[PATCH] include: <linux/math64.h>: sync with upstream

Ahmad Fatoum ahmad at a3f.at
Tue Dec 29 07:32:54 EST 2020


The header implements definitions for the 64-bit division helpers
on 64-bit builds only. For 32-bit builds, it can only provide prototypes
and the actual implementation will need to come from elsewhere.

We didn't have any out-of-line definitions in barebox with the result
that functions like div_s64_rem() were so far only usable in
64-bit barebox builds. On 32-bit builds, they would result in a linker
error.

Import the Linux v5.11-rc1 generic out-of-line 64-bit math on 32-bit
implementation to fix this. While at it, synchronize the header to
reduce diff to upstream.

Signed-off-by: Ahmad Fatoum <ahmad at a3f.at>
---
 include/linux/math64.h | 211 +++++++++++++++++++++++++++++++++++-
 lib/Makefile           |   1 +
 lib/math/Makefile      |   1 +
 lib/math/div64.c       | 235 +++++++++++++++++++++++++++++++++++++++++
 4 files changed, 443 insertions(+), 5 deletions(-)
 create mode 100644 lib/math/Makefile
 create mode 100644 lib/math/div64.c

diff --git a/include/linux/math64.h b/include/linux/math64.h
index 71dd6d7109b7..e8b737e70e50 100644
--- a/include/linux/math64.h
+++ b/include/linux/math64.h
@@ -1,3 +1,4 @@
+/* SPDX-License-Identifier: GPL-2.0 */
 #ifndef _LINUX_MATH64_H
 #define _LINUX_MATH64_H
 
@@ -6,10 +7,16 @@
 
 #if BITS_PER_LONG == 64
 
-#define div64_long(x,y) div64_s64((x),(y))
+#define div64_long(x, y) div64_s64((x), (y))
+#define div64_ul(x, y)   div64_u64((x), (y))
 
 /**
  * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 32bit divisor
+ * @remainder: pointer to unsigned 32bit remainder
+ *
+ * Return: sets ``*remainder``, then returns dividend / divisor
  *
  * This is commonly provided by 32bit archs to provide an optimized 64bit
  * divide.
@@ -20,8 +27,13 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
 	return dividend / divisor;
 }
 
-/**
+/*
  * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 32bit divisor
+ * @remainder: pointer to signed 32bit remainder
+ *
+ * Return: sets ``*remainder``, then returns dividend / divisor
  */
 static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 {
@@ -29,16 +41,38 @@ static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 	return dividend / divisor;
 }
 
-/**
+/*
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 64bit divisor
+ * @remainder: pointer to unsigned 64bit remainder
+ *
+ * Return: sets ``*remainder``, then returns dividend / divisor
+ */
+static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+	*remainder = dividend % divisor;
+	return dividend / divisor;
+}
+
+/*
  * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 64bit divisor
+ *
+ * Return: dividend / divisor
  */
 static inline u64 div64_u64(u64 dividend, u64 divisor)
 {
 	return dividend / divisor;
 }
 
-/**
+/*
  * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 64bit divisor
+ *
+ * Return: dividend / divisor
  */
 static inline s64 div64_s64(s64 dividend, s64 divisor)
 {
@@ -47,7 +81,8 @@ static inline s64 div64_s64(s64 dividend, s64 divisor)
 
 #elif BITS_PER_LONG == 32
 
-#define div64_long(x,y) div_s64((x),(y))
+#define div64_long(x, y) div_s64((x), (y))
+#define div64_ul(x, y)   div_u64((x), (y))
 
 #ifndef div_u64_rem
 static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
@@ -61,6 +96,10 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
 extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
 #endif
 
+#ifndef div64_u64_rem
+extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
+#endif
+
 #ifndef div64_u64
 extern u64 div64_u64(u64 dividend, u64 divisor);
 #endif
@@ -73,6 +112,8 @@ extern s64 div64_s64(s64 dividend, s64 divisor);
 
