[PATCH v7] ARM: net: JIT compiler for packet filters
Russell King - ARM Linux
linux at arm.linux.org.uk
Thu Mar 15 07:41:51 EDT 2012
I'm unconvinced that this is safe.
On Sat, Jan 07, 2012 at 12:52:34PM +0100, Mircea Gherzan wrote:
> +static int build_body(struct jit_ctx *ctx)
> +{
> + void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
> + const struct sk_filter *prog = ctx->skf;
> + const struct sock_filter *inst;
> + unsigned i, load_order, off, condt;
> + int imm12;
> + u32 k;
> +
> + for (i = 0; i < prog->len; i++) {
> + inst = &(prog->insns[i]);
> + /* K as an immediate value operand */
> + k = inst->k;
> +
> + /* compute offsets only in the fake pass */
> + if (ctx->target == NULL)
> + ctx->offsets[i] = ctx->idx * 4;
> +
> + switch (inst->code) {
> + case BPF_S_LD_IMM:
> + emit_mov_i(r_A, k, ctx);
> + break;
> + case BPF_S_LD_W_LEN:
> + ctx->seen |= SEEN_SKB;
> + BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
> + emit(ARM_LDR_I(r_A, r_skb,
> + offsetof(struct sk_buff, len)), ctx);
> + break;
> + case BPF_S_LD_MEM:
> + /* A = scratch[k] */
> + ctx->seen |= SEEN_MEM_WORD(k);
> + emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
> + break;
> + case BPF_S_LD_W_ABS:
> + load_order = 2;
> + goto load;
> + case BPF_S_LD_H_ABS:
> + load_order = 1;
> + goto load;
> + case BPF_S_LD_B_ABS:
> + load_order = 0;
> +load:
> + /* the interpreter will deal with the negative K */
> + if (k < 0)
> + return -1;
k is a u32, so won't this will always be false - negative numbers will
appear as huge positive numbers instead.
> + emit_mov_i(r_off, k, ctx);
> +load_common:
> + ctx->seen |= SEEN_DATA | SEEN_CALL;
> +
> + if (load_order > 0) {
> + emit(ARM_SUB_I(r_scratch, r_skb_hl,
> + 1 << load_order), ctx);
> + emit(ARM_CMP_R(r_scratch, r_off), ctx);
> + condt = ARM_COND_HS;
> + } else {
> + emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
> + condt = ARM_COND_HI;
> + }
> +
> + _emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
> + ctx);
> +
> + if (load_order == 0)
> + _emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
> + ctx);
> + else if (load_order == 1)
> + emit_load_be16(condt, r_A, r_scratch, ctx);
> + else if (load_order == 2)
> + emit_load_be32(condt, r_A, r_scratch, ctx);
I think this is creating code to do something like this:
sub r_scratch, r_skb_hl, #1 << load_order
cmp r_scratch, k
ldrhs dest, [r_skb_data, k]
Isn't this going to perform the loads for any k greater than the header
length? What stops k being larger than the packet? And is this correct
in the first place?
> +
> + _emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
> +
> + /* the slowpath */
> + emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
> + emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
> + /* the offset is already in R1 */
> + emit_blx_r(ARM_R3, ctx);
> + /* check the result of skb_copy_bits */
> + emit(ARM_CMP_I(ARM_R1, 0), ctx);
> + emit_err_ret(ARM_COND_NE, ctx);
> + emit(ARM_MOV_R(r_A, ARM_R0), ctx);
> + break;
> + case BPF_S_LD_W_IND:
> + load_order = 2;
> + goto load_ind;
> + case BPF_S_LD_H_IND:
> + load_order = 1;
> + goto load_ind;
> + case BPF_S_LD_B_IND:
> + load_order = 0;
> +load_ind:
> + OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
> + goto load_common;
> + case BPF_S_LDX_IMM:
> + ctx->seen |= SEEN_X;
> + emit_mov_i(r_X, k, ctx);
> + break;
> + case BPF_S_LDX_W_LEN:
> + ctx->seen |= SEEN_X | SEEN_SKB;
> + emit(ARM_LDR_I(r_X, r_skb,
> + offsetof(struct sk_buff, len)), ctx);
> + break;
> + case BPF_S_LDX_MEM:
> + ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
> + emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
What about this - SCRATCH_OFF() is just a simple:
+#define SCRATCH_OFF(k) (SCRATCH_SP_OFFSET + (k))
So what if 'k' is a carefully chosen 32-bit number outside of the range
of the stack? Shouldn't there be a check for k < BPF_MEMWORDS to fail
the translation where-ever SEEN_MEM_WORD(k) or SCRATCH_OFF(k) is used?
