[PATCH v2 04/10] ARM: KVM: VGIC distributor handling
Christoffer Dall
c.dall at virtualopensystems.com
Mon Oct 1 05:13:38 EDT 2012
From: Marc Zyngier <marc.zyngier at arm.com>
Add the GIC distributor emulation code. A number of the GIC features
are simply ignored as they are not required to boot a Linux guest.
Signed-off-by: Marc Zyngier <marc.zyngier at arm.com>
Signed-off-by: Christoffer Dall <c.dall at virtualopensystems.com>
---
arch/arm/include/asm/kvm_vgic.h | 170 ++++++++++++++
arch/arm/kvm/vgic.c | 475 +++++++++++++++++++++++++++++++++++++++
2 files changed, 644 insertions(+), 1 deletion(-)
diff --git a/arch/arm/include/asm/kvm_vgic.h b/arch/arm/include/asm/kvm_vgic.h
index a87ec6c..a82699f 100644
--- a/arch/arm/include/asm/kvm_vgic.h
+++ b/arch/arm/include/asm/kvm_vgic.h
@@ -19,7 +19,177 @@
#ifndef __ASM_ARM_KVM_VGIC_H
#define __ASM_ARM_KVM_VGIC_H
+#include <linux/kernel.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/irqreturn.h>
+#include <linux/spinlock.h>
+#include <linux/types.h>
+
+#define VGIC_NR_IRQS 128
+#define VGIC_NR_SHARED_IRQS (VGIC_NR_IRQS - 32)
+#define VGIC_MAX_CPUS NR_CPUS
+
+/* Sanity checks... */
+#if (VGIC_MAX_CPUS > 8)
+#error Invalid number of CPU interfaces
+#endif
+
+#if (VGIC_NR_IRQS & 31)
+#error "VGIC_NR_IRQS must be a multiple of 32"
+#endif
+
+#if (VGIC_NR_IRQS > 1024)
+#error "VGIC_NR_IRQS must be <= 1024"
+#endif
+
+/*
+ * The GIC distributor registers describing interrupts have two parts:
+ * - 32 per-CPU interrupts (SGI + PPI)
+ * - a bunch of shared interrups (SPI)
+ */
+struct vgic_bitmap {
+ union {
+ u32 reg[1];
+ unsigned long reg_ul[0];
+ } percpu[VGIC_MAX_CPUS];
+ union {
+ u32 reg[VGIC_NR_SHARED_IRQS / 32];
+ unsigned long reg_ul[0];
+ } shared;
+};
+
+static inline u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
+ int cpuid, u32 offset)
+{
+ offset >>= 2;
+ BUG_ON(offset > (VGIC_NR_IRQS / 32));
+ if (!offset)
+ return x->percpu[cpuid].reg;
+ else
+ return x->shared.reg + offset - 1;
+}
+
+static inline int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
+ int cpuid, int irq)
+{
+ if (irq < 32)
+ return test_bit(irq, x->percpu[cpuid].reg_ul);
+
+ return test_bit(irq - 32, x->shared.reg_ul);
+}
+
+static inline void vgic_bitmap_set_irq_val(struct vgic_bitmap *x,
+ int cpuid, int irq, int val)
+{
+ unsigned long *reg;
+
+ if (irq < 32)
+ reg = x->percpu[cpuid].reg_ul;
+ else {
+ reg = x->shared.reg_ul;
+ irq -= 32;
+ }
+
+ if (val)
+ set_bit(irq, reg);
+ else
+ clear_bit(irq, reg);
+}
+
+static inline unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x,
+ int cpuid)
+{
+ if (unlikely(cpuid >= VGIC_MAX_CPUS))
+ return NULL;
+ return x->percpu[cpuid].reg_ul;
+}
+
+static inline unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
+{
+ return x->shared.reg_ul;
+}
+
+struct vgic_bytemap {
+ union {
+ u32 reg[8];
+ unsigned long reg_ul[0];
+ } percpu[VGIC_MAX_CPUS];
+ union {
+ u32 reg[VGIC_NR_SHARED_IRQS / 4];
+ unsigned long reg_ul[0];
+ } shared;
+};
+
+static inline u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x,
+ int cpuid, u32 offset)
+{
+ offset >>= 2;
+ BUG_ON(offset > (VGIC_NR_IRQS / 4));
+ if (offset < 4)
+ return x->percpu[cpuid].reg + offset;
+ else
+ return x->shared.reg + offset - 8;
+}
+
+static inline int vgic_bytemap_get_irq_val(struct vgic_bytemap *x,
