[PATCH v4 2/2] msm: gpio: Add irq support to v2 gpiolib.
Daniel Walker
dwalker at codeaurora.org
Tue Nov 23 12:51:57 EST 2010
On Thu, 2010-11-18 at 11:52 -0800, Gregory Bean wrote:
> Complete the MSM v2 gpio subsystem by adding irq_chip.
>
It looks like your actually doing more than what stated here. Like your
adding pm related structure which shouldn't be needed for just the
irq_chip.
more comments below,
> Signed-off-by: Gregory Bean <gbean at codeaurora.org>
> ---
> v4 - miscellaneous cleanup to patch 1/2, per pkondeti at codeaurora.org
> v3 - miscellaneous cleanup to patch 1/2, per baruch at tkos.co.il
> v2 - miscellaneous cleanup to patch 1/2, per baruch at tkos.co.il
>
> arch/arm/mach-msm/gpio-v2.c | 344 ++++++++++++++++++++++++++++++++++++++++---
> 1 files changed, 326 insertions(+), 18 deletions(-)
>
> diff --git a/arch/arm/mach-msm/gpio-v2.c b/arch/arm/mach-msm/gpio-v2.c
> index d907af6..926e3d0 100644
> --- a/arch/arm/mach-msm/gpio-v2.c
> +++ b/arch/arm/mach-msm/gpio-v2.c
> @@ -15,7 +15,11 @@
> * 02110-1301, USA.
> *
> */
> +#include <linux/bitmap.h>
> +#include <linux/bitops.h>
> #include <linux/gpio.h>
> +#include <linux/init.h>
> +#include <linux/interrupt.h>
> #include <linux/io.h>
> #include <linux/irq.h>
> #include <linux/module.h>
> @@ -31,17 +35,97 @@ enum {
> GPIO_OUT_BIT = 1
> };
>
> +/* Bits of interest in the GPIO_INTR_STATUS register.
> + */
> +enum {
> + INTR_STATUS_BIT = 0,
> +};
> +
> /* Bits of interest in the GPIO_CFG register.
> */
> enum {
> GPIO_OE_BIT = 9,
> };
>
> +/* Bits of interest in the GPIO_INTR_CFG register.
> + */
> +enum {
> + INTR_ENABLE_BIT = 0,
> + INTR_POL_CTL_BIT = 1,
> + INTR_DECT_CTL_BIT = 2,
> + INTR_RAW_STATUS_EN_BIT = 3,
> +};
> +
> +/* Codes of interest in GPIO_INTR_CFG_SU.
> + */
> +enum {
> + TARGET_PROC_SCORPION = 4,
> + TARGET_PROC_NONE = 7,
> +};
> +
> +/*
> + * When a GPIO triggers, two separate decisions are made, controlled
> + * by two separate flags.
> + *
> + * - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS
> + * register for that GPIO will be updated to reflect the triggering of that
> + * gpio. If this bit is 0, this register will not be updated.
> + * - Second, INTR_ENABLE controls whether an interrupt is triggered.
> + *
> + * If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt
> + * can be triggered but the status register will not reflect it.
> + */
> +#define INTR_RAW_STATUS_EN BIT(INTR_RAW_STATUS_EN_BIT)
> +#define INTR_ENABLE BIT(INTR_ENABLE_BIT)
> +#define INTR_DECT_CTL_EDGE BIT(INTR_DECT_CTL_BIT)
> +#define INTR_POL_CTL_HI BIT(INTR_POL_CTL_BIT
This is a little bit inconsistent .. Your using BIT() in this case, but
there are other cases where you define which bit and use BIT() in the
code.
> +#define GPIO_INTR_CFG_SU(gpio) (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio)))
> #define GPIO_CONFIG(gpio) (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio)))
> #define GPIO_IN_OUT(gpio) (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio)))
> +#define GPIO_INTR_CFG(gpio) (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio)))
> +#define GPIO_INTR_STATUS(gpio) (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio)))
> +
> +/**
> + * struct msm_gpio_dev: the MSM8660 SoC GPIO device structure
> + *
> + * @enabled_irqs: a bitmap used to optimize the summary-irq handler. By
> + * keeping track of which gpios are unmasked as irq sources, we avoid
> + * having to do readl calls on hundreds of iomapped registers each time
> + * the summary interrupt fires in order to locate the active interrupts.
