoC 15Gbps Multi-purpose PHY driver

Loc Ho lho at apm.com
Tue Nov 26 00:46:57 EST 2013


PHY: add APM X-Gene SoC 15Gbps Multi-purpose PHY driver

This patch adds support for APM X-Gene SoC 15Gbps Multi-purpose PHY.
This is the physical layer interface for the corresponding host
controller. This driver uses the new PHY generic framework posted
by Kishon Vijay Abrahm. Currently, only external clock and SATA mode
are supported.

Signed-off-by: Loc Ho <lho at apm.com>
Signed-off-by: Tuan Phan <tphan at apm.com>
Signed-off-by: Suman Tripathi <stripathi at apm.com>
---
 drivers/phy/Kconfig     |    6 +
 drivers/phy/Makefile    |    2 +
 drivers/phy/phy-xgene.c | 1838 +++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 1846 insertions(+), 0 deletions(-)
 create mode 100644 drivers/phy/phy-xgene.c

diff --git a/drivers/phy/Kconfig b/drivers/phy/Kconfig
index a344f3d..577ec1e 100644
--- a/drivers/phy/Kconfig
+++ b/drivers/phy/Kconfig
@@ -51,4 +51,10 @@ config PHY_EXYNOS_DP_VIDEO
 	help
 	  Support for Display Port PHY found on Samsung EXYNOS SoCs.
 
+config PHY_XGENE
+	tristate "APM X-Gene 15Gbps PHY support"
+	depends on ARM64 || COMPILE_TEST
+	help
+	  This option enables support for APM X-Gene SoC multi-purpose PHY.
+
 endmenu
diff --git a/drivers/phy/Makefile b/drivers/phy/Makefile
index d0caae9..56afc18 100644
--- a/drivers/phy/Makefile
+++ b/drivers/phy/Makefile
@@ -7,3 +7,5 @@ obj-$(CONFIG_PHY_EXYNOS_DP_VIDEO)	+= phy-exynos-dp-video.o
 obj-$(CONFIG_PHY_EXYNOS_MIPI_VIDEO)	+= phy-exynos-mipi-video.o
 obj-$(CONFIG_OMAP_USB2)			+= phy-omap-usb2.o
 obj-$(CONFIG_TWL4030_USB)		+= phy-twl4030-usb.o
+obj-$(CONFIG_PHY_XGENE)			+= phy-xgene.o
+
diff --git a/drivers/phy/phy-xgene.c b/drivers/phy/phy-xgene.c
new file mode 100644
index 0000000..9c1b4bc
--- /dev/null
+++ b/drivers/phy/phy-xgene.c
@@ -0,0 +1,1838 @@
+/*
+ * AppliedMicro X-Gene Multi-purpose PHY driver
+ *
+ * Copyright (c) 2013, Applied Micro Circuits Corporation
+ * Author: Loc Ho <lho at apm.com>
+ *         Tuan Phan <tphan at apm.com>
+ *         Suman Tripathi <stripathi at apm.com>
+ *
+ * This program is free software; you can redistribute  it and/or modify it
+ * under  the terms of  the GNU General  Public License as published by the
+ * Free Software Foundation;  either version 2 of the  License, or (at your
+ * option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
+ * The first PLL clock macro is used for internal reference clock. The second
+ * PLL clock macro is used to generate the clock for the PHY. This driver
+ * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
+ * operate according to the mode of operation. The first PLL CMU is only
+ * required if internal clock is enabled.
+ *
+ * Logical Layer Out Of HW module units:
+ *
+ * -----------------
+ * | Internal      |    |------|
+ * | Ref PLL CMU   |----|      |     -------------    ---------
+ * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
+ *                      |      |     |           |    ---------
+ * External Clock ------|      |     -------------
+ *                      |------|
+ *
+ * The Ref PLL CMU CSR (Configureation System Registers) is accessed
+ * indirectly from the SDS offset at 0x2000. It is only required for
+ * internal reference clock.
+ * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
+ * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
+ *
+ * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
+ * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
+ * it is located outside the PHY IP. This is the case for the PHY located
+ * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
+ * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
+ *
+ * Currently, this driver only supports SATA mode with external clock.
+ */
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/delay.h>
+#include <linux/phy/phy.h>
+
+/* PHY with Ref CMU */
+#define XGENE_PHY_DTS			"apm,xgene-phy"
+/* PHY with Ref CMU located outside (external) of the PHY */
+#define XGENE_PHY_EXT_DTS		"apm,xgene-phy-ext"
+
+/* Max 2 lanes per a PHY unit */
+#define MAX_LANE			2
+
+/* Register offset inside the PHY */
+#define SERDES_PLL_INDIRECT_OFFSET	0x0000
+#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
+#define SERDES_INDIRECT_OFFSET		0x0400
+#define SERDES_LANE_STRIDE		0x0200
+
+/* Some default Serdes parameters */
+#define DEFAULT_SATA_TXBOOST_GAIN	0x3
+#define DEFAULT_SATA_TXEYEDIRECTION	0x0
+#define DEFAULT_SATA_TXEYETUNING	0xa
+#define DEFAULT_SATA_SPD_SEL		0x7
+#define DEFAULT_SATA_TXAMP		0xf
+#define DEFAULT_SATA_TXCN1		0x0
+#define DEFAULT_SATA_TXCN2		0x0
+#define DEFAULT_SATA_TXCP1		0xf
+
+#define SATA_SPD_SEL_GEN3		0x7
+#define SATA_SPD_SEL_GEN2		0x3
+#define SATA_SPD_SEL_GEN1		0x1
+
+#define SSC_DISABLE			0
+#define SSC_ENABLE			1
+
+#define FBDIV_VAL_50M			0x77
+#define REFDIV_VAL_50M			0x1
+#define FBDIV_VAL_100M			0x3B
+#define REFDIV_VAL_100M			0x0
+
+/* SATA Clock/Reset CSR */
+#define SATACLKENREG_ADDR		0x00000000
+#define  SATA0_CORE_CLKEN		0x00000002
+#define  SATA1_CORE_CLKEN		0x00000004
+#define SATASRESETREG_ADDR		0x00000004
+#define  SATA_MEM_RESET_MASK		0x00000020
+#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
+#define  SATA_SDS_RESET_MASK		0x00000004
+#define  SATA_CSR_RESET_MASK		0x00000001
+#define  SATA_CORE_RESET_MASK		0x00000002
+#define  SATA_PMCLK_RESET_MASK		0x00000010
+#define  SATA_PCLK_RESET_MASK		0x00000008
+
+/* SDS CSR used for PHY Indirect access */
+#define SATA_ENET_SDS_PCS_CTL0_ADDR		0x00000000
+#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
+		(((dst) & ~0x00070000) | (((u32)(src)<<16) & 0x00070000))
+#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
+		(((dst) & ~0x00e00000) | (((u32)(src)<<21) & 0x00e00000))
+#define SATA_ENET_SDS_CTL0_ADDR			0x0000000c
+#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
+		(((dst) & ~0x00007fff) | (((u32)(src)) & 0x00007fff))
+#define SATA_ENET_SDS_CTL1_ADDR			0x00000010
+#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
+		(((dst) & ~0x0000000f) | (((u32)(src)) & 0x0000000f))
+#define SATA_ENET_SDS_RST_CTL_ADDR		0x00000024
+#define SATA_ENET_SDS_IND_CMD_REG_ADDR		0x0000003c
+#define  CFG_IND_WR_CMD_MASK			0x00000001
+#define  CFG_IND_RD_CMD_MASK			0x00000002
+#define  CFG_IND_CMD_DONE_MASK			0x00000004
+#define  CFG_IND_ADDR_SET(dst, src) \
+		(((dst) & ~0x003ffff0) | (((u32)(src)<<4) & 0x003ffff0))
+#define SATA_ENET_SDS_IND_RDATA_REG_ADDR	0x00000040
+#define SATA_ENET_SDS_IND_WDATA_REG_ADDR	0x00000044
+#define SATA_ENET_CLK_MACRO_REG_ADDR		0x0000004c
+#define  I_RESET_B_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src)) & 0x00000001))
+#define  I_PLL_FBDIV_SET(dst, src) \
+		(((dst) & ~0x001ff000) | (((u32)(src)<<12) & 0x001ff000))
+#define  I_CUSTOMEROV_SET(dst, src) \
+		(((dst) & ~0x00000f80) | (((u32)(src)<<7) & 0x00000f80))
+#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000)>>30)
+#define  O_PLL_READY_RD(src)		(((src) & 0x80000000)>>31)
+
+/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
+#define CMU_REG0_ADDR				0x00000
+#define  CMU_REG0_PLL_REF_SEL_MASK		0x00002000
+#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
+		(((dst) & ~0x00002000) | (((u32)(src) << 0xd) & 0x00002000))
+#define  CMU_REG0_PDOWN_MASK			0x00004000
+#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
+		(((dst) & ~0x000000e0) | (((u32)(src) << 0x5) & 0x000000e0))
+#define CMU_REG1_ADDR				0x00002
+#define  CMU_REG1_PLL_CP_SET(dst, src) \
+		(((dst) & ~0x00003c00) | (((u32)(src) << 0xa) & 0x00003c00))
+#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
+		(((dst) & ~0x000003e0) | (((u32)(src) << 0x5) & 0x000003e0))
+#define  CMU_REG1_REFCLK_CMOS_SEL_MASK		0x00000001
+#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define CMU_REG2_ADDR				0x00004
+#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
+		(((dst) & ~0x0000001e) | (((u32)(src) << 0x1) & 0x0000001e))
+#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
+		(((dst) & ~0x00003fe0) | (((u32)(src) << 0x5) & 0x00003fe0))
+#define CMU_REG3_ADDR				0x00006
+#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
+		(((dst) & ~0x0000000f) | (((u32)(src) << 0x0) & 0x0000000f))
+#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define CMU_REG4_ADDR				0x00008
+#define CMU_REG5_ADDR				0x0000a