+ int cpuid, int irq)
+{
+ u32 *reg, shift;
+ shift = (irq & 3) * 8;
+ reg = vgic_bytemap_get_reg(x, cpuid, irq);
+ return (*reg >> shift) & 0xff;
+}
+
+static inline void vgic_bytemap_set_irq_val(struct vgic_bytemap *x,
+ int cpuid, int irq, int val)
+{
+ u32 *reg, shift;
+ shift = (irq & 3) * 8;
+ reg = vgic_bytemap_get_reg(x, cpuid, irq);
+ *reg &= ~(0xff << shift);
+ *reg |= (val & 0xff) << shift;
+}
+
struct vgic_dist {
+#ifdef CONFIG_KVM_ARM_VGIC
+ spinlock_t lock;
+
+ /* Virtual control interface mapping */
+ void __iomem *vctrl_base;
+
+ /* Distributor mapping in the guest */
+ unsigned long vgic_dist_base;
+ unsigned long vgic_dist_size;
+
+ /* Distributor enabled */
+ u32 enabled;
+
+ /* Interrupt enabled (one bit per IRQ) */
+ struct vgic_bitmap irq_enabled;
+
+ /* Interrupt 'pin' level */
+ struct vgic_bitmap irq_state;
+
+ /* Level-triggered interrupt in progress */
+ struct vgic_bitmap irq_active;
+
+ /* Interrupt priority. Not used yet. */
+ struct vgic_bytemap irq_priority;
+
+ /* Level/edge triggered */
+ struct vgic_bitmap irq_cfg;
+
+ /* Source CPU per SGI and target CPU */
+ u8 irq_sgi_sources[VGIC_MAX_CPUS][16];
+
+ /* Target CPU for each IRQ */
+ u8 irq_spi_cpu[VGIC_NR_SHARED_IRQS];
+ struct vgic_bitmap irq_spi_target[VGIC_MAX_CPUS];
+
+ /* Bitmap indicating which CPU has something pending */
+ unsigned long irq_pending_on_cpu;
+#endif
};
struct vgic_cpu {
diff --git a/arch/arm/kvm/vgic.c b/arch/arm/kvm/vgic.c
index 26ada3b..a870596 100644
--- a/arch/arm/kvm/vgic.c
+++ b/arch/arm/kvm/vgic.c
@@ -22,6 +22,46 @@
#include <linux/io.h>
#include <asm/kvm_emulate.h>
+/*
+ * How the whole thing works (courtesy of Christoffer Dall):
+ *
+ * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
+ * something is pending
+ * - VGIC pending interrupts are stored on the vgic.irq_state vgic
+ * bitmap (this bitmap is updated by both user land ioctls and guest
+ * mmio ops) and indicate the 'wire' state.
+ * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
+ * recalculated
+ * - To calculate the oracle, we need info for each cpu from
+ * compute_pending_for_cpu, which considers:
+ * - PPI: dist->irq_state & dist->irq_enable
+ * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
+ * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
+ * registers, stored on each vcpu. We only keep one bit of
+ * information per interrupt, making sure that only one vcpu can
+ * accept the interrupt.
+ * - The same is true when injecting an interrupt, except that we only
+ * consider a single interrupt at a time. The irq_spi_cpu array
+ * contains the target CPU for each SPI.
+ *
+ * The handling of level interrupts adds some extra complexity. We
+ * need to track when the interrupt has been EOIed, so we can sample
+ * the 'line' again. This is achieved as such:
+ *
+ * - When a level interrupt is moved onto a vcpu, the corresponding
+ * bit in irq_active is set. As long as this bit is set, the line
+ * will be ignored for further interrupts. The interrupt is injected
+ * into the vcpu with the VGIC_LR_EOI bit set (generate a
+ * maintenance interrupt on EOI).
+ * - When the interrupt is EOIed, the maintenance interrupt fires,
+ * and clears the corresponding bit in irq_active. This allow the
+ * interrupt line to be sampled again.
