[PATCH v6] mmc: documentation of mmc non-blocking request usage and design.
J Freyensee
james_p_freyensee at linux.intel.com
Mon Jul 11 20:22:39 EDT 2011
On 07/10/2011 12:21 PM, Per Forlin wrote:
> Documentation about the background and the design of mmc non-blocking.
> Host driver guidelines to minimize request preparation overhead.
>
> Signed-off-by: Per Forlin<per.forlin at linaro.org>
> Acked-by: Randy Dunlap<rdunlap at xenotime.net>
> ---
> ChangeLog:
> v2: - Minor updates after proofreading comments from Chris
> v3: - Minor updates after more comments from Chris
> v4: - Minor updates after comments from Randy
> v5: - Fixed one more comment and Acked-by from Randy
> v6: - Write out full function names and use () for all functions,
> feedback from James.
>
> Documentation/mmc/00-INDEX | 2 +
> Documentation/mmc/mmc-async-req.txt | 88 +++++++++++++++++++++++++++++++++++
> 2 files changed, 90 insertions(+), 0 deletions(-)
> create mode 100644 Documentation/mmc/mmc-async-req.txt
>
> diff --git a/Documentation/mmc/00-INDEX b/Documentation/mmc/00-INDEX
> index 93dd7a7..a9ba672 100644
> --- a/Documentation/mmc/00-INDEX
> +++ b/Documentation/mmc/00-INDEX
> @@ -4,3 +4,5 @@ mmc-dev-attrs.txt
> - info on SD and MMC device attributes
> mmc-dev-parts.txt
> - info on SD and MMC device partitions
> +mmc-async-req.txt
> + - info on mmc asynchronous requests
> diff --git a/Documentation/mmc/mmc-async-req.txt b/Documentation/mmc/mmc-async-req.txt
> new file mode 100644
> index 0000000..aac5634
> --- /dev/null
> +++ b/Documentation/mmc/mmc-async-req.txt
> @@ -0,0 +1,88 @@
> +Rationale
> +=========
> +
> +How significant is the cache maintenance overhead?
> +It depends. Fast eMMC and multiple cache levels with speculative cache
> +pre-fetch makes the cache overhead relatively significant. If the DMA
> +preparations for the next request are done in parallel with the current
> +transfer, the DMA preparation overhead would not affect the MMC performance.
> +The intention of non-blocking (asynchronous) MMC requests is to minimize the
> +time between when an MMC request ends and another MMC request begins.
> +Using mmc_wait_for_req(), the MMC controller is idle while dma_map_sg and
> +dma_unmap_sg are processing. Using non-blocking MMC requests makes it
> +possible to prepare the caches for next job in parallel with an active
> +MMC request.
> +
> +MMC block driver
> +================
> +
> +The mmc_blk_issue_rw_rq() in the MMC block driver is made non-blocking.
> +The increase in throughput is proportional to the time it takes to
> +prepare (major part of preparations are dma_map_sg() and dma_unmap_sg())
> +a request and how fast the memory is. The faster the MMC/SD is
> +the more significant the prepare request time becomes. Roughly the expected
> +performance gain is 5% for large writes and 10% on large reads on a L2 cache
> +platform. In power save mode, when clocks run on a lower frequency, the DMA
> +preparation may cost even more. As long as these slower preparations are run
> +in parallel with the transfer performance won't be affected.
> +
> +Details on measurements from IOZone and mmc_test
> +================================================
> +
> +https://wiki.linaro.org/WorkingGroups/Kernel/Specs/StoragePerfMMC-async-req
> +
> +MMC core API extension
> +======================
> +
> +There is one new public function mmc_start_req().
> +It starts a new MMC command request for a host. The function isn't
> +truly non-blocking. If there is on ongoing async request it waits
> +for completion of that request and starts the new one and returns. It
> +doesn't wait for the new request to complete. If there is no ongoing
> +request it starts the new request and returns immediately.
> +
> +MMC host extensions
> +===================
> +
> +There are two optional members in the
> +mmc_host_ops -- pre_req() and post_req() -- that the host
> +driver may implement in order to move work to before and after the actual
> +mmc_host_ops.request() function is called. In the DMA case pre_req() may do
> +dma_map_sg() and prepare the DMA descriptor, and post_req() runs
> +the dma_unmap_sg().
> +
One question: Is the 'Optimize for the first request' below an example
of how to use the 'MMC host extensions' above? So just using
'mmc_start_req()' in an MMC client driver would not be beneficial if the
MMC host was not also using the MMC host extensions, right?
Thanks,
Jay
> +Optimize for the first request
> +==============================
> +
> +The first request in a series of requests can't be prepared in parallel with
> +the previous transfer, since there is no previous request.
> +The argument is_first_req in pre_req() indicates that there is no previous
> +request. The host driver may optimize for this scenario to minimize
> +the performance loss. A way to optimize for this is to split the current
> +request in two chunks, prepare the first chunk and start the request,
> +and finally prepare the second chunk and start the transfer.
> +
> +Pseudocode to handle is_first_req scenario with minimal prepare overhead:
> +
> +if (is_first_req&& req->size> threshold)
> + /* start MMC transfer for the complete transfer size */
> + mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);
> +
> + /*
> + * Begin to prepare DMA while cmd is being processed by MMC.
> + * The first chunk of the request should take the same time
> + * to prepare as the "MMC process command time".
> + * If prepare time exceeds MMC cmd time
> + * the transfer is delayed, guesstimate max 4k as first chunk size.
> + */
> + prepare_1st_chunk_for_dma(req);
> + /* flush pending desc to the DMAC (dmaengine.h) */
> + dma_issue_pending(req->dma_desc);
> +
> + prepare_2nd_chunk_for_dma(req);
> + /*
> + * The second issue_pending should be called before MMC runs out
> + * of the first chunk. If the MMC runs out of the first data chunk
> + * before this call, the transfer is delayed.
> + */
> + dma_issue_pending(req->dma_desc);
More information about the linux-arm-kernel
mailing list