+#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
+		(((dst) & ~0x0000000e) | (((u32)(src) << 0x1) & 0x0000000e))
+#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
+		(((dst) & ~0x00003000) | (((u32)(src) << 0xc) & 0x00003000))
+#define  CMU_REG5_PLL_RESETB_MASK		0x00000001
+#define CMU_REG6_ADDR				0x0000c
+#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
+		(((dst) & ~0x00000600) | (((u32)(src) << 0x9) & 0x00000600))
+#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define CMU_REG7_ADDR				0x0000e
+#define  CMU_REG7_PLL_CALIB_DONE_RD(src) \
+		((0x00004000 & (u32)(src)) >> 0xe)
+#define  CMU_REG7_VCO_CAL_FAIL_RD(src) \
+		((0x00000c00 & (u32)(src)) >> 0xa)
+#define CMU_REG8_ADDR				0x00010
+#define CMU_REG9_ADDR				0x00012
+#define  CMU_REG9_WORD_LEN_8BIT			0x000
+#define  CMU_REG9_WORD_LEN_10BIT		0x001
+#define  CMU_REG9_WORD_LEN_16BIT		0x002
+#define  CMU_REG9_WORD_LEN_20BIT		0x003
+#define  CMU_REG9_WORD_LEN_32BIT		0x004
+#define  CMU_REG9_WORD_LEN_40BIT		0x005
+#define  CMU_REG9_WORD_LEN_64BIT		0x006
+#define  CMU_REG9_WORD_LEN_66BIT		0x007
+#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
+		(((dst) & ~0x00000380) | (((u32)(src) << 0x7) & 0x00000380))
+#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
+		(((dst) & ~0x00000070) | (((u32)(src) << 0x4) & 0x00000070))
+#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define CMU_REG10_ADDR				0x00014
+#define CMU_REG11_ADDR				0x00016
+#define CMU_REG12_ADDR				0x00018
+#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
+		(((dst) & ~0x000000f0) | (((u32)(src) << 0x4) & 0x000000f0))
+#define CMU_REG13_ADDR				0x0001a
+#define CMU_REG14_ADDR				0x0001c
+#define CMU_REG15_ADDR				0x0001e
+#define CMU_REG16_ADDR				0x00020
+#define  CMU_REG16_PVT_DN_MAN_ENA_MASK		0x00000001
+#define  CMU_REG16_PVT_UP_MAN_ENA_MASK		0x00000002
+#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
+		(((dst) & ~0x0000001c) | (((u32)(src) << 0x2) & 0x0000001c))
+#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
+		(((dst) & ~0x00000020) | (((u32)(src) << 0x5) & 0x00000020))
+#define CMU_REG17_ADDR				0x00022
+#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
+		(((dst) & ~0x00007f00) | (((u32)(src) << 0x8) & 0x00007f00))
+#define  CMU_REG17_RESERVED_7_SET(dst, src) \
+		(((dst) & ~0x000000e0) | (((u32)(src) << 0x5) & 0x000000e0))
+#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK			0x00008000
+#define CMU_REG18_ADDR				0x00024
+#define CMU_REG19_ADDR				0x00026
+#define CMU_REG20_ADDR				0x00028
+#define CMU_REG21_ADDR				0x0002a
+#define CMU_REG22_ADDR				0x0002c
+#define CMU_REG23_ADDR				0x0002e
+#define CMU_REG24_ADDR				0x00030
+#define CMU_REG25_ADDR				0x00032
+#define CMU_REG26_ADDR				0x00034
+#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define CMU_REG27_ADDR				0x00036
+#define CMU_REG28_ADDR				0x00038
+#define CMU_REG29_ADDR				0x0003a
+#define CMU_REG30_ADDR				0x0003c
+#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
+		(((dst) & ~0x00000006) | (((u32)(src) << 0x1) & 0x00000006))
+#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define CMU_REG31_ADDR				0x0003e
+#define CMU_REG32_ADDR				0x00040
+#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
+#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
+		(((dst) & ~0x00000006) | (((u32)(src) << 0x1) & 0x00000006))
+#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
+		(((dst) & ~0x00000180) | (((u32)(src) << 0x7) & 0x00000180))
+#define CMU_REG33_ADDR				0x00042
+#define CMU_REG34_ADDR				0x00044
+#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
+		(((dst) & ~0x0000000f) | (((u32)(src) << 0x0) & 0x0000000f))
+#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
+		(((dst) & ~0x00000f00) | (((u32)(src) << 0x8) & 0x00000f00))
+#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
+		(((dst) & ~0x000000f0) | (((u32)(src) << 0x4) & 0x000000f0))
+#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
+		(((dst) & ~0x0000f000) | (((u32)(src) << 0xc) & 0x0000f000))
+#define CMU_REG35_ADDR				0x00046
+#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
+		(((dst) & ~0x0000fe00) | (((u32)(src) << 0x9) & 0x0000fe00))
+#define CMU_REG36_ADDR				0x00048
+#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
+		(((dst) & ~0x00000010) | (((u32)(src) << 0x4) & 0x00000010))
+#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
+		(((dst) & ~0x0000ffc0) | (((u32)(src) << 0x6) & 0x0000ffc0))
+#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
+		(((dst) & ~0x00000020) | (((u32)(src) << 0x5) & 0x00000020))
+#define CMU_REG37_ADDR				0x0004a
+#define CMU_REG38_ADDR				0x0004c
+#define CMU_REG39_ADDR				0x0004e
+
+/* PHY lane CSR accessing from SDS indirectly */
+#define RXTX_REG0_ADDR				0x000
+#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG1_ADDR				0x002
+#define  RXTX_REG1_RXACVCM_SET(dst, src) \
+		(((dst) & ~0x0000f000) | (((u32)(src) << 0xc) & 0x0000f000))
+#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
+		(((dst) & ~0x00000f80) | (((u32)(src) << 0x7) & 0x00000f80))
+#define RXTX_REG2_ADDR				0x004
+#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
+		(((dst) & ~0x00000020) | (((u32)(src) << 0x5) & 0x00000020))
+#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
+		(((dst) & ~0x000000c0) | (((u32)(src) << 0x6) & 0x000000c0))
+#define RXTX_REG4_ADDR				0x008
+#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
+#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define RXTX_REG5_ADDR				0x00a
+#define  RXTX_REG5_TX_CN1_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG5_TX_CP1_SET(dst, src) \
+		(((dst) & ~0x000007e0) | (((u32)(src) << 0x5) & 0x000007e0))
+#define  RXTX_REG5_TX_CN2_SET(dst, src) \
+		(((dst) & ~0x0000001f) | (((u32)(src) << 0x0) & 0x0000001f))
+#define RXTX_REG6_ADDR				0x00c
+#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
+		(((dst) & ~0x00000780) | (((u32)(src) << 0x7) & 0x00000780))
+#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define RXTX_REG7_ADDR				0x00e
+#define  RXTX_REG7_RESETB_RXD_MASK		0x00000100
+#define  RXTX_REG7_RESETB_RXA_MASK		0x00000080
+#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define RXTX_REG8_ADDR				0x010
+#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
+		(((dst) & ~0x00004000) | (((u32)(src) << 0xe) & 0x00004000))
+#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
+		(((dst) & ~0x00000800) | (((u32)(src) << 0xb) & 0x00000800))
+#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
+		(((dst) & ~0x00000200) | (((u32)(src) << 0x9) & 0x00000200))
+#define  RXTX_REG8_SD_VREF_SET(dst, src) \
+		(((dst) & ~0x000000f0) | (((u32)(src) << 0x4) & 0x000000f0))
+#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define RXTX_REG7_ADDR				0x00e
+#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
+		(((dst) & ~0x00000080) | (((u32)(src) << 0x7) & 0x00000080))
+#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
+#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
+		(((dst) & ~0x00004000) | (((u32)(src) << 0xe) & 0x00004000))
+#define RXTX_REG11_ADDR				0x016
+#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define RXTX_REG12_ADDR				0x018
+#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
+		(((dst) & ~0x00002000) | (((u32)(src) << 0xd) & 0x00002000))
+#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
+#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define RXTX_REG13_ADDR				0x01a
+#define RXTX_REG14_ADDR				0x01c
+#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
+		(((dst) & ~0x0000003f) | (((u32)(src) << 0x0) & 0x0000003f))
+#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define RXTX_REG26_ADDR				0x034
+#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define RXTX_REG21_ADDR				0x02a
+#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) \
+		((0x0000000f & (u32)(src)))
+#define RXTX_REG22_ADDR				0x02c
+#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) \
+		((0x0000000f & (u32)(src)))
+#define RXTX_REG23_ADDR				0x02e
+#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define RXTX_REG24_ADDR				0x030
+#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define RXTX_REG27_ADDR				0x036
+#define RXTX_REG28_ADDR				0x038
+#define RXTX_REG31_ADDR				0x03e
+#define RXTX_REG38_ADDR				0x04c