> + break;
> + case BPF_S_LDX_B_MSH:
> + /* x = ((*(frame + k)) & 0xf) << 2; */
So, k is passed in from userspace. What stops k being out of the bounds
of 'frame' and referring to other kernel space data via carefully crafted
bpf code?
> + ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
> + /* the interpreter should deal with the negative K */
> + if (k < 0)
> + return -1;
> + /* offset in r1: we might have to take the slow path */
> + emit_mov_i(r_off, k, ctx);
> + emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
> +
> + /* load in r0: common with the slowpath */
> + _emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
> + ARM_R1), ctx);
> + /*
> + * emit_mov_i() might generate one or two instructions,
> + * the same holds for emit_blx_r()
> + */
> + _emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
> +
> + emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
> + /* r_off is r1 */
> + emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
> + emit_blx_r(ARM_R3, ctx);
> +
> + emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
> + emit(ARM_LSL_I(r_X, r_X, 2), ctx);
> + break;
> + case BPF_S_ST:
> + ctx->seen |= SEEN_MEM_WORD(k);
> + emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
> + break;
> + case BPF_S_STX:
> + update_on_xread(ctx);
> + ctx->seen |= SEEN_MEM_WORD(k);
> + emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
> + break;
> + case BPF_S_ALU_ADD_K:
> + /* A += K */
> + OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
> + break;
> + case BPF_S_ALU_ADD_X:
> + update_on_xread(ctx);
> + emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_SUB_K:
> + /* A -= K */
> + OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
> + break;
> + case BPF_S_ALU_SUB_X:
> + update_on_xread(ctx);
> + emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_MUL_K:
> + /* A *= K */
> + emit_mov_i(r_scratch, k, ctx);
> + emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
> + break;
> + case BPF_S_ALU_MUL_X:
> + update_on_xread(ctx);
> + emit(ARM_MUL(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_DIV_K:
> + /* current k == reciprocal_value(userspace k) */
> + emit_mov_i(r_scratch, k, ctx);
> + /* A = top 32 bits of the product */
> + emit(ARM_UMULL(r_scratch, r_A, r_A, r_scratch), ctx);
> + break;
> + case BPF_S_ALU_DIV_X:
> + update_on_xread(ctx);
> + emit(ARM_CMP_I(r_X, 0), ctx);
> + emit_err_ret(ARM_COND_EQ, ctx);
> + emit_udiv(r_A, r_A, r_X, ctx);
> + break;
> + case BPF_S_ALU_OR_K:
> + /* A |= K */
> + OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
> + break;
> + case BPF_S_ALU_OR_X:
> + update_on_xread(ctx);
> + emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_AND_K:
> + /* A &= K */
> + OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
> + break;
> + case BPF_S_ALU_AND_X:
> + update_on_xread(ctx);
> + emit(ARM_AND_R(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_LSH_K:
> + if (unlikely(k > 31))
> + return -1;
> + emit(ARM_LSL_I(r_A, r_A, k), ctx);
> + break;
> + case BPF_S_ALU_LSH_X:
> + update_on_xread(ctx);
> + emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_RSH_K:
> + if (unlikely(k > 31))
> + return -1;
> + emit(ARM_LSR_I(r_A, r_A, k), ctx);
> + break;
> + case BPF_S_ALU_RSH_X:
> + update_on_xread(ctx);
> + emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
> + break;
> + case BPF_S_ALU_NEG:
> + /* A = -A */
> + emit(ARM_RSB_I(r_A, r_A, 0), ctx);
> + break;
> + case BPF_S_JMP_JA:
> + /* pc += K */
> + emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
This seems to allow the offset[] array to be indexed by an out of bounds
32-bit offset (k). What stops that, therefore what prevents reading a
target jump address from a random location in kernel space?
I think b_imm() should check that it's not going to overflow its array
of offsets.
More information about the linux-arm-kernel
mailing list