 /**
  * div_u64 - unsigned 64bit divide with 32bit divisor
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 32bit divisor
  *
  * This is the most common 64bit divide and should be used if possible,
  * as many 32bit archs can optimize this variant better than a full 64bit
@@ -88,6 +129,8 @@ static inline u64 div_u64(u64 dividend, u32 divisor)
 
 /**
  * div_s64 - signed 64bit divide with 32bit divisor
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 32bit divisor
  */
 #ifndef div_s64
 static inline s64 div_s64(s64 dividend, s32 divisor)
@@ -99,6 +142,164 @@ static inline s64 div_s64(s64 dividend, s32 divisor)
 
 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
 
+#ifndef mul_u32_u32
+/*
+ * Many a GCC version messes this up and generates a 64x64 mult :-(
+ */
+static inline u64 mul_u32_u32(u32 a, u32 b)
+{
+	return (u64)a * b;
+}
+#endif
+
+#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
+
+#ifndef mul_u64_u32_shr
+static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
+{
+	return (u64)(((unsigned __int128)a * mul) >> shift);
+}
+#endif /* mul_u64_u32_shr */
+
+#ifndef mul_u64_u64_shr
+static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
+{
+	return (u64)(((unsigned __int128)a * mul) >> shift);
+}
+#endif /* mul_u64_u64_shr */
+
+#else
+
+#ifndef mul_u64_u32_shr
+static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
+{
+	u32 ah, al;
+	u64 ret;
+
+	al = a;
+	ah = a >> 32;
+
+	ret = mul_u32_u32(al, mul) >> shift;
+	if (ah)
+		ret += mul_u32_u32(ah, mul) << (32 - shift);
+
+	return ret;
+}
+#endif /* mul_u64_u32_shr */
+
+#ifndef mul_u64_u64_shr
+static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
+{
+	union {
+		u64 ll;
+		struct {
+#ifdef __BIG_ENDIAN
+			u32 high, low;
+#else
+			u32 low, high;
+#endif
+		} l;
+	} rl, rm, rn, rh, a0, b0;
+	u64 c;
+
+	a0.ll = a;
+	b0.ll = b;
+
+	rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
+	rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
+	rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
+	rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
+
+	/*
+	 * Each of these lines computes a 64-bit intermediate result into "c",
+	 * starting at bits 32-95.  The low 32-bits go into the result of the
+	 * multiplication, the high 32-bits are carried into the next step.
+	 */
+	rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
+	rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
+	rh.l.high = (c >> 32) + rh.l.high;
+
+	/*
+	 * The 128-bit result of the multiplication is in rl.ll and rh.ll,
+	 * shift it right and throw away the high part of the result.
+	 */
+	if (shift == 0)
+		return rl.ll;
+	if (shift < 64)
+		return (rl.ll >> shift) | (rh.ll << (64 - shift));
+	return rh.ll >> (shift & 63);
+}
+#endif /* mul_u64_u64_shr */
+
+#endif
+
+#ifndef mul_u64_u32_div
+static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
+{
+	union {
+		u64 ll;
+		struct {
+#ifdef __BIG_ENDIAN
+			u32 high, low;
+#else
+			u32 low, high;
+#endif
+		} l;
+	} u, rl, rh;
+
+	u.ll = a;
+	rl.ll = mul_u32_u32(u.l.low, mul);
+	rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
+
+	/* Bits 32-63 of the result will be in rh.l.low. */
+	rl.l.high = do_div(rh.ll, divisor);
+
+	/* Bits 0-31 of the result will be in rl.l.low.	*/
+	do_div(rl.ll, divisor);
+
+	rl.l.high = rh.l.low;
+	return rl.ll;
+}
+#endif /* mul_u64_u32_div */
+
+u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
+
+#define DIV64_U64_ROUND_UP(ll, d)	\
+	({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
+