+#define RXTX_REG39_ADDR				0x04e
+#define RXTX_REG40_ADDR				0x050
+#define RXTX_REG41_ADDR				0x052
+#define RXTX_REG42_ADDR				0x054
+#define RXTX_REG43_ADDR				0x056
+#define RXTX_REG44_ADDR				0x058
+#define RXTX_REG45_ADDR				0x05a
+#define RXTX_REG46_ADDR				0x05c
+#define RXTX_REG47_ADDR				0x05e
+#define RXTX_REG48_ADDR				0x060
+#define RXTX_REG49_ADDR				0x062
+#define RXTX_REG50_ADDR				0x064
+#define RXTX_REG51_ADDR				0x066
+#define RXTX_REG52_ADDR				0x068
+#define RXTX_REG53_ADDR				0x06a
+#define RXTX_REG54_ADDR				0x06c
+#define RXTX_REG55_ADDR				0x06e
+#define RXTX_REG61_ADDR				0x07a
+#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
+		(((dst) & ~0x00000010) | (((u32)(src) << 0x4) & 0x00000010))
+#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
+		(((dst) & ~0x000000c0) | (((u32)(src) << 0x6) & 0x000000c0))
+#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
+		(((dst) & ~0x00003c00) | (((u32)(src) << 0xa) & 0x00003c00))
+#define RXTX_REG62_ADDR				0x07c
+#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define RXTX_REG81_ADDR				0x0a2
+#define  RXTX_REG89_MU_TH7_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG89_MU_TH8_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG89_MU_TH9_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG96_ADDR				0x0c0
+#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG99_ADDR				0x0c6
+#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG102_ADDR			0x0cc
+#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
+		(((dst) & ~0x00000060) | (((u32)(src) << 0x5) & 0x00000060))
+#define RXTX_REG114_ADDR			0x0e4
+#define RXTX_REG121_ADDR			0x0f2
+#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) \
+		((0x0000003e & (u32)(src)) >> 0x1)
+#define RXTX_REG125_ADDR			0x0fa
+#define  RXTX_REG125_PQ_REG_SET(dst, src) \
+		(((dst) & ~0x0000fe00) | (((u32)(src) << 0x9) & 0x0000fe00))
+#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
+		(((dst) & ~0x00000080) | (((u32)(src) << 0x7) & 0x00000080))
+#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
+		(((dst) & ~0x0000007c) | (((u32)(src) << 0x2) & 0x0000007c))
+#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define RXTX_REG127_ADDR			0x0fe
+#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
+#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
+#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG128_ADDR			0x100
+#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
+		(((dst) & ~0x0000000c) | (((u32)(src) << 0x2) & 0x0000000c))
+#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG129_ADDR			0x102
+#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG130_ADDR			0x104
+#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG145_ADDR			0x122
+#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define RXTX_REG147_ADDR			0x126
+#define RXTX_REG148_ADDR			0x128
+
+/* Clock macro type */
+enum cmu_type_t {
+	REF_CMU = 0,	/* Clock macro is the internal reference clock */
+	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
+};
+
+enum mux_type_t {
+	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
+	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
+};
+
+enum clk_type_t {
+	CLK_EXT_DIFF = 0,	/* External differential */
+	CLK_INT_DIFF = 1,	/* Internal differential */
+	CLK_INT_SING = 2,	/* Internal single ended */
+};
+
+enum phy_mode {
+	MODE_SATA	= 0,	/* List them for simple reference */
+	MODE_SGMII	= 1,
+	MODE_PCIE	= 2,
+	MODE_USB	= 3,
+	MODE_MAX
+};
+
+struct xgene_sata_override_param {
+	u32 speed[MAX_LANE]; /* Index for override parameter per channel */
+	u32 txspeed[3]; 		/* Tx speed */
+	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
+	u32 txeyetuning[MAX_LANE*3]; 	/* Tx eye tuning */
+	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
+	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
+	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
+	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
+	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
+};
+
+struct xgene_phy_ctx {
+	struct device *dev;
+	struct phy *phy;
+	enum phy_mode mode;	/* Mode of operation */
+	void __iomem *sds_base;	/* PHY CSR base addr */
+	void __iomem *clk_base;	/* PHY clock CSR base addr */
+	void __iomem *ext_cmu_base; /* PHY SDS/Ref PLL CMU external */
+
+	/* Override Serdes parameters */
+	struct xgene_sata_override_param sata_param;
+};
+
+/* Manual calibration is required for chip that is earlier than A3.
+   To enable, pass boot argument phy_xgene.manual=1 */
+static int enable_manual_cal;
+MODULE_PARM_DESC(manual, "Enable manual calibration (1=enable 0=disable)");
+module_param_named(manual, enable_manual_cal, int, 0444);
+
+static void phy_rd(void *addr, u32 *val)
+{
+	*val = readl(addr);
+	pr_debug("PHY CSR RD: 0x%p value: 0x%08x\n", addr, *val);
+}
+
+static void phy_wr(void *addr, u32 val)
+{
+	writel(val, addr);
+	pr_debug("PHY CSR WR: 0x%p value: 0x%08x\n", addr, val);
+}
+
+static void phy_wr_flush(void *addr, u32 val)
+{
+	writel(val, addr);
+	pr_debug("PHY CSR WR: 0x%p value: 0x%08x\n", addr, val);
+	val = readl(addr);	/* Force a barrier */
+}
+
+static void sds_wr(void *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg,
+	u32 addr, u32 data)
+{
+	u32 val;
+	u32 cmd;
+
+	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
+	cmd = CFG_IND_ADDR_SET(cmd, addr);
+	phy_wr_flush(csr_base + indirect_data_reg, data);
+	phy_wr_flush(csr_base + indirect_cmd_reg, cmd);
+	do {
+		phy_rd(csr_base + indirect_cmd_reg, &val);
+	} while (!(val & CFG_IND_CMD_DONE_MASK));
+}
+
+static void sds_rd(void *csr_base, u32 indirect_cmd_reg,
+	u32 indirect_data_reg, u32 addr, u32 *data)
+{
+	u32 val;
+	u32 cmd;
+
+	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
+	cmd = CFG_IND_ADDR_SET(cmd, addr);
+	phy_wr_flush(csr_base + indirect_cmd_reg, cmd);
+	do {
+		phy_rd(csr_base + indirect_cmd_reg, &val);
+	} while (!(val & CFG_IND_CMD_DONE_MASK));
+	phy_rd(csr_base + indirect_data_reg, data);
+}
+
+static void cmu_wr(void *csr_base, enum cmu_type_t cmu_type, u32 reg,
+	u32 data)
+{
+	u32 val;
+
+	if (cmu_type == REF_CMU)
+		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
+	else
+		reg += SERDES_PLL_INDIRECT_OFFSET;
+	sds_wr(csr_base, SATA_ENET_SDS_IND_CMD_REG_ADDR,
+		SATA_ENET_SDS_IND_WDATA_REG_ADDR, reg, data);
+	sds_rd(csr_base, SATA_ENET_SDS_IND_CMD_REG_ADDR,
+		SATA_ENET_SDS_IND_RDATA_REG_ADDR, reg, &val);
+	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
+}
+
+static void cmu_rd(void *csr_base, enum cmu_type_t cmu_type, u32 reg,
+	u32 *data)
+{
+	if (cmu_type == REF_CMU)
+		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
+	else
+		reg += SERDES_PLL_INDIRECT_OFFSET;
+	sds_rd(csr_base, SATA_ENET_SDS_IND_CMD_REG_ADDR,
+		SATA_ENET_SDS_IND_RDATA_REG_ADDR, reg, data);
+	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
+}
+
+static void cmu_toggle1to0(void *csr_base, enum cmu_type_t cmu_type, u32 reg,
+	u32 bits)
+{
+	u32 val;
+
+	cmu_rd(csr_base, cmu_type, reg, &val);
+	val |= bits;
+	cmu_wr(csr_base, cmu_type, reg, val);
+	cmu_rd(csr_base, cmu_type, reg, &val);
+	val &= ~bits;
+	cmu_wr(csr_base, cmu_type, reg, val);
+}
+
+static void cmu_clrbits(void *csr_base, enum cmu_type_t cmu_type, u32 reg,
+	u32 bits)
+{
+	u32 val;
+
+	cmu_rd(csr_base, cmu_type, reg, &val);
+	val &= ~bits;
+	cmu_wr(csr_base, cmu_type, reg, val);
+}
+
+static void cmu_setbits(void *csr_base, enum cmu_type_t cmu_type, u32 reg,
+	u32 bits)
+{
+	u32 val;
+
+	cmu_rd(csr_base, cmu_type, reg, &val);
+	val |= bits;
+	cmu_wr(csr_base, cmu_type, reg, val);
+}
+
+static void serdes_wr(void *csr_base, int lane, u32 reg, u32 data)
+{
+	u32 val;
+
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	sds_wr(csr_base, SATA_ENET_SDS_IND_CMD_REG_ADDR,
+		SATA_ENET_SDS_IND_WDATA_REG_ADDR, reg, data);
+	sds_rd(csr_base, SATA_ENET_SDS_IND_CMD_REG_ADDR,
+		SATA_ENET_SDS_IND_RDATA_REG_ADDR, reg, &val);
+	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
+		 val);
+}
+
+static void serdes_rd(void *csr_base, int lane, u32 reg, u32 *data)
+{
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	sds_rd(csr_base, SATA_ENET_SDS_IND_CMD_REG_ADDR,
+		SATA_ENET_SDS_IND_RDATA_REG_ADDR, reg, data);
+	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
+}
+
+static void serdes_toggle1to0(void *csr_base, int lane, u32 reg, u32 bits)
