[PATCH] net: Add Intel e1000 driver

Sascha Hauer s.hauer at pengutronix.de
Mon Mar 16 23:58:44 PDT 2015


This adds the Intel e1000 driver from U-Boot. The driver looks in parts
quite similar to the kernel driver, I don't know whether one is derived
from the other or if they both just have the same origin.

Many coding style related issues are fixed, the code is simplified in
several places. All features of the original driver should still be there,
only fiber support is disabled since it's quite unlikely that this is
used in barebox.

The driver has been tested with the i.MX6 PCIe driver and a I210 e1000
device (0x8086:0x1533)

Signed-off-by: Sascha Hauer <s.hauer at pengutronix.de>
---

No, you shouldn't review this code. For sanity reasons you better do not
look at it at all. You've been warned.

 drivers/net/Kconfig  |    8 +
 drivers/net/Makefile |    1 +
 drivers/net/e1000.c  | 4455 ++++++++++++++++++++++++++++++++++++++++++++++++++
 drivers/net/e1000.h  | 2093 ++++++++++++++++++++++++
 4 files changed, 6557 insertions(+)
 create mode 100644 drivers/net/e1000.c
 create mode 100644 drivers/net/e1000.h

diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index 42ffa65..41f033f 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -76,6 +76,14 @@ config DRIVER_NET_DM9K
 	depends on HAS_DM9000
 	select PHYLIB
 