> + *
> + * @wake_irqs: a bitmap for tracking which interrupt lines are enabled
> + * as wakeup sources. When the device is suspended, interrupts which are
> + * not wakeup sources are disabled.
> + *
> + * @dual_edge_irqs: a bitmap used to track which irqs are configured
> + * as dual-edge, as this is not supported by the hardware and requires
> + * some special handling in the driver.
> + */
> +struct msm_gpio_dev {
> + struct gpio_chip gpio_chip;
> + DECLARE_BITMAP(enabled_irqs, NR_GPIO_IRQS);
> + DECLARE_BITMAP(wake_irqs, NR_GPIO_IRQS);
> + DECLARE_BITMAP(dual_edge_irqs, NR_GPIO_IRQS);
> +};
>
> static DEFINE_SPINLOCK(tlmm_lock);
>
> +static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip)
> +{
> + return container_of(chip, struct msm_gpio_dev, gpio_chip);
> +}
> +
> +static inline void set_gpio_bits(unsigned n, void __iomem *reg)
> +{
> + writel(readl(reg) | n, reg);
> +}
> +
> +static inline void clr_gpio_bits(unsigned n, void __iomem *reg)
> +{
> + writel(readl(reg) & ~n, reg);
> +}
It seems these functions actually accept output from BIT(). It would be
safer to force these to accept the bit number then use BIT() inside this
function to translate. That way you wouldn't use "unsigned n" for the
argument you would use a named enum for the argument.
> static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
> {
> return readl(GPIO_IN_OUT(offset)) & BIT(GPIO_IN_BIT);
> @@ -57,8 +141,7 @@ static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
> unsigned long irq_flags;
>
> spin_lock_irqsave(&tlmm_lock, irq_flags);
> - writel(readl(GPIO_CONFIG(offset)) & ~BIT(GPIO_OE_BIT),
> - GPIO_CONFIG(offset));
> + clr_gpio_bits(BIT(GPIO_OE_BIT), GPIO_CONFIG(offset));
so in this case you just send in GPIO_OE_BIT , but you also need
GPIO_OE_BIT to be part of the same enum as all the other bits sent to
clr_gpio_bits/set_gpio_bits. I'd just use "clear_gpio_bits" for the
name, doesn't look like there's a good reason to shorten it.
> spin_unlock_irqrestore(&tlmm_lock, irq_flags);
> return 0;
> }
> @@ -71,8 +154,7 @@ static int msm_gpio_direction_output(struct gpio_chip *chip,
>
> spin_lock_irqsave(&tlmm_lock, irq_flags);
> msm_gpio_set(chip, offset, val);
> - writel(readl(GPIO_CONFIG(offset)) | BIT(GPIO_OE_BIT),
> - GPIO_CONFIG(offset));
> + set_gpio_bits(BIT(GPIO_OE_BIT), GPIO_CONFIG(offset));
> spin_unlock_irqrestore(&tlmm_lock, irq_flags);
> return 0;
> }
> @@ -87,30 +169,215 @@ static void msm_gpio_free(struct gpio_chip *chip, unsigned offset)
> msm_gpiomux_put(chip->base + offset);
> }
>
> -static struct gpio_chip msm_gpio = {
> - .base = 0,
> - .ngpio = NR_GPIO_IRQS,
> - .direction_input = msm_gpio_direction_input,
> - .direction_output = msm_gpio_direction_output,
> - .get = msm_gpio_get,
> - .set = msm_gpio_set,
> - .request = msm_gpio_request,
> - .free = msm_gpio_free,
> +static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
> +{
> + return MSM_GPIO_TO_INT(offset - chip->base);
> +}
Not chip->base + offset?
> +
> +static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
> +{
> + return irq - MSM_GPIO_TO_INT(chip->base);
> +}
> +
> +static struct msm_gpio_dev msm_gpio = {
> + .gpio_chip = {
> + .base = 0,
I guess it's fine to do "offset - chip->base" if base is always zero,
but why do subtraction at all.