+{
+	u32 val;
+
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	serdes_rd(csr_base, lane, reg, &val);
+	val |= bits;
+	serdes_wr(csr_base, lane, reg, val);
+	serdes_rd(csr_base, lane, reg, &val);
+	val &= ~bits;
+	serdes_wr(csr_base, lane, reg, val);
+}
+
+static void serdes_clrbits(void *csr_base, int lane, u32 reg, u32 bits)
+{
+	u32 val;
+
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	serdes_rd(csr_base, lane, reg, &val);
+	val &= ~bits;
+	serdes_wr(csr_base, lane, reg, val);
+}
+
+static void serdes_setbits(void *csr_base, int lane, u32 reg, u32 bits)
+{
+	u32 val;
+
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	serdes_rd(csr_base, lane, reg, &val);
+	val |= bits;
+	serdes_wr(csr_base, lane, reg, val);
+}
+
+static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
+	enum cmu_type_t cmu_type, enum clk_type_t clk_type)
+{
+	void *sds_base = ctx->sds_base;
+	u32 val;
+
+	/* Set the reset sequence delay for TX ready assertion */
+	cmu_rd(sds_base, cmu_type, CMU_REG12_ADDR, &val);
+	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
+	cmu_wr(sds_base, cmu_type, CMU_REG12_ADDR, val);
+	/* Set the programmable stage delays between various enable stages */
+	cmu_wr(sds_base, cmu_type, CMU_REG13_ADDR, 0xF222);
+	cmu_wr(sds_base, cmu_type, CMU_REG14_ADDR, 0x2225);
+
+	/* Configure clock type */
+	if (clk_type == CLK_EXT_DIFF) {
+		/* Select external clock mux */
+		cmu_rd(sds_base, cmu_type, CMU_REG0_ADDR, &val);
+		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
+		cmu_wr(sds_base, cmu_type, CMU_REG0_ADDR, val);
+		/* Select CMOS as reference clock  */
+		cmu_rd(sds_base, cmu_type, CMU_REG1_ADDR, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
+		cmu_wr(sds_base, cmu_type, CMU_REG1_ADDR, val);
+		dev_dbg(ctx->dev, "Set external reference clock\n");
+	} else if (clk_type == CLK_INT_DIFF) {
+		/* Select internal clock mux */
+		cmu_rd(sds_base, cmu_type, CMU_REG0_ADDR, &val);
+		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
+		cmu_wr(sds_base, cmu_type, CMU_REG0_ADDR, val);
+		/* Select CMOS as reference clock  */
+		cmu_rd(sds_base, cmu_type, CMU_REG1_ADDR, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
+		cmu_wr(sds_base, cmu_type, CMU_REG1_ADDR, val);
+		dev_dbg(ctx->dev, "Set internal reference clock\n");
+	} else if (clk_type == CLK_INT_SING) {
+		/* NOTE: This clock type is NOT support for controller
+			 whose internal clock shared in the PCIe controller */
+		/* Select internal clock mux */
+		cmu_rd(sds_base, cmu_type, CMU_REG1_ADDR, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
+		cmu_wr(sds_base, cmu_type, CMU_REG1_ADDR, val);
+		/* Select CML as reference clock */
+		cmu_rd(sds_base, cmu_type, CMU_REG1_ADDR, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
+		cmu_wr(sds_base, cmu_type, CMU_REG1_ADDR, val);
+		dev_dbg(ctx->dev,
+			"Set internal single ended reference clock\n");
+	}
+}
+
+static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
+	enum cmu_type_t cmu_type, enum clk_type_t clk_type)
+{
+	void *sds_base;
+	u32 val;
+
+	if (cmu_type == REF_CMU && ctx->ext_cmu_base &&
+	    (clk_type == CLK_INT_DIFF || clk_type == CLK_INT_SING))
+		/* Reference CMU out side of the IP */
+		sds_base = ctx->ext_cmu_base;
+	else
+		sds_base = ctx->sds_base;
+
+	if (cmu_type == REF_CMU) {
+		/* Set VCO calibration voltage threshold */
+		cmu_rd(sds_base, cmu_type, CMU_REG34_ADDR, &val);
+		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
+		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xd);
+		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x2);
+		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
+		cmu_wr(sds_base, cmu_type, CMU_REG34_ADDR, val);
+	}
+
+	/* Set the VCO calibration counter */
+	cmu_rd(sds_base, cmu_type, CMU_REG0_ADDR, &val);
+	val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
+	cmu_wr(sds_base, cmu_type, CMU_REG0_ADDR, val);
+
+	/* Configure PLL for calibration */
+	cmu_rd(sds_base, cmu_type, CMU_REG1_ADDR, &val);
+	val = CMU_REG1_PLL_CP_SET(val, 0x1);
+	val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
+	val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
+	cmu_wr(sds_base, cmu_type, CMU_REG1_ADDR, val);
+
+	/* Configure the PLL for either 100MHz or 50MHz */
+	cmu_rd(sds_base, cmu_type, CMU_REG2_ADDR, &val);
+	val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
+	if (clk_type == CLK_INT_DIFF || clk_type == CLK_INT_SING) {
+		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
+		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
+	} else {
+		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
+		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
+	}
+	cmu_wr(sds_base, cmu_type, CMU_REG2_ADDR, val);
+
+	/* Configure the VCO */
+	cmu_rd(sds_base, cmu_type, CMU_REG3_ADDR, &val);
+	if (cmu_type == REF_CMU) {
+		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
+		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
+	} else {
+		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
+		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
+		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
+	}
+	cmu_wr(sds_base, cmu_type, CMU_REG3_ADDR, val);
+
+	/* Disable force PLL lock */
+	cmu_rd(sds_base, cmu_type, CMU_REG26_ADDR, &val);
+	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
+	cmu_wr(sds_base, cmu_type, CMU_REG26_ADDR, val);
+
+	/* Setup PLL loop filter */
+	cmu_rd(sds_base, cmu_type, CMU_REG5_ADDR, &val);
+	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
+	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
+	if (cmu_type == REF_CMU)
+		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
+	else
+		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
+	cmu_wr(sds_base, cmu_type, CMU_REG5_ADDR, val);
+
+	/* Enable or disable manual calibration */
+	cmu_rd(sds_base, cmu_type, CMU_REG6_ADDR, &val);
+	val = CMU_REG6_PLL_VREGTRIM_SET(val, 0x0);
+	val = CMU_REG6_MAN_PVT_CAL_SET(val, enable_manual_cal ? 0x1 : 0x0);
+	cmu_wr(sds_base, cmu_type, CMU_REG6_ADDR, val);
+
+	/* Configure lane for 20-bits */
+	if (cmu_type == PHY_CMU) {
+		cmu_rd(sds_base, cmu_type, CMU_REG9_ADDR, &val);
+		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
+			CMU_REG9_WORD_LEN_20BIT);
+		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
+			CMU_REG9_WORD_LEN_20BIT);
+		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
+		cmu_wr(sds_base, cmu_type, CMU_REG9_ADDR, val);
+	}
+
+	cmu_rd(sds_base, cmu_type, CMU_REG16_ADDR, &val);
+	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
+	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
+	val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
+	cmu_wr(sds_base, cmu_type, CMU_REG16_ADDR, val);
+
+	/* Configure for SATA */
+	cmu_rd(sds_base, cmu_type, CMU_REG30_ADDR, &val);
+	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
+	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
+	cmu_wr(sds_base, cmu_type, CMU_REG30_ADDR, val);
+
+	/* Disable state machine bypass */
+	cmu_wr(sds_base, cmu_type, CMU_REG31_ADDR, 0xF);
+
+	cmu_rd(sds_base, cmu_type, CMU_REG32_ADDR, &val);
+	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
+	val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
+	cmu_wr(sds_base, cmu_type, CMU_REG32_ADDR, val);
+
+	/* Set VCO calibration threshold */
+	cmu_wr(sds_base, cmu_type, CMU_REG34_ADDR, 0x8d27);
+
+	/* Set CTLE Override and override waiting from state machine */
+	cmu_wr(sds_base, cmu_type, CMU_REG37_ADDR, 0xF00F);
+}
+
+static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
+				enum cmu_type_t cmu_type)
+{
+	void *sds_base = ctx->sds_base;
+	u32 val;
+
+	/* Set SSC modulation value */
+	cmu_rd(sds_base, cmu_type, CMU_REG35_ADDR, &val);
+	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
+	cmu_wr(sds_base, cmu_type, CMU_REG35_ADDR, val);
+
+	/* Enable SSC, set vertical step and DSM value */
+	cmu_rd(sds_base, cmu_type, CMU_REG36_ADDR, &val);
+	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
+	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
+	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
+	cmu_wr(sds_base, cmu_type, CMU_REG36_ADDR, val);
+
+	/* Reset the PLL */
+	cmu_clrbits(sds_base, cmu_type, CMU_REG5_ADDR,
+		    CMU_REG5_PLL_RESETB_MASK);