+/**
+ * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
+ * @dividend: unsigned 64bit dividend
+ * @divisor: unsigned 64bit divisor
+ *
+ * Divide unsigned 64bit dividend by unsigned 64bit divisor
+ * and round to closest integer.
+ *
+ * Return: dividend / divisor rounded to nearest integer
+ */
+#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)	\
+	({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
+
+/*
+ * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
+ * @dividend: signed 64bit dividend
+ * @divisor: signed 32bit divisor
+ *
+ * Divide signed 64bit dividend by signed 32bit divisor
+ * and round to closest integer.
+ *
+ * Return: dividend / divisor rounded to nearest integer
+ */
+#define DIV_S64_ROUND_CLOSEST(dividend, divisor)(	\
+{							\
+	s64 __x = (dividend);				\
+	s32 __d = (divisor);				\
+	((__x > 0) == (__d > 0)) ?			\
+		div_s64((__x + (__d / 2)), __d) :	\
+		div_s64((__x - (__d / 2)), __d);	\
+}							\
+)
+
 static __always_inline u32
 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 {
diff --git a/lib/Makefile b/lib/Makefile
index ba6af6f2ab24..9c6f4133d77c 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -25,6 +25,7 @@ obj-y			+= cmdlinepart.o
 obj-y			+= recursive_action.o
 obj-y			+= make_directory.o
 obj-y			+= math.o
+obj-y			+= math/
 obj-$(CONFIG_XXHASH)	+= xxhash.o
 obj-$(CONFIG_BZLIB)	+= decompress_bunzip2.o
 obj-$(CONFIG_ZLIB)	+= decompress_inflate.o zlib_inflate/
diff --git a/lib/math/Makefile b/lib/math/Makefile
new file mode 100644
index 000000000000..3341a8e4744b
--- /dev/null
+++ b/lib/math/Makefile
@@ -0,0 +1 @@
+obj-y += div64.o
diff --git a/lib/math/div64.c b/lib/math/div64.c
new file mode 100644
index 000000000000..507de8216a3e
--- /dev/null
+++ b/lib/math/div64.c
@@ -0,0 +1,235 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2003 Bernardo Innocenti <bernie at develer.com>
+ *
+ * Based on former do_div() implementation from asm-parisc/div64.h:
+ *	Copyright (C) 1999 Hewlett-Packard Co
+ *	Copyright (C) 1999 David Mosberger-Tang <davidm at hpl.hp.com>
+ *
+ *
+ * Generic C version of 64bit/32bit division and modulo, with
+ * 64bit result and 32bit remainder.
+ *
+ * The fast case for (n>>32 == 0) is handled inline by do_div().
+ *
+ * Code generated for this function might be very inefficient
+ * for some CPUs. __div64_32() can be overridden by linking arch-specific
+ * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
+ * or by defining a preprocessor macro in arch/include/asm/div64.h.
+ */
+
+#include <linux/bitops.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/math64.h>
+#include <linux/log2.h>
+
+/* Not needed on 64bit architectures */
+#if BITS_PER_LONG == 32
+
+#ifndef __div64_32
+uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
+{
+	uint64_t rem = *n;
+	uint64_t b = base;
+	uint64_t res, d = 1;
+	uint32_t high = rem >> 32;
+
+	/* Reduce the thing a bit first */
+	res = 0;
+	if (high >= base) {
+		high /= base;
+		res = (uint64_t) high << 32;
+		rem -= (uint64_t) (high*base) << 32;
+	}
+
+	while ((int64_t)b > 0 && b < rem) {
+		b = b+b;
+		d = d+d;
+	}
+
+	do {
+		if (rem >= b) {
+			rem -= b;
+			res += d;
+		}
+		b >>= 1;
+		d >>= 1;
+	} while (d);
+
+	*n = res;
+	return rem;
+}
+EXPORT_SYMBOL(__div64_32);
+#endif
+
+/**
+ * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
+ * @dividend:	64bit dividend
+ * @divisor:	64bit divisor
+ * @remainder:  64bit remainder
+ */
+#ifndef div_s64_rem
+s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
+{
+	u64 quotient;
+