+config DRIVER_NET_E1000
+	bool "Intel e1000 ethernet driver"
+	depends on PCI
+	select PHYLIB
+	help
+	  This is a driver for the Gigabit Ethernet PCI network cards based on
+	  the Intel e1000 chips.
+
 config DRIVER_NET_ENC28J60
 	bool "ENC28J60 support"
 	depends on SPI
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 75a70be..f53cb80 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -10,6 +10,7 @@ obj-$(CONFIG_DRIVER_NET_CPSW)		+= cpsw.o
 obj-$(CONFIG_DRIVER_NET_DAVINCI_EMAC)	+= davinci_emac.o
 obj-$(CONFIG_DRIVER_NET_DESIGNWARE)	+= designware.o
 obj-$(CONFIG_DRIVER_NET_DM9K)		+= dm9k.o
+obj-$(CONFIG_DRIVER_NET_E1000)		+= e1000.o
 obj-$(CONFIG_DRIVER_NET_ENC28J60)	+= enc28j60.o
 obj-$(CONFIG_DRIVER_NET_EP93XX)		+= ep93xx.o
 obj-$(CONFIG_DRIVER_NET_ETHOC)		+= ethoc.o
diff --git a/drivers/net/e1000.c b/drivers/net/e1000.c
new file mode 100644
index 0000000..ab9e45c
--- /dev/null
+++ b/drivers/net/e1000.c
@@ -0,0 +1,4455 @@
+/**************************************************************************
+Intel Pro 1000 for ppcboot/das-u-boot
+Drivers are port from Intel's Linux driver e1000-4.3.15
+and from Etherboot pro 1000 driver by mrakes at vivato dot net
+tested on both gig copper and gig fiber boards
+***************************************************************************/
+/*******************************************************************************
+
+
+  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+
+ * SPDX-License-Identifier:	GPL-2.0+
+
+  Contact Information:
+  Linux NICS <linux.nics at intel.com>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+/*
+ *  Copyright (C) Archway Digital Solutions.
+ *
+ *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
+ *  2/9/2002
+ *
+ *  Copyright (C) Linux Networx.
+ *  Massive upgrade to work with the new intel gigabit NICs.
+ *  <ebiederman at lnxi dot com>
+ *
+ *  Copyright 2011 Freescale Semiconductor, Inc.
+ */
+
+#include <common.h>
+#include <init.h>
+#include <net.h>
+#include <malloc.h>
+#include <linux/pci.h>
+#include <dma.h>
+#include "e1000.h"
+
+static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr)
+{
+	return (u32)adr;
+}
+
+#define PCI_VENDOR_ID_INTEL	0x8086
+
+struct e1000_hw {
+	struct eth_device edev;
+
+	struct pci_dev *pdev;
+	struct device_d *dev;
+
+	void __iomem *hw_addr;
+
+	e1000_mac_type mac_type;
+	e1000_phy_type phy_type;
+	uint32_t txd_cmd;
+	e1000_media_type media_type;
+	e1000_fc_type fc;
+	struct e1000_eeprom_info eeprom;
+	uint32_t phy_id;
+	uint32_t phy_revision;
+	uint32_t original_fc;
+	uint32_t autoneg_failed;
+	uint16_t autoneg_advertised;
+	uint16_t pci_cmd_word;
+	uint16_t device_id;
+	uint16_t vendor_id;
+	uint8_t revision_id;
+	struct mii_bus miibus;
+
+	struct e1000_tx_desc *tx_base;
+	struct e1000_rx_desc *rx_base;
+	unsigned char *packet;
+
+	int tx_tail;
+	int rx_tail, rx_last;
+};
+
+/* Function forward declarations */
+static int e1000_setup_link(struct e1000_hw *hw);
+static int e1000_setup_fiber_link(struct e1000_hw *hw);
+static int e1000_setup_copper_link(struct e1000_hw *hw);
+static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
+static void e1000_config_collision_dist(struct e1000_hw *hw);
+static int e1000_config_mac_to_phy(struct e1000_hw *hw);
+static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static int e1000_wait_autoneg(struct e1000_hw *hw);
+static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
+				       uint16_t *duplex);
+static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+			      uint16_t *phy_data);
+static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+			       uint16_t phy_data);
+static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
+static int e1000_phy_reset(struct e1000_hw *hw);
+static int e1000_detect_gig_phy(struct e1000_hw *hw);
+static void e1000_set_media_type(struct e1000_hw *hw);
+
+static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
+
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+		uint16_t words,
+		uint16_t *data);
+
+static bool e1000_media_copper(struct e1000_hw *hw)
+{
+	if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
+		return 1;
+
+	return hw->media_type == e1000_media_type_copper;
+}
+
+static bool e1000_media_fiber(struct e1000_hw *hw)
+{
+	if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
+		return 0;
+
+	return hw->media_type == e1000_media_type_fiber;
+}
+
+static bool e1000_media_fiber_serdes(struct e1000_hw *hw)
+{
+	if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
+		return 0;
+
+	return hw->media_type == e1000_media_type_fiber ||
+		hw->media_type == e1000_media_type_internal_serdes;
+}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
+{