+	cmu_setbits(sds_base, cmu_type, CMU_REG5_ADDR,
+		    CMU_REG5_PLL_RESETB_MASK);
+
+	/* Force VCO calibration to restart */
+	cmu_toggle1to0(sds_base, cmu_type, CMU_REG32_ADDR,
+		       CMU_REG32_FORCE_VCOCAL_START_MASK);
+}
+
+static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
+{
+	void *sds_base = ctx->sds_base;
+	u32 val;
+	u32 reg;
+	int i;
+	int lane;
+
+	for (lane = 0; lane < MAX_LANE; lane++) {
+		serdes_wr(sds_base, lane, RXTX_REG147_ADDR, 0x6);
+
+		/* Set boost control for quarter, half, and full rate */
+		serdes_rd(sds_base, lane, RXTX_REG0_ADDR, &val);
+		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
+		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
+		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
+		serdes_wr(sds_base, lane, RXTX_REG0_ADDR, val);
+
+		/* Set boost control value */
+		serdes_rd(sds_base, lane, RXTX_REG1_ADDR, &val);
+		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
+		val = RXTX_REG1_CTLE_EQ_SET(val,
+			ctx->sata_param.txboostgain[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		serdes_wr(sds_base, lane, RXTX_REG1_ADDR, val);
+
+		/* Latch VTT value based on the termination to ground and
+		   enable TX FIFO */
+		serdes_rd(sds_base, lane, RXTX_REG2_ADDR, &val);
+		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
+		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
+		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
+		serdes_wr(sds_base, lane, RXTX_REG2_ADDR, val);
+
+		/* Configure Tx for 20-bits */
+		serdes_rd(sds_base, lane, RXTX_REG4_ADDR, &val);
+		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
+		serdes_wr(sds_base, lane, RXTX_REG4_ADDR, val);
+
+		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
+		serdes_rd(sds_base, lane, RXTX_REG5_ADDR, &val);
+		val = RXTX_REG5_TX_CN1_SET(val,
+			ctx->sata_param.txprecursor_cn1[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG5_TX_CP1_SET(val,
+			ctx->sata_param.txpostcursor_cp1[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG5_TX_CN2_SET(val,
+			ctx->sata_param.txprecursor_cn2[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		serdes_wr(sds_base, lane, RXTX_REG5_ADDR, val);
+
+		/* Set TX amplitude value */
+		serdes_rd(sds_base, lane, RXTX_REG6_ADDR, &val);
+		val = RXTX_REG6_TXAMP_CNTL_SET(val,
+			ctx->sata_param.txamplitude[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
+		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
+		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
+		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG6_ADDR, val);
+
+		/* Configure Rx for 20-bits */
+		serdes_rd(sds_base, lane, RXTX_REG7_ADDR, &val);
+		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
+		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
+		serdes_wr(sds_base, lane, RXTX_REG7_ADDR, val);
+
+		/* Set CDR and LOS values and enable Rx SSC */
+		serdes_rd(sds_base, lane, RXTX_REG8_ADDR, &val);
+		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
+		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
+		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
+		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
+		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
+		serdes_wr(sds_base, lane, RXTX_REG8_ADDR, val);
+
+		/* Set phase adjust upper/lower limits */
+		serdes_rd(sds_base, lane, RXTX_REG11_ADDR, &val);
+		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG11_ADDR, val);
+
+		/* Enable Latch Off; disable SUMOS and Tx termination */
+		serdes_rd(sds_base, lane, RXTX_REG12_ADDR, &val);
+		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
+		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
+		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG12_ADDR, val);
+
+		/* Set period error latch to 512T and enable BWL */
+		serdes_rd(sds_base, lane, RXTX_REG26_ADDR, &val);
+		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
+		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
+		serdes_wr(sds_base, lane, RXTX_REG26_ADDR, val);
+
+		serdes_wr(sds_base, lane, RXTX_REG28_ADDR, 0x0);
+
+		/* Set DFE loop preset value */
+		serdes_wr(sds_base, lane, RXTX_REG31_ADDR, 0x0);
+
+		/* Set Eye Monitor counter width to 12-bit */
+		serdes_rd(sds_base, lane, RXTX_REG61_ADDR, &val);
+		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
+		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
+		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG61_ADDR, val);
+
+		serdes_rd(sds_base, lane, RXTX_REG62_ADDR, &val);
+		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG62_ADDR, val);
+
+		/* Set BW select tap X for DFE loop */
+		for (i = 0; i < 9; i++) {
+			reg = RXTX_REG81_ADDR + i * 2;
+			serdes_rd(sds_base, lane, reg, &val);
+			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
+			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
+			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
+			serdes_wr(sds_base, lane, reg, val);
+		}
+
+		/* Set BW select tap X for frequency adjust loop */
+		for (i = 0; i < 3; i++) {
+			reg = RXTX_REG96_ADDR + i * 2;
+			serdes_rd(sds_base, lane, reg, &val);
+			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
+			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
+			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
+			serdes_wr(sds_base, lane, reg, val);
+		}
+
+		/* Set BW select tap X for phase adjust loop */
+		for (i = 0; i < 3; i++) {
+			reg = RXTX_REG99_ADDR + i * 2;
+			serdes_rd(sds_base, lane, reg, &val);
+			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
+			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
+			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
+			serdes_wr(sds_base, lane, reg, val);
+		}
+
+		serdes_rd(sds_base, lane, RXTX_REG102_ADDR, &val);
+		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG102_ADDR, val);
+
+		serdes_wr(sds_base, lane, RXTX_REG114_ADDR, 0xffe0);
+
+		serdes_rd(sds_base, lane, RXTX_REG125_ADDR, &val);
+		val = RXTX_REG125_SIGN_PQ_SET(val,
+			ctx->sata_param.txeyedirection[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG125_PQ_REG_SET(val,
+			ctx->sata_param.txeyetuning[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
+		serdes_wr(sds_base, lane, RXTX_REG125_ADDR, val);
+
+		serdes_rd(sds_base, lane, RXTX_REG127_ADDR, &val);
+		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
+		serdes_wr(sds_base, lane, RXTX_REG127_ADDR, val);
+
+		serdes_rd(sds_base, lane, RXTX_REG128_ADDR, &val);
+		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
+		serdes_wr(sds_base, lane, RXTX_REG128_ADDR, val);
+
+		serdes_rd(sds_base, lane, RXTX_REG145_ADDR, &val);
+		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
+		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
+		val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
+		val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
+		serdes_wr(sds_base, lane, RXTX_REG145_ADDR, val);
+
+		/* Set Rx LOS filter clock rate, sample rate, and threshold
+		   windows */
+		for (i = 0; i < 4; i++) {
+			reg = RXTX_REG148_ADDR + i * 2;
+			serdes_wr(sds_base, lane, reg, 0xFFFF);
+		}
+	}
+}
+
+static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
+	enum cmu_type_t cmu_type, enum clk_type_t clk_type)
+{
+	void *csr_serdes;
+	int loop;
+	u32 val;
+
+	if (cmu_type == REF_CMU && ctx->ext_cmu_base &&
+	    (clk_type == CLK_INT_DIFF || clk_type == CLK_INT_SING))
+		/* Ref CMU is located outside the IP */
+		csr_serdes = ctx->ext_cmu_base;
+	else
+		csr_serdes = ctx->sds_base;
+
+	/* Release PHY main reset */
+	phy_wr_flush(csr_serdes + SATA_ENET_SDS_RST_CTL_ADDR, 0x000000DF);
+
+	if (!enable_manual_cal)
+		goto skip_manual_cal;
+
+	/* Configure the termination resister calibration
+	 * The serial receive pins, RXP/RXN, have TERMination resistor
+         *  that is required to be calibrated.
+	 */
+	cmu_rd(csr_serdes, cmu_type, CMU_REG17_ADDR, &val);
+	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
+	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
+	cmu_wr(csr_serdes, cmu_type, CMU_REG17_ADDR, val);
+	cmu_toggle1to0(csr_serdes, cmu_type, CMU_REG17_ADDR,
+		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
+	/* The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
+         * resistors that are required to the calibrated.