+	if (dividend < 0) {
+		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
+		*remainder = -*remainder;
+		if (divisor > 0)
+			quotient = -quotient;
+	} else {
+		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
+		if (divisor < 0)
+			quotient = -quotient;
+	}
+	return quotient;
+}
+EXPORT_SYMBOL(div_s64_rem);
+#endif
+
+/**
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend:	64bit dividend
+ * @divisor:	64bit divisor
+ * @remainder:  64bit remainder
+ *
+ * This implementation is a comparable to algorithm used by div64_u64.
+ * But this operation, which includes math for calculating the remainder,
+ * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
+ * systems.
+ */
+#ifndef div64_u64_rem
+u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+	u32 high = divisor >> 32;
+	u64 quot;
+
+	if (high == 0) {
+		u32 rem32;
+		quot = div_u64_rem(dividend, divisor, &rem32);
+		*remainder = rem32;
+	} else {
+		int n = fls(high);
+		quot = div_u64(dividend >> n, divisor >> n);
+
+		if (quot != 0)
+			quot--;
+
+		*remainder = dividend - quot * divisor;
+		if (*remainder >= divisor) {
+			quot++;
+			*remainder -= divisor;
+		}
+	}
+
+	return quot;
+}
+EXPORT_SYMBOL(div64_u64_rem);
+#endif
+
+/**
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend:	64bit dividend
+ * @divisor:	64bit divisor
+ *
+ * This implementation is a modified version of the algorithm proposed
+ * by the book 'Hacker's Delight'.  The original source and full proof
+ * can be found here and is available for use without restriction.
+ *
+ * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
+ */
+#ifndef div64_u64
+u64 div64_u64(u64 dividend, u64 divisor)
+{
+	u32 high = divisor >> 32;
+	u64 quot;
+
+	if (high == 0) {
+		quot = div_u64(dividend, divisor);
+	} else {
+		int n = fls(high);
+		quot = div_u64(dividend >> n, divisor >> n);
+
+		if (quot != 0)
+			quot--;
+		if ((dividend - quot * divisor) >= divisor)
+			quot++;
+	}
+
+	return quot;
+}
+EXPORT_SYMBOL(div64_u64);
+#endif
+
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend:	64bit dividend
+ * @divisor:	64bit divisor
+ */
+#ifndef div64_s64
+s64 div64_s64(s64 dividend, s64 divisor)
+{
+	s64 quot, t;
+
+	quot = div64_u64(abs(dividend), abs(divisor));
+	t = (dividend ^ divisor) >> 63;
+
+	return (quot ^ t) - t;
+}
+EXPORT_SYMBOL(div64_s64);
+#endif
+
+#endif /* BITS_PER_LONG == 32 */
+
+/*
+ * Iterative div/mod for use when dividend is not expected to be much
+ * bigger than divisor.
+ */
+u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
+{
+	return __iter_div_u64_rem(dividend, divisor, remainder);
+}
+EXPORT_SYMBOL(iter_div_u64_rem);
+
+#ifndef mul_u64_u64_div_u64
+u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
+{
+	u64 res = 0, div, rem;
+	int shift;
+
+	/* can a * b overflow ? */
+	if (ilog2(a) + ilog2(b) > 62) {
+		/*
+		 * (b * a) / c is equal to
+		 *
+		 *      (b / c) * a +
+		 *      (b % c) * a / c
+		 *
+		 * if nothing overflows. Can the 1st multiplication
+		 * overflow? Yes, but we do not care: this can only
+		 * happen if the end result can't fit in u64 anyway.
+		 *
+		 * So the code below does
+		 *
+		 *      res = (b / c) * a;
+		 *      b = b % c;
+		 */
+		div = div64_u64_rem(b, c, &rem);
+		res = div * a;
+		b = rem;
+
+		shift = ilog2(a) + ilog2(b) - 62;
+		if (shift > 0) {
+			/* drop precision */
+			b >>= shift;
+			c >>= shift;
+			if (!c)
+				return res;
+		}
+	}
+
+	return res + div64_u64(a * b, c);
+}
+#endif
-- 
2.29.2




More information about the barebox mailing list