> + .ngpio = NR_GPIO_IRQS,
> + .direction_input = msm_gpio_direction_input,
> + .direction_output = msm_gpio_direction_output,
> + .get = msm_gpio_get,
> + .set = msm_gpio_set,
> + .to_irq = msm_gpio_to_irq,
> + .request = msm_gpio_request,
> + .free = msm_gpio_free,
> + },
> +};
> +
> +/* For dual-edge interrupts in software, since the hardware has no
> + * such support:
> + *
> + * At appropriate moments, this function may be called to flip the polarity
> + * settings of both-edge irq lines to try and catch the next edge.
> + *
> + * The attempt is considered successful if:
> + * - the status bit goes high, indicating that an edge was caught, or
> + * - the input value of the gpio doesn't change during the attempt.
> + * If the value changes twice during the process, that would cause the first
> + * test to fail but would force the second, as two opposite
> + * transitions would cause a detection no matter the polarity setting.
> + *
> + * The do-loop tries to sledge-hammer closed the timing hole between
> + * the initial value-read and the polarity-write - if the line value changes
> + * during that window, an interrupt is lost, the new polarity setting is
> + * incorrect, and the first success test will fail, causing a retry.
> + *
> + * Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c.
> + */
> +static void msm_gpio_update_dual_edge_pos(unsigned gpio)
> +{
> + int loop_limit = 100;
> + unsigned val, val2, intstat;
> +
> + do {
> + val = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN_BIT);
> + if (val)
> + clr_gpio_bits(INTR_POL_CTL_HI, GPIO_INTR_CFG(gpio));
> + else
> + set_gpio_bits(INTR_POL_CTL_HI, GPIO_INTR_CFG(gpio));
> + val2 = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN_BIT);
> + intstat = readl(GPIO_INTR_STATUS(gpio)) & BIT(INTR_STATUS_BIT);
> + if (intstat || val == val2)
> + return;
> + } while (loop_limit-- > 0);
> + pr_err("%s: dual-edge irq failed to stabilize, "
> + "interrupts dropped. %#08x != %#08x\n",
> + __func__, val, val2);
You could set pr_fmt so it automatically adds the __func__ prefix.
Assuming you planned on adding more of these.
> +}
> +
> +static void msm_gpio_irq_ack(unsigned int irq)
> +{
> + int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, irq);
> +
> + writel(BIT(INTR_STATUS_BIT), GPIO_INTR_STATUS(gpio));
> + if (test_bit(gpio, msm_gpio.dual_edge_irqs))
> + msm_gpio_update_dual_edge_pos(gpio);
> +}
> +
> +static void msm_gpio_irq_mask(unsigned int irq)
> +{
> + int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, irq);
> + unsigned long irq_flags;
> +
> + spin_lock_irqsave(&tlmm_lock, irq_flags);
> + writel(TARGET_PROC_NONE, GPIO_INTR_CFG_SU(gpio));
> + clr_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
> + __clear_bit(gpio, msm_gpio.enabled_irqs);
> + spin_unlock_irqrestore(&tlmm_lock, irq_flags);
> +}
> +
> +static void msm_gpio_irq_unmask(unsigned int irq)
> +{
> + int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, irq);
> + unsigned long irq_flags;
> +
> + spin_lock_irqsave(&tlmm_lock, irq_flags);
> + __set_bit(gpio, msm_gpio.enabled_irqs);
> + set_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
I's just break this into two calls, or make another helper that to set
that accepts the mask and have set_gpio_bits call that. This here you
would just use the other helper. like set_gpio_bits calls
set_gpio_bits_mask() and you call the mask version here.
> + writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio));
> + spin_unlock_irqrestore(&tlmm_lock, irq_flags);
> +}
> +
> +static int msm_gpio_irq_set_type(unsigned int irq, unsigned int flow_type)
> +{
> + int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, irq);
> + unsigned long irq_flags;
> + uint32_t bits;
> +
> + spin_lock_irqsave(&tlmm_lock, irq_flags);
> +
> + bits = readl(GPIO_INTR_CFG(gpio));
> +
> + if (flow_type & IRQ_TYPE_EDGE_BOTH) {
> + bits |= INTR_DECT_CTL_EDGE;
> + irq_desc[irq].handle_irq = handle_edge_irq;
> + if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
> + __set_bit(gpio, msm_gpio.dual_edge_irqs);
> + else
> + __clear_bit(gpio, msm_gpio.dual_edge_irqs);
> + } else {
> + bits &= ~INTR_DECT_CTL_EDGE;
> + irq_desc[irq].handle_irq = handle_level_irq;
> + __clear_bit(gpio, msm_gpio.dual_edge_irqs);
> + }
> +
> + if (flow_type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH))
> + bits |= INTR_POL_CTL_HI;
> + else
> + bits &= ~INTR_POL_CTL_HI;
> +
> + writel(bits, GPIO_INTR_CFG(gpio));
> +
> + if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
> + msm_gpio_update_dual_edge_pos(gpio);
> +
> + spin_unlock_irqrestore(&tlmm_lock, irq_flags);
> +
> + return 0;
> +}
> +
> +/*
> + * When the summary IRQ is raised, any number of GPIO lines may be high.
> + * It is the job of the summary handler to find all those GPIO lines
> + * which have been set as summary IRQ lines and which are triggered,
> + * and to call their interrupt handlers.
> + */
> +static void msm_summary_irq_handler(unsigned int irq, struct irq_desc *desc)
> +{
> + unsigned long i;
> +
> + for (i = find_first_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
> + i < NR_GPIO_IRQS;
> + i = find_next_bit(msm_gpio.enabled_irqs, NR_GPIO_IRQS, i + 1)) {
> + if (readl(GPIO_INTR_STATUS(i)) & BIT(INTR_STATUS_BIT))
> + generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip,
> + i));
> + }
> + desc->chip->ack(irq);
> +}
> +
> +static int msm_gpio_irq_set_wake(unsigned int irq, unsigned int on)
> +{
> + int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, irq);
> +
> + if (on) {
> + if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
> + set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 1);
> + set_bit(gpio, msm_gpio.wake_irqs);
> + } else {
> + clear_bit(gpio, msm_gpio.wake_irqs);
> + if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
> + set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 0);
> + }
> +
> + return 0;
> +}
> +
> +static struct irq_chip msm_gpio_irq_chip = {
> + .name = "msmgpio",
> + .mask = msm_gpio_irq_mask,
> + .unmask = msm_gpio_irq_unmask,
> + .ack = msm_gpio_irq_ack,
> + .set_type = msm_gpio_irq_set_type,
> + .set_wake = msm_gpio_irq_set_wake,
> };
>
> static int __devinit msm_gpio_probe(struct platform_device *dev)
> {
> - int ret;
> + int i, irq, ret;
>
> - msm_gpio.label = dev->name;
> - ret = gpiochip_add(&msm_gpio);
> + bitmap_zero(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
> + bitmap_zero(msm_gpio.wake_irqs, NR_GPIO_IRQS);
> + bitmap_zero(msm_gpio.dual_edge_irqs, NR_GPIO_IRQS);
> + msm_gpio.gpio_chip.label = dev->name;
> + ret = gpiochip_add(&msm_gpio.gpio_chip);
> + if (ret < 0)
> + return ret;
>
> - return ret;
> + for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) {
> + irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
> + set_irq_chip(irq, &msm_gpio_irq_chip);
> + set_irq_handler(irq, handle_level_irq);
> + set_irq_flags(irq, IRQF_VALID);
> + }
> +
> + set_irq_chained_handler(TLMM_SCSS_SUMMARY_IRQ,
> + msm_summary_irq_handler);
> + return 0;
> }
>
> static int __devexit msm_gpio_remove(struct platform_device *dev)
> {
> - int ret = gpiochip_remove(&msm_gpio);
> + int ret = gpiochip_remove(&msm_gpio.gpio_chip);
>
> if (ret < 0)
> return ret;
> @@ -120,12 +387,53 @@ static int __devexit msm_gpio_remove(struct platform_device *dev)
> return 0;
> }
>
> +#ifdef CONFIG_PM
Then this I'd do a whole other patch for. Can this get used yet tho?
Daniel
--
Sent by an consultant of the Qualcomm Innovation Center, Inc.
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora
Forum.
More information about the linux-arm-kernel
mailing list