+	 * Configure the DOWN calibration
+	 */
+	cmu_rd(csr_serdes, cmu_type, CMU_REG17_ADDR, &val);
+	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
+	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
+	cmu_wr(csr_serdes, cmu_type, CMU_REG17_ADDR, val);
+	cmu_toggle1to0(csr_serdes, cmu_type, CMU_REG16_ADDR,
+		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
+	/* Configure the UP calibration */
+	cmu_rd(csr_serdes, cmu_type, CMU_REG17_ADDR, &val);
+	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
+	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
+	cmu_wr(csr_serdes, cmu_type, CMU_REG17_ADDR, val);
+	cmu_toggle1to0(csr_serdes, cmu_type, CMU_REG16_ADDR,
+		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
+
+skip_manual_cal:
+	/* Poll the PLL calibration completion status for at least 10 ms */
+	loop = 10000;
+	do {
+		cmu_rd(csr_serdes, cmu_type, CMU_REG7_ADDR, &val);
+		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
+			break;
+		usleep_range(1, 20);
+	} while (--loop > 0);
+
+	cmu_rd(csr_serdes, cmu_type, CMU_REG7_ADDR, &val);
+	dev_dbg(ctx->dev, "PLL calibration %s\n",
+		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
+	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
+		dev_err(ctx->dev,
+			"PLL calibration failed due to VCO failure\n");
+		return -1;
+	}
+	dev_dbg(ctx->dev, "PLL calibration successful\n");
+
+	cmu_rd(csr_serdes, cmu_type, CMU_REG15_ADDR, &val);
+	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
+	return 0;
+}
+
+static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
+	enum cmu_type_t cmu_type, enum clk_type_t clk_type)
+{
+	void *csr_serdes;
+	u32 val;
+
+	if (cmu_type == REF_CMU && ctx->ext_cmu_base &&
+	    (clk_type == CLK_INT_DIFF || clk_type == CLK_INT_SING))
+		/* Ref CMU is located outside the IP */
+		csr_serdes = ctx->ext_cmu_base;
+	else
+		csr_serdes = ctx->sds_base;
+
+	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
+
+	if (cmu_type == PHY_CMU) {
+		cmu_rd(csr_serdes, cmu_type, CMU_REG16_ADDR, &val);
+		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x5);
+		cmu_wr(csr_serdes, cmu_type, CMU_REG16_ADDR, val);
+	}
+
+	cmu_toggle1to0(csr_serdes, cmu_type, CMU_REG0_ADDR,
+		       CMU_REG0_PDOWN_MASK);
+	cmu_toggle1to0(csr_serdes, cmu_type, CMU_REG32_ADDR,
+		       CMU_REG32_FORCE_VCOCAL_START_MASK);
+}
+
+static void xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
+	enum clk_type_t clk_type, int ssc_enable)
+{
+	void *sds_base = ctx->sds_base;
+	u32 val;
+
+	/* Set the operation speed */
+	phy_rd(sds_base + SATA_ENET_SDS_CTL1_ADDR, &val);
+	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
+		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
+	phy_wr(sds_base + SATA_ENET_SDS_CTL1_ADDR, val);
+
+	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
+	phy_rd(sds_base + SATA_ENET_SDS_CTL0_ADDR, &val);
+	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
+	phy_wr(sds_base + SATA_ENET_SDS_CTL0_ADDR, val);
+
+	/* Configure the clock macro unit (CMU) clock type */
+	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
+
+	/* Configure the clock macro */
+	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
+
+	/* Enable SSC if enabled */
+	if (ssc_enable)
+		xgene_phy_ssc_enable(ctx, PHY_CMU);
+
+	/* Configure PHY lanes */
+	xgene_phy_sata_cfg_lanes(ctx);
+}
+
+static int xgene_phy_hw_init_ref_cmu(struct xgene_phy_ctx *ctx,
+	enum clk_type_t clk_type)
+{
+	void *sds_base;
+	int loop = 3;
+	u32 val;
+
+	if (ctx->ext_cmu_base)
+		sds_base = ctx->ext_cmu_base;
+	else
+		sds_base = ctx->sds_base;
+
+	dev_dbg(ctx->dev, "Configure Ref CMU (internal clock)\n");
+	phy_rd(sds_base + SATA_ENET_CLK_MACRO_REG_ADDR, &val);
+	val = I_RESET_B_SET(val, 0x0);
+	val = I_PLL_FBDIV_SET(val, 0x27);
+	val = I_CUSTOMEROV_SET(val, 0x0);
+	phy_wr(sds_base + SATA_ENET_CLK_MACRO_REG_ADDR, val);
+
+	/* Configure the clock macro */
+	xgene_phy_sata_cfg_cmu_core(ctx, REF_CMU, clk_type);
+
+	phy_rd(sds_base + SATA_ENET_CLK_MACRO_REG_ADDR, &val);
+	val = I_RESET_B_SET(val, 0x1);
+	val = I_CUSTOMEROV_SET(val, 0x0);
+	phy_wr(sds_base + SATA_ENET_CLK_MACRO_REG_ADDR, val);
+
+	/* Start PLL calibration and try for three times */
+	do {
+		if (!xgene_phy_cal_rdy_chk(ctx, REF_CMU, clk_type))
+			break;
+		/* If failed, toggle the VCO power signal and start again */
+		xgene_phy_pdwn_force_vco(ctx, REF_CMU, clk_type);
+	} while (--loop > 0);
+	if (loop <= 0) {
+		dev_err(ctx->dev, "Ref PLL clock macro not ready...\n");
+		return -1;
+	}
+	phy_rd(sds_base + SATA_ENET_CLK_MACRO_REG_ADDR, &val);
+	dev_dbg(ctx->dev, "Ref PLL clock macro is %slocked...\n",
+		O_PLL_LOCK_RD(val) ? "" : "un-");
+	dev_dbg(ctx->dev, "Ref PLL clock macro is %sready...\n",
+		O_PLL_READY_RD(val) ? "" : "not ");
+	return 0;
+}
+
+static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
+	enum clk_type_t clk_type, int ssc_enable)
+{
+	void *sds_base = ctx->sds_base;
+	u32 val;
+	int i;
+
+	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
+
+	/* Configure internal ref clock CMU */
+	if (clk_type == CLK_INT_DIFF || clk_type == CLK_INT_SING)
+		if (xgene_phy_hw_init_ref_cmu(ctx, clk_type))
+			return -ENODEV;
+
+	/* Configure the PHY for operation */
+	dev_dbg(ctx->dev, "Reset PHY\n");
+	/* Place PHY into reset */
+	phy_wr(sds_base + SATA_ENET_SDS_RST_CTL_ADDR, 0x00);
+	/* Release PHY lane from reset (active high) */
+	phy_wr(sds_base + SATA_ENET_SDS_RST_CTL_ADDR, 0x20);
+	/* Release all PHY module out of reset except PHY main reset */
+	phy_wr(sds_base + SATA_ENET_SDS_RST_CTL_ADDR, 0xde);
+
+	if (ctx->mode == MODE_SATA) {
+		xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
+	} else {
+		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
+			ctx->mode);
+		return -ENODEV;
+	}
+
+	/* Set Rx/Tx 20-bit */
+	phy_rd(sds_base + SATA_ENET_SDS_PCS_CTL0_ADDR, &val);
+	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
+	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
+	phy_wr(sds_base + SATA_ENET_SDS_PCS_CTL0_ADDR, val);
+
+	/* Start PLL calibration and try for three times */
+	i = 3;
+	do {
+		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
+			break;
+		/* If failed, toggle the VCO power signal and start again */
+		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
+	} while (--i > 0);
+	if (i <= 0) {
+		dev_err(ctx->dev, "PLL calibration failed\n");
+		return -ENODEV;
+	}
+
+	return 0;
+}
+
+/* Receiver Offset Calibration:
+ * Calibrate the receiver signal path offset in two steps - summar and
+ * latch calibrations
+ */
+static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
+{
+	void *csr_base = ctx->sds_base;
+	int i;
+	struct {
+		u32 reg;
+		u32 val;
+	} serdes_reg[] = {
+		{RXTX_REG38_ADDR, 0x0},
+		{RXTX_REG39_ADDR, 0xff00},
+		{RXTX_REG40_ADDR, 0xffff},
+		{RXTX_REG41_ADDR, 0xffff},
+		{RXTX_REG42_ADDR, 0xffff},
+		{RXTX_REG43_ADDR, 0xffff},
+		{RXTX_REG44_ADDR, 0xffff},
+		{RXTX_REG45_ADDR, 0xffff},
+		{RXTX_REG46_ADDR, 0xffff},
+		{RXTX_REG47_ADDR, 0xfffc},
+		{RXTX_REG48_ADDR, 0x0},
+		{RXTX_REG49_ADDR, 0x0},
+		{RXTX_REG50_ADDR, 0x0},
+		{RXTX_REG51_ADDR, 0x0},
+		{RXTX_REG52_ADDR, 0x0},
+		{RXTX_REG53_ADDR, 0x0},
+		{RXTX_REG54_ADDR, 0x0},
+		{RXTX_REG55_ADDR, 0x0},
+	};
+
+	/* Start SUMMER calibration */
+	serdes_toggle1to0(csr_base, lane, RXTX_REG127_ADDR,
+			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
+	/* Start latch calibration */
+	serdes_toggle1to0(csr_base, lane, RXTX_REG127_ADDR,
+			RXTX_REG127_FORCE_LAT_CAL_START_MASK);
+
+	/* Configure the PHY lane for calibration */
+	serdes_wr(csr_base, lane, RXTX_REG28_ADDR, 0x7);
+	serdes_wr(csr_base, lane, RXTX_REG31_ADDR, 0x7e00);
+	serdes_clrbits(csr_base, lane, RXTX_REG4_ADDR,
+		RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
+	serdes_clrbits(csr_base, lane, RXTX_REG7_ADDR,
+		RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
+	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
+		serdes_wr(csr_base, lane, serdes_reg[i].reg,
+			serdes_reg[i].val);
+}
+
+static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
+{
+	void *csr_base = ctx->sds_base;
+
+	/* Reset digital Rx */
+	serdes_clrbits(csr_base, lane, RXTX_REG7_ADDR,
+			RXTX_REG7_RESETB_RXD_MASK);
+	serdes_setbits(csr_base, lane, RXTX_REG7_ADDR,
+			RXTX_REG7_RESETB_RXD_MASK);
+}
+
+static int xgene_phy_get_avg(int accum, int samples)
+{
+	return (accum + (samples / 2)) / samples;
+}
+
+static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
+{
+	void *sds_base = ctx->sds_base;
+	int max_loop = 10;
+	int avg_loop = 0;
+	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
+	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
+	int sum_cal = 0;
+	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
+	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
+	int sum_cal_itr;
+	int fail_even;
+	int fail_odd;
+	u32 val;
+
+	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
+		lane);
+
+	/* Enable RX Hi-Z termination */
+	serdes_setbits(sds_base, lane, RXTX_REG12_ADDR,
+			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
+	/* Turn off DFE */
+	serdes_wr(sds_base, lane, RXTX_REG28_ADDR, 0x0000);
+	/* DFE Presets to zero */
+	serdes_wr(sds_base, lane, RXTX_REG31_ADDR, 0x0000);
+
+	/* Receiver Offset Calibration:
+	 * Calibrate the receiver signal path offset in two steps - summar
+	 * and latch calibration.
