[git pull] signals pile 3
Russell King - ARM Linux
linux at arm.linux.org.uk
Sun Oct 14 18:24:49 EDT 2012
Okay, here's the post-mortem diagnosis.
What's happening is as follows (I'm very certain of this.)
We come through the usual init, and issue (see init/main.c):
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
This creates a new thread, which falls through to the ret_from_fork
assembly, with r4 set NULL and r5 set to kernel_init. You can see
this in your oops dump register set - r5 is 0xc0344555, which is the
address of kernel_init plus 1 which marks the function as Thumb code.
Now, let's look at this code a little closer - this is what the
disassembly looks like:
c000d180 <ret_from_fork>:
c000d180: f03a fe08 bl c0047d94 <schedule_tail>
c000d184: 2d00 cmp r5, #0
c000d186: bf1e ittt ne
c000d188: 4620 movne r0, r4
c000d18a: 46fe movne lr, pc <-- XXXXXXX
c000d18c: 46af movne pc, r5
c000d18e: 46e9 mov r9, sp
c000d190: ea4f 3959 mov.w r9, r9, lsr #13
c000d194: ea4f 3949 mov.w r9, r9, lsl #13
c000d198: e7c8 b.n c000d12c <ret_to_user>
c000d19a: bf00 nop
c000d19c: f3af 8000 nop.w
I have marked one instruction, and it's the significant one.
Eventually, having had a successful call to kernel_execve(), kernel_init()
returns zero.
In returning, it uses the value in 'lr' which was set by the instruction
I marked above. Unfortunately, this causes lr to contain 0xc000d18e -
an even address. This switches the ISA to ARM on return but with a non
word aligned PC value.
So, what do we end up executing? Well, not the instructions above - yes
the opcodes, but they don't mean the same thing in ARM mode. In ARM mode,
it looks like this instead:
c000d18c: 46e946af strbtmi r4, [r9], pc, lsr #13
c000d190: 3959ea4f ldmdbcc r9, {r0, r1, r2, r3, r6, r9, fp, sp, lr, pc}^
c000d194: 3949ea4f stmdbcc r9, {r0, r1, r2, r3, r6, r9, fp, sp, lr, pc}^
c000d198: bf00e7c8 svclt 0x0000e7c8
c000d19c: 8000f3af andhi pc, r0, pc, lsr #7
c000d1a0: e88db092 stm sp, {r1, r4, r7, ip, sp, pc}
c000d1a4: 46e81fff ; <UNDEFINED> instruction: 0x46e81fff
c000d1a8: 8a00f3ef bhi 0xc004a16c
c000d1ac: 0a0cf08a beq 0xc03493dc
I have included more above, because it's relevant. The PSR flags which we
can see in the oops dump are nZCv, so Z and C are set.
All the above ARM instructions are not executed, except for two. c000d1a0,
which has no writeback, and writes below the current stack pointer (and
that data is lost when we take the next exception.) The other instruction
which is executed is c000d1ac, which takes us to... 0xc03493dc. However,
remember that bit 1 of the PC got set. So that makes it 0xc03493de.
And that value is the value we find in the oops dump for PC. What is the
instruction here when interpreted in ARM mode?
0: f71e150c ; <UNDEFINED> instruction: 0xf71e150c
and there we have our undefined instruction (remember that the 'never'
condition code, 0xf, has been deprecated and is now always executed.)
So, what we have above is a consistent and sane story for how we ended up
at such a strange place in the kernel with such an odd register dump - with
no unanswered questions about what happened to get us there.
In light of this, I'm 100% certain that the patch below will fix the issue
you're seeing - please test this and get back to me ASAP, thanks.
arch/arm/kernel/entry-common.S | 4 ++--
1 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/arch/arm/kernel/entry-common.S b/arch/arm/kernel/entry-common.S
index 417bac1..3471175 100644
--- a/arch/arm/kernel/entry-common.S
+++ b/arch/arm/kernel/entry-common.S
@@ -88,9 +88,9 @@ ENTRY(ret_from_fork)
bl schedule_tail
cmp r5, #0
movne r0, r4
- movne lr, pc
+ adrne lr, BSYM(1f)
movne pc, r5
- get_thread_info tsk
+1: get_thread_info tsk
b ret_slow_syscall
ENDPROC(ret_from_fork)
More information about the linux-arm-kernel
mailing list