+ */
+
+/* Temporary hacks, need to be provided by userspace emulation */
+#define VGIC_DIST_BASE 0x2c001000
+#define VGIC_DIST_SIZE 0x1000
+
#define ACCESS_READ_VALUE (1 << 0)
#define ACCESS_READ_RAZ (0 << 0)
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
@@ -31,6 +71,14 @@
#define ACCESS_WRITE_VALUE (3 << 1)
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
+static void vgic_update_state(struct kvm *kvm);
+static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
+
+static inline int vgic_irq_is_edge(struct vgic_dist *dist, int irq)
+{
+ return vgic_bitmap_get_irq_val(&dist->irq_cfg, 0, irq);
+}
+
/**
* vgic_reg_access - access vgic register
* @mmio: pointer to the data describing the mmio access
@@ -94,6 +142,280 @@ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
}
}
+static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 reg;
+ u32 u32off = offset & 3;
+
+ switch (offset & ~3) {
+ case 0: /* CTLR */
+ reg = vcpu->kvm->arch.vgic.enabled;
+ vgic_reg_access(mmio, ®, u32off,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ vcpu->kvm->arch.vgic.enabled = reg & 1;
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+ break;
+
+ case 4: /* TYPER */
+ reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
+ reg |= (VGIC_NR_IRQS >> 5) - 1;
+ vgic_reg_access(mmio, ®, u32off,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ break;
+
+ case 8: /* IIDR */
+ reg = 0x4B00043B;
+ vgic_reg_access(mmio, ®, u32off,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ break;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ vgic_reg_access(mmio, NULL, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
+ return false;
+}
+
+static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
+ if (mmio->is_write) {
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
+ if (mmio->is_write) {
+ if (offset < 4) /* Force SGI enabled */
+ *reg |= 0xffff;
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
+ if (mmio->is_write) {
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
+ if (mmio->is_write) {
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
+ vcpu->vcpu_id, offset);
+ vgic_reg_access(mmio, reg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ return false;
+}
+
+static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int i, c;
+ unsigned long *bmap;
+ u32 val = 0;
+
+ BUG_ON(irq & 3);
+ BUG_ON(irq < 32);
+
+ irq -= 32;
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
+ for (i = 0; i < 4; i++)
+ if (test_bit(irq + i, bmap))
+ val |= 1 << (c + i * 8);
+ }
+
+ return val;
+}
+
+static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int i, c;
+ unsigned long *bmap;
+ u32 target;
+
+ BUG_ON(irq & 3);
+ BUG_ON(irq < 32);
+
+ irq -= 32;
+
+ /*
+ * Pick the LSB in each byte. This ensures we target exactly
+ * one vcpu per IRQ. If the byte is null, assume we target
+ * CPU0.
+ */
+ for (i = 0; i < 4; i++) {
+ int shift = i * 8;
+ target = ffs((val >> shift) & 0xffU);
+ target = target ? (target - 1) : 0;
+ dist->irq_spi_cpu[irq + i] = target;
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
+ if (c == target)
+ set_bit(irq + i, bmap);
+ else
+ clear_bit(irq + i, bmap);
+ }
+ }
+}
+
+static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 reg;
+
+ /* We treat the banked interrupts targets as read-only */
+ if (offset < 32) {
+ u32 roreg = 1 << vcpu->vcpu_id;
+ roreg |= roreg << 8;
+ roreg |= roreg << 16;
+
+ vgic_reg_access(mmio, &roreg, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
+ return false;
+ }
+
+ reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
+ vgic_reg_access(mmio, ®, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
+static u32 vgic_cfg_expand(u16 val)
+{
+ u32 res = 0;
+ int i;
+
+ for (i = 0; i < 16; i++)
+ res |= (val >> i) << (2 * i + 1);
+
+ return res;
+}
+
+static u16 vgic_cfg_compress(u32 val)
+{
+ u16 res = 0;
+ int i;
+
+ for (i = 0; i < 16; i++)
+ res |= (val >> (i * 2 + 1)) << i;
+
+ return res;
+}
+
+/*
+ * The distributor uses 2 bits per IRQ for the CFG register, but the
+ * LSB is always 0. As such, we only keep the upper bit, and use the
+ * two above functions to compress/expand the bits
+ */
+static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 val;
+ u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
+ vcpu->vcpu_id, offset >> 1);
+ if (offset & 2)
+ val = *reg >> 16;
+ else
+ val = *reg & 0xffff;
+
+ val = vgic_cfg_expand(val);