+	 * Runs the "Receiver Offset Calibration multiple times to determine
+	 * the average value to use.
+	 */
+	while (avg_loop < max_loop) {
+		/* Start the calibration */
+		xgene_phy_force_lat_summer_cal(ctx, lane);
+
+		serdes_rd(sds_base, lane, RXTX_REG21_ADDR, &val);
+		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
+		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
+		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
+
+		serdes_rd(sds_base, lane, RXTX_REG22_ADDR, &val);
+		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
+		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
+		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
+
+		serdes_rd(sds_base, lane, RXTX_REG23_ADDR, &val);
+		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
+		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
+
+		serdes_rd(sds_base, lane, RXTX_REG24_ADDR, &val);
+		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
+		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
+
+		serdes_rd(sds_base, lane, RXTX_REG121_ADDR, &val);
+		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
+
+		/* Check for failure. If passed, sum them for averaging */
+		if ((fail_even == 0 || fail_even == 1) &&
+		    (fail_odd == 0 || fail_odd == 1)) {
+			lat_do += lat_do_itr;
+			lat_xo += lat_xo_itr;
+			lat_eo += lat_eo_itr;
+			lat_so += lat_so_itr;
+			lat_de += lat_de_itr;
+			lat_xe += lat_xe_itr;
+			lat_ee += lat_ee_itr;
+			lat_se += lat_se_itr;
+			sum_cal += sum_cal_itr;
+
+			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
+			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
+				lat_do_itr, lat_xo_itr, lat_eo_itr,
+				lat_so_itr);
+			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
+				lat_de_itr, lat_xe_itr, lat_ee_itr,
+				lat_se_itr);
+			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
+			++avg_loop;
+		} else {
+			dev_err(ctx->dev,
+				"Receiver calibration failed at %d loop\n",
+				avg_loop);
+		}
+		xgene_phy_reset_rxd(ctx, lane);
+	}
+
+	/* Update latch manual calibration with average value */
+	serdes_rd(sds_base, lane, RXTX_REG127_ADDR, &val);
+	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_do, max_loop));
+	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_xo, max_loop));
+	serdes_wr(sds_base, lane, RXTX_REG127_ADDR, val);
+
+	serdes_rd(sds_base, lane, RXTX_REG128_ADDR, &val);
+	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_eo, max_loop));
+	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_so, max_loop));
+	serdes_wr(sds_base, lane, RXTX_REG128_ADDR, val);
+
+	serdes_rd(sds_base, lane, RXTX_REG129_ADDR, &val);
+	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_de, max_loop));
+	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_xe, max_loop));
+	serdes_wr(sds_base, lane, RXTX_REG129_ADDR, val);
+
+	serdes_rd(sds_base, lane, RXTX_REG130_ADDR, &val);
+	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_ee, max_loop));
+	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_se, max_loop));
+	serdes_wr(sds_base, lane, RXTX_REG130_ADDR, val);
+
+	/* Update SUMMER calibration with average value */
+	serdes_rd(sds_base, lane, RXTX_REG14_ADDR, &val);
+	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
+		xgene_phy_get_avg(sum_cal, max_loop));
+	serdes_wr(sds_base, lane, RXTX_REG14_ADDR, val);
+
+	dev_dbg(ctx->dev, "Average Value:\n");
+	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
+		 xgene_phy_get_avg(lat_do, max_loop),
+		 xgene_phy_get_avg(lat_xo, max_loop),
+		 xgene_phy_get_avg(lat_eo, max_loop),
+		 xgene_phy_get_avg(lat_so, max_loop));
+	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
+		 xgene_phy_get_avg(lat_de, max_loop),
+		 xgene_phy_get_avg(lat_xe, max_loop),
+		 xgene_phy_get_avg(lat_ee, max_loop),
+		 xgene_phy_get_avg(lat_se, max_loop));
+	dev_dbg(ctx->dev, "SUM 0x%x\n",
+		xgene_phy_get_avg(sum_cal, max_loop));
+
+	serdes_rd(sds_base, lane, RXTX_REG14_ADDR, &val);
+	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
+	serdes_wr(sds_base, lane, RXTX_REG14_ADDR, val);
+	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
+
+	serdes_rd(sds_base, lane, RXTX_REG127_ADDR, &val);
+	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
+	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
+	serdes_wr(sds_base, lane, RXTX_REG127_ADDR, val);
+
+	/* Disable RX Hi-Z termination */
+	serdes_rd(sds_base, lane, RXTX_REG12_ADDR, &val);
+	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
+	serdes_wr(sds_base, lane, RXTX_REG12_ADDR, val);
+	/* Turn on DFE */
+	serdes_wr(sds_base, lane, RXTX_REG28_ADDR, 0x0007);
+	/* DFE Presets to 0 */
+	serdes_wr(sds_base, lane, RXTX_REG31_ADDR, 0x7e00);
+}
+
+static void xgene_phy_sata_setup_preclk(struct xgene_phy_ctx *ctx)
+{
+	u32 val;
+
+	/* Lanes need to be in clock gated during PLL macro and etc
+	   configuration */
+	phy_rd(ctx->clk_base + SATACLKENREG_ADDR, &val);
+	val &= ~(SATA0_CORE_CLKEN | SATA1_CORE_CLKEN);
+	phy_wr_flush(ctx->clk_base + SATACLKENREG_ADDR, val);
+
+	/* Only CSR and SDS modules can be out of reset during calibration */
+	phy_rd(ctx->clk_base + SATASRESETREG_ADDR, &val);
+	val |= SATA_CSR_RESET_MASK | SATA_SDS_RESET_MASK |
+		SATA_CORE_RESET_MASK | SATA_PCLK_RESET_MASK |
+		SATA_PMCLK_RESET_MASK | SATA_MEM_RESET_MASK;
+	phy_wr_flush(ctx->clk_base + SATASRESETREG_ADDR, val);
+	phy_rd(ctx->clk_base + SATASRESETREG_ADDR, &val);
+	val &= ~(SATA_CSR_RESET_MASK | SATA_SDS_RESET_MASK);
+	phy_wr_flush(ctx->clk_base + SATASRESETREG_ADDR, val);
+}
+
+static void xgene_phy_sata_setup_postclk(struct xgene_phy_ctx *ctx)
+{
+	u32 val;
+
+	/* Enable lanes clock */
+	phy_rd(ctx->clk_base + SATACLKENREG_ADDR, &val);
+	val |= SATA0_CORE_CLKEN | SATA1_CORE_CLKEN;
+	phy_wr_flush(ctx->clk_base + SATACLKENREG_ADDR, val);
+
+	/* Enable remaining modules */
+	phy_rd(ctx->clk_base + SATASRESETREG_ADDR, &val);
+	val &= ~(SATA_CORE_RESET_MASK |
+		SATA_PMCLK_RESET_MASK | SATA_SDS_RESET_MASK);
+	phy_wr_flush(ctx->clk_base + SATASRESETREG_ADDR, val);
+	phy_rd(ctx->clk_base + SATASRESETREG_ADDR, &val);
+	val &= ~SATA_PCLK_RESET_MASK;
+	phy_wr_flush(ctx->clk_base + SATASRESETREG_ADDR, val);
+}
+
+static int xgene_phy_hw_init(struct phy *phy)
+{
+	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
+	int rc;
+	int i;
+
+	/* Setup clock properly before PHY configuration */
+	if (ctx->mode == MODE_SATA)
+		xgene_phy_sata_setup_preclk(ctx);
+
+	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
+	if (rc) {
+		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
+		return rc;
+	}
+
+	/* Setup clock properly after PHY configuration */
+	if (ctx->mode == MODE_SATA)
+		xgene_phy_sata_setup_postclk(ctx);
+
+	/* Compute average value */
+	for (i = 0; i < MAX_LANE; i++)
+		xgene_phy_gen_avg_val(ctx, i);
+
+	dev_dbg(ctx->dev, "PHY initialized\n");
+	return 0;
+}
+
+/* This function is used to configure the PHY to operation as either SATA Gen1
+ * or Gen2 speed.