+	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd | E1000_EECD_SK;
+	E1000_WRITE_REG(hw, EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	udelay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd)
+{
+	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd & ~E1000_EECD_SK;
+	E1000_WRITE_REG(hw, EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	udelay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
+{
+	uint32_t eecd;
+	uint32_t mask;
+
+	/* We need to shift "count" bits out to the EEPROM. So, value in the
+	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
+	 * In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01 << (count - 1);
+	eecd = E1000_READ_REG(hw, EECD);
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	do {
+		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+		 * and then raising and then lowering the clock (the SK bit controls
+		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+		 * by setting "DI" to "0" and then raising and then lowering the clock.
+		 */
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+
+		udelay(50);
+
+		e1000_raise_ee_clk(hw, &eecd);
+		e1000_lower_ee_clk(hw, &eecd);
+
+		mask = mask >> 1;
+
+	} while (mask);
+
+	/* We leave the "DI" bit set to "0" when we leave this routine. */
+	eecd &= ~E1000_EECD_DI;
+	E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
+{
+	uint32_t eecd;
+	uint32_t i;
+	uint16_t data;
+
+	/* In order to read a register from the EEPROM, we need to shift 'count'
+	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+	 * input to the EEPROM (setting the SK bit), and then reading the
+	 * value of the "DO" bit.  During this "shifting in" process the
+	 * "DI" bit should always be clear.
+	 */
+
+	eecd = E1000_READ_REG(hw, EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data = data << 1;
+		e1000_raise_ee_clk(hw, &eecd);
+
+		eecd = E1000_READ_REG(hw, EECD);
+
+		eecd &= ~(E1000_EECD_DI);
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_standby_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	uint32_t eecd;
+
+	eecd = E1000_READ_REG(hw, EECD);
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(eeprom->delay_usec);
+
+		/* Clock high */
+		eecd |= E1000_EECD_SK;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(eeprom->delay_usec);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(eeprom->delay_usec);
+
+		/* Clock low */
+		eecd &= ~E1000_EECD_SK;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(eeprom->delay_usec);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(eeprom->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(eeprom->delay_usec);
+	}
+}
+
+/***************************************************************************
+* Description:     Determines if the onboard NVM is FLASH or EEPROM.
+*
+* hw - Struct containing variables accessed by shared code
+****************************************************************************/
+static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
+{
+	uint32_t eecd = 0;
+
+	DEBUGFUNC();
+
+	if (hw->mac_type == e1000_ich8lan)
+		return false;
+
+	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
+		eecd = E1000_READ_REG(hw, EECD);
+
+		/* Isolate bits 15 & 16 */
+		eecd = ((eecd >> 15) & 0x03);
+
+		/* If both bits are set, device is Flash type */
+		if (eecd == 0x03)
+			return false;
+	}
+	return true;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	uint32_t eecd, i = 0;
+
+	DEBUGFUNC();
+
+	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
+		return -E1000_ERR_SWFW_SYNC;
+	eecd = E1000_READ_REG(hw, EECD);
+
+	/* Request EEPROM Access */
+	if (hw->mac_type > e1000_82544 && hw->mac_type != e1000_82573 &&
+			hw->mac_type != e1000_82574) {
+		eecd |= E1000_EECD_REQ;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		eecd = E1000_READ_REG(hw, EECD);
+		while ((!(eecd & E1000_EECD_GNT)) &&
+			(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+			i++;
+			udelay(5);
+			eecd = E1000_READ_REG(hw, EECD);
+		}
+		if (!(eecd & E1000_EECD_GNT)) {
+			eecd &= ~E1000_EECD_REQ;
+			E1000_WRITE_REG(hw, EECD, eecd);
+			dev_dbg(hw->dev, "Could not acquire EEPROM grant\n");
+			return -E1000_ERR_EEPROM;
+		}
+	}
+
+	/* Setup EEPROM for Read/Write */
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, EECD, eecd);
+
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, EECD, eecd);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, EECD, eecd);
+		udelay(1);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.  Additionally, if this is ICH8, the flash controller GbE
+ * registers must be mapped, or this will crash.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	uint32_t eecd;
+	int32_t ret_val = E1000_SUCCESS;