+ vgic_reg_access(mmio, &val, offset,
+ ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ if (offset < 4) {
+ *reg = ~0U; /* Force PPIs/SGIs to 1 */
+ return false;
+ }
+
+ val = vgic_cfg_compress(val);
+ if (offset & 2) {
+ *reg &= 0xffff;
+ *reg |= val << 16;
+ } else {
+ *reg &= 0xffff << 16;
+ *reg |= val;
+ }
+ }
+
+ return false;
+}
+
+static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
+ struct kvm_exit_mmio *mmio, u32 offset)
+{
+ u32 reg;
+ vgic_reg_access(mmio, ®, offset,
+ ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
+ if (mmio->is_write) {
+ vgic_dispatch_sgi(vcpu, reg);
+ vgic_update_state(vcpu->kvm);
+ return true;
+ }
+
+ return false;
+}
+
/* All this should be handled by kvm_bus_io_*()... FIXME!!! */
struct mmio_range {
unsigned long base;
@@ -103,6 +425,66 @@ struct mmio_range {
};
static const struct mmio_range vgic_ranges[] = {
+ { /* CTRL, TYPER, IIDR */
+ .base = 0,
+ .len = 12,
+ .handle_mmio = handle_mmio_misc,
+ },
+ { /* IGROUPRn */
+ .base = 0x80,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ { /* ISENABLERn */
+ .base = 0x100,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_set_enable_reg,
+ },
+ { /* ICENABLERn */
+ .base = 0x180,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_clear_enable_reg,
+ },
+ { /* ISPENDRn */
+ .base = 0x200,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_set_pending_reg,
+ },
+ { /* ICPENDRn */
+ .base = 0x280,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_clear_pending_reg,
+ },
+ { /* ISACTIVERn */
+ .base = 0x300,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ { /* ICACTIVERn */
+ .base = 0x380,
+ .len = VGIC_NR_IRQS / 8,
+ .handle_mmio = handle_mmio_raz_wi,
+ },
+ { /* IPRIORITYRn */
+ .base = 0x400,
+ .len = VGIC_NR_IRQS,
+ .handle_mmio = handle_mmio_priority_reg,
+ },
+ { /* ITARGETSRn */
+ .base = 0x800,
+ .len = VGIC_NR_IRQS,
+ .handle_mmio = handle_mmio_target_reg,
+ },
+ { /* ICFGRn */
+ .base = 0xC00,
+ .len = VGIC_NR_IRQS / 4,
+ .handle_mmio = handle_mmio_cfg_reg,
+ },
+ { /* SGIRn */
+ .base = 0xF00,
+ .len = 4,
+ .handle_mmio = handle_mmio_sgi_reg,
+ },
{}
};
@@ -134,5 +516,96 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges,
*/
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio)
{
- return KVM_EXIT_MMIO;
+ const struct mmio_range *range;
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+ unsigned long base = dist->vgic_dist_base;
+ bool updated_state;
+
+ if (!irqchip_in_kernel(vcpu->kvm) ||
+ mmio->phys_addr < base ||
+ (mmio->phys_addr + mmio->len) > (base + dist->vgic_dist_size))
+ return false;
+
+ range = find_matching_range(vgic_ranges, mmio, base);
+ if (unlikely(!range || !range->handle_mmio)) {
+ pr_warn("Unhandled access %d %08llx %d\n",
+ mmio->is_write, mmio->phys_addr, mmio->len);
+ return false;
+ }
+
+ spin_lock(&vcpu->kvm->arch.vgic.lock);
+ updated_state = range->handle_mmio(vcpu, mmio,mmio->phys_addr - range->base - base);
+ spin_unlock(&vcpu->kvm->arch.vgic.lock);
+ kvm_prepare_mmio(run, mmio);
+ kvm_handle_mmio_return(vcpu, run);
+
+ return true;
+}
+
+static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ u8 target_cpus;
+ int sgi, mode, c, vcpu_id;
+
+ vcpu_id = vcpu->vcpu_id;
+
+ sgi = reg & 0xf;
+ target_cpus = (reg >> 16) & 0xff;
+ mode = (reg >> 24) & 3;
+
+ switch (mode) {
+ case 0:
+ if (!target_cpus)
+ return;
+
+ case 1:
+ target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
+ break;
+
+ case 2:
+ target_cpus = 1 << vcpu_id;
+ break;
+ }
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ if (target_cpus & 1) {
+ /* Flag the SGI as pending */
+ vgic_bitmap_set_irq_val(&dist->irq_state, c, sgi, 1);
+ dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
+ kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
+ }
+
+ target_cpus >>= 1;
+ }
+}
+
+static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+/*
+ * Update the interrupt state and determine which CPUs have pending
+ * interrupts. Must be called with distributor lock held.
+ */
+static void vgic_update_state(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ struct kvm_vcpu *vcpu;
+ int c;
+
+ if (!dist->enabled) {
+ set_bit(0, &dist->irq_pending_on_cpu);
+ return;
+ }
+
+ kvm_for_each_vcpu(c, vcpu, kvm) {
+ if (compute_pending_for_cpu(vcpu)) {
+ pr_debug("CPU%d has pending interrupts\n", c);
+ set_bit(c, &dist->irq_pending_on_cpu);
+ }
+ }
}
More information about the linux-arm-kernel
mailing list