+ */
+static void xgene_phy_sata_force_gen(struct xgene_phy_ctx *ctx,
+	int lane, int gen)
+{
+	void *csr_serdes = ctx->sds_base;
+	u32 val;
+
+	phy_rd(csr_serdes + SATA_ENET_SDS_CTL1_ADDR, &val);
+	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, gen);
+	phy_wr(csr_serdes + SATA_ENET_SDS_CTL1_ADDR, val);
+
+	serdes_rd(csr_serdes, lane, RXTX_REG0_ADDR, &val);
+	val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x1c);
+	val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x1c);
+	val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x1c);
+	serdes_wr(csr_serdes, lane, RXTX_REG0_ADDR, val);
+}
+
+static int xgene_phy_set_speed(struct phy *phy, int lane, u64 speed)
+{
+	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
+
+	if (lane >= MAX_LANE)
+		return -EINVAL;
+	if (ctx->mode == MODE_SATA) {
+		if (speed >= 6000000000 /* 6Gbps */) {
+			ctx->sata_param.speed[lane] = 2;
+			xgene_phy_sata_force_gen(ctx, lane, SATA_SPD_SEL_GEN3);
+		} else if (speed >= 3000000000 /* 3Gbps */) {
+			ctx->sata_param.speed[lane] = 1;
+			xgene_phy_sata_force_gen(ctx, lane, SATA_SPD_SEL_GEN2);
+		} else /* 1.5Gbps */ {
+			ctx->sata_param.speed[lane] = 0;
+			xgene_phy_sata_force_gen(ctx, lane, SATA_SPD_SEL_GEN1);
+		}
+	}
+	return 0;
+}
+
+static const struct phy_ops xgene_phy_ops = {
+	.init		= xgene_phy_hw_init,
+	.set_speed	= xgene_phy_set_speed,
+	.owner		= THIS_MODULE,
+};
+
+static struct phy *xgene_phy_xlate(struct device *dev,
+				   struct of_phandle_args *args)
+{
+	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
+
+	if (args->args_count > 0) {
+		if (args->args[0] >= MODE_MAX)
+			return NULL;
+		ctx->mode = args->args[0];
+	}
+	return ctx->phy;
+}
+
+static void xgene_phy_get_param(struct platform_device *pdev,
+	const char *name, u32 *buffer, int count, u32 default_val)
+{
+	int rc;
+	int i;
+	rc = of_property_read_u32_array(pdev->dev.of_node, name, buffer,
+					count);
+	if (!rc)
+		return;
+	/* Does not exist, load default */
+	for (i = 0; i < count; i++)
+		buffer[i] = default_val;
+}
+
+static int xgene_phy_probe(struct platform_device *pdev)
+{
+	struct phy_provider *phy_provider;
+	struct xgene_phy_ctx *ctx;
+	struct resource *res;
+	int rc = 0;
+
+	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
+	if (!ctx) {
+		dev_err(&pdev->dev, "can't allocate PHY context\n");
+		return -ENOMEM;
+	}
+	ctx->dev = &pdev->dev;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res) {
+		dev_err(&pdev->dev, "no PHY resource address\n");
+		goto error;
+	}
+	ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
+	if (!ctx->sds_base) {
+		dev_err(&pdev->dev, "can't map PHY resource\n");
+		rc = -ENOMEM;
+		goto error;
+	}
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+	if (!res) {
+		dev_err(&pdev->dev, "no clock resource address\n");
+		goto error;
+	}
+	ctx->clk_base = devm_ioremap_resource(&pdev->dev, res);
+	if (!ctx->clk_base) {
+		dev_err(&pdev->dev, "can't map clock resource\n");
+		rc = -ENOMEM;
+		goto error;
+	}
+
+	if (of_device_is_compatible(pdev->dev.of_node,
+		XGENE_PHY_EXT_DTS)) {
+		res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
+		if (!res) {
+			dev_err(&pdev->dev, "no external resource address\n");
+			goto error;
+		}
+		ctx->ext_cmu_base = devm_ioremap_resource(&pdev->dev, res);
+		if (!ctx->ext_cmu_base) {
+			dev_err(&pdev->dev, "can't map external resource\n");
+			rc = -ENOMEM;
+			goto error;
+		}
+	}
+
+	/* Load override paramaters */
+	xgene_phy_get_param(pdev, "apm-tx-eye-tuning",
+		ctx->sata_param.txeyetuning, 6, DEFAULT_SATA_TXEYETUNING);
+	xgene_phy_get_param(pdev, "apm-tx-eye-direction",
+		ctx->sata_param.txeyedirection, 6,
+		DEFAULT_SATA_TXEYEDIRECTION);
+	xgene_phy_get_param(pdev, "apm-tx-boost-gain",
+		ctx->sata_param.txboostgain, 6, DEFAULT_SATA_TXBOOST_GAIN);
+	xgene_phy_get_param(pdev, "apm-tx-amplitude",
+		ctx->sata_param.txamplitude, 6, DEFAULT_SATA_TXAMP);
+	xgene_phy_get_param(pdev, "apm-tx-pre-cursor1",
+		ctx->sata_param.txprecursor_cn1, 6, DEFAULT_SATA_TXCN1);
+	xgene_phy_get_param(pdev, "apm-tx-pre-cursor2",
+		ctx->sata_param.txprecursor_cn2, 6, DEFAULT_SATA_TXCN2);
+	xgene_phy_get_param(pdev, "apm-tx-post-cursor",
+		ctx->sata_param.txpostcursor_cp1, 6, DEFAULT_SATA_TXCP1);
+	xgene_phy_get_param(pdev, "apm-tx-speed", ctx->sata_param.txspeed, 3,
+		DEFAULT_SATA_SPD_SEL);
+	ctx->sata_param.speed[0] = 2;	/* Default to Gen3 for lane 0 */
+	ctx->sata_param.speed[1] = 2;	/* Default to Gen3 for lane 1 */
+
+	ctx->dev = &pdev->dev;
+	platform_set_drvdata(pdev, ctx);
+
+	phy_provider = devm_of_phy_provider_register(ctx->dev,
+						     xgene_phy_xlate);
+	if (IS_ERR(phy_provider)) {
+		rc = PTR_ERR(phy_provider);
+		goto error;
+	}
+
+	ctx->phy = devm_phy_create(ctx->dev, &xgene_phy_ops, NULL);
+	if (IS_ERR(ctx->phy)) {
+		dev_dbg(&pdev->dev, "Failed to create PHY\n");
+		return PTR_ERR(ctx->phy);
+	}
+
+	phy_set_drvdata(ctx->phy, ctx);
+
+	dev_info(&pdev->dev, "X-Gene PHY registered\n");
+	return 0;
+
+error:
+	return rc;
+}
+
+static const struct of_device_id xgene_phy_of_match[] = {
+	{.compatible = XGENE_PHY_DTS,},
+	{.compatible = XGENE_PHY_EXT_DTS,},
+	{},
+};
+MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
+
+static struct platform_driver xgene_phy_driver = {
+	.probe = xgene_phy_probe,
+	.driver = {
+		   .name = "xgene-phy",
+		   .owner = THIS_MODULE,
+		   .of_match_table = xgene_phy_of_match,
+	},
+};
+
+static int __init xgene_phy_init(void)
+{
+	return platform_driver_register(&xgene_phy_driver);
+}
+subsys_initcall(xgene_phy_init);
+
+static void __exit xgene_phy_exit(void)
+{
+	platform_driver_unregister(&xgene_phy_driver);
+}
+module_exit(xgene_phy_exit);
+
+MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
+MODULE_AUTHOR("Loc Ho <lho at apm.com>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION("0.1");
-- 
1.5.5




More information about the linux-arm-kernel mailing list