+	uint16_t eeprom_size;
+
+	if (hw->mac_type == e1000_igb)
+		eecd = E1000_READ_REG(hw, I210_EECD);
+	else
+		eecd = E1000_READ_REG(hw, EECD);
+
+	DEBUGFUNC();
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->word_size = 64;
+		eeprom->opcode_bits = 3;
+		eeprom->address_bits = 6;
+		eeprom->delay_usec = 50;
+		eeprom->use_eerd = false;
+		eeprom->use_eewr = false;
+	break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->opcode_bits = 3;
+		eeprom->delay_usec = 50;
+		if (eecd & E1000_EECD_SIZE) {
+			eeprom->word_size = 256;
+			eeprom->address_bits = 8;
+		} else {
+			eeprom->word_size = 64;
+			eeprom->address_bits = 6;
+		}
+		eeprom->use_eerd = false;
+		eeprom->use_eewr = false;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (eecd & E1000_EECD_TYPE) {
+			eeprom->type = e1000_eeprom_spi;
+			eeprom->opcode_bits = 8;
+			eeprom->delay_usec = 1;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->page_size = 32;
+				eeprom->address_bits = 16;
+			} else {
+				eeprom->page_size = 8;
+				eeprom->address_bits = 8;
+			}
+		} else {
+			eeprom->type = e1000_eeprom_microwire;
+			eeprom->opcode_bits = 3;
+			eeprom->delay_usec = 50;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->word_size = 256;
+				eeprom->address_bits = 8;
+			} else {
+				eeprom->word_size = 64;
+				eeprom->address_bits = 6;
+			}
+		}
+		eeprom->use_eerd = false;
+		eeprom->use_eewr = false;
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		eeprom->type = e1000_eeprom_spi;
+		eeprom->opcode_bits = 8;
+		eeprom->delay_usec = 1;
+		if (eecd & E1000_EECD_ADDR_BITS) {
+			eeprom->page_size = 32;
+			eeprom->address_bits = 16;
+		} else {
+			eeprom->page_size = 8;
+			eeprom->address_bits = 8;
+		}
+		eeprom->use_eerd = false;
+		eeprom->use_eewr = false;
+		break;
+	case e1000_82573:
+	case e1000_82574:
+		eeprom->type = e1000_eeprom_spi;
+		eeprom->opcode_bits = 8;
+		eeprom->delay_usec = 1;
+		if (eecd & E1000_EECD_ADDR_BITS) {
+			eeprom->page_size = 32;
+			eeprom->address_bits = 16;
+		} else {
+			eeprom->page_size = 8;
+			eeprom->address_bits = 8;
+		}
+		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
+			eeprom->use_eerd = true;
+			eeprom->use_eewr = true;
+
+			eeprom->type = e1000_eeprom_flash;
+			eeprom->word_size = 2048;
+
+		/* Ensure that the Autonomous FLASH update bit is cleared due to
+		 * Flash update issue on parts which use a FLASH for NVM. */
+			eecd &= ~E1000_EECD_AUPDEN;
+			E1000_WRITE_REG(hw, EECD, eecd);
+		}
+		break;
+	case e1000_80003es2lan:
+		eeprom->type = e1000_eeprom_spi;
+		eeprom->opcode_bits = 8;
+		eeprom->delay_usec = 1;
+		if (eecd & E1000_EECD_ADDR_BITS) {
+			eeprom->page_size = 32;
+			eeprom->address_bits = 16;
+		} else {
+			eeprom->page_size = 8;
+			eeprom->address_bits = 8;
+		}
+		eeprom->use_eerd = true;
+		eeprom->use_eewr = false;
+		break;
+	case e1000_igb:
+		/* i210 has 4k of iNVM mapped as EEPROM */
+		eeprom->type = e1000_eeprom_invm;
+		eeprom->opcode_bits = 8;
+		eeprom->delay_usec = 1;
+		eeprom->page_size = 32;
+		eeprom->address_bits = 16;
+		eeprom->use_eerd = true;
+		eeprom->use_eewr = false;
+		break;
+	default:
+		break;
+	}
+
+	if (eeprom->type == e1000_eeprom_spi ||
+	    eeprom->type == e1000_eeprom_invm) {
+		/* eeprom_size will be an enum [0..8] that maps
+		 * to eeprom sizes 128B to
+		 * 32KB (incremented by powers of 2).
+		 */
+		if (hw->mac_type <= e1000_82547_rev_2) {
+			/* Set to default value for initial eeprom read. */
+			eeprom->word_size = 64;
+			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
+					&eeprom_size);
+			if (ret_val)
+				return ret_val;
+			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
+				>> EEPROM_SIZE_SHIFT;
+			/* 256B eeprom size was not supported in earlier
+			 * hardware, so we bump eeprom_size up one to
+			 * ensure that "1" (which maps to 256B) is never
+			 * the result used in the shifting logic below. */
+			if (eeprom_size)
+				eeprom_size++;
+		} else {
+			eeprom_size = (uint16_t)((eecd &
+				E1000_EECD_SIZE_EX_MASK) >>
+				E1000_EECD_SIZE_EX_SHIFT);
+		}
+
+		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+	}
+	return ret_val;
+}
+
+/******************************************************************************
+ * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+{
+	uint32_t attempts = 100000;
+	uint32_t i, reg = 0;
+	int32_t done = E1000_ERR_EEPROM;
+
+	for (i = 0; i < attempts; i++) {
+		if (eerd == E1000_EEPROM_POLL_READ) {
+			if (hw->mac_type == e1000_igb)
+				reg = E1000_READ_REG(hw, I210_EERD);
+			else
+				reg = E1000_READ_REG(hw, EERD);
+		} else {
+			if (hw->mac_type == e1000_igb)
+				reg = E1000_READ_REG(hw, I210_EEWR);
+			else
+				reg = E1000_READ_REG(hw, EEWR);
+		}
+
+		if (reg & E1000_EEPROM_RW_REG_DONE) {
+			done = E1000_SUCCESS;
+			break;
+		}
+		udelay(5);
+	}
+
+	return done;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw,
+			uint16_t offset,
+			uint16_t words,
+			uint16_t *data)
+{
+	uint32_t i, eerd = 0;
+	int32_t error = 0;
+
+	for (i = 0; i < words; i++) {
+		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+			E1000_EEPROM_RW_REG_START;
+
+		if (hw->mac_type == e1000_igb)
+			E1000_WRITE_REG(hw, I210_EERD, eerd);
+		else
+			E1000_WRITE_REG(hw, EERD, eerd);
+
+		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+
+		if (error)
+			break;
+
+		if (hw->mac_type == e1000_igb) {
+			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
+				E1000_EEPROM_RW_REG_DATA);
+		} else {
+			data[i] = (E1000_READ_REG(hw, EERD) >>
+				E1000_EEPROM_RW_REG_DATA);
+		}
+
+	}
+
+	return error;
+}
+
+static void e1000_release_eeprom(struct e1000_hw *hw)
+{
+	uint32_t eecd;
+
+	DEBUGFUNC();
+
+	eecd = E1000_READ_REG(hw, EECD);
+
+	if (hw->eeprom.type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_CS;  /* Pull CS high */
+		eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+		E1000_WRITE_REG(hw, EECD, eecd);
+
+		udelay(hw->eeprom.delay_usec);
+	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
+		/* cleanup eeprom */
+
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+		E1000_WRITE_REG(hw, EECD, eecd);
+
+		/* Rising edge of clock */
+		eecd |= E1000_EECD_SK;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(hw->eeprom.delay_usec);
+
+		/* Falling edge of clock */
+		eecd &= ~E1000_EECD_SK;
+		E1000_WRITE_REG(hw, EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		udelay(hw->eeprom.delay_usec);
+	}
+
+	/* Stop requesting EEPROM access */
+	if (hw->mac_type > e1000_82544) {
+		eecd &= ~E1000_EECD_REQ;
+		E1000_WRITE_REG(hw, EECD, eecd);
+	}
+}
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+	uint16_t retry_count = 0;
+	uint8_t spi_stat_reg;
+
+	DEBUGFUNC();
+
+	/* Read "Status Register" repeatedly until the LSB is cleared.  The
+	 * EEPROM will signal that the command has been completed by clearing
+	 * bit 0 of the internal status register.  If it's not cleared within
+	 * 5 milliseconds, then error out.
+	 */
+	retry_count = 0;
+	do {
+		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+			hw->eeprom.opcode_bits);
+		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+			break;
+
+		udelay(5);
+		retry_count += 5;
+
+		e1000_standby_eeprom(hw);
+	} while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+	 * only 0-5mSec on 5V devices)
+	 */
+	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+		dev_dbg(hw->dev, "SPI EEPROM Status error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM
+ *****************************************************************************/
+static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
+		uint16_t words, uint16_t *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	uint32_t i = 0;
+
+	DEBUGFUNC();
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= eeprom->word_size) ||
+		(words > eeprom->word_size - offset) ||
+		(words == 0)) {
+		dev_dbg(hw->dev, "\"words\" parameter out of bounds."
+			"Words = %d, size = %d\n", offset, eeprom->word_size);
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+	 * directly. In this case, we need to acquire the EEPROM so that
+	 * FW or other port software does not interrupt.
+	 */
+	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
+		hw->eeprom.use_eerd == false) {
+
+		/* Prepare the EEPROM for bit-bang reading */
+		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+			return -E1000_ERR_EEPROM;
+	}
+
+	/* Eerd register EEPROM access requires no eeprom aquire/release */
+	if (eeprom->use_eerd == true)
+		return e1000_read_eeprom_eerd(hw, offset, words, data);
+
+	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+	 * acquired the EEPROM at this point, so any returns should relase it */
+	if (eeprom->type == e1000_eeprom_spi) {
+		uint16_t word_in;
+		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw)) {
+			e1000_release_eeprom(hw);
+			return -E1000_ERR_EEPROM;
+		}
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in
+		 * the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the READ command (opcode + addr)  */
+		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
+				eeprom->address_bits);
+
+		/* Read the data.  The address of the eeprom internally
+		 * increments with each byte (spi) being read, saving on the
+		 * overhead of eeprom setup and tear-down.  The address
+		 * counter will roll over if reading beyond the size of
+		 * the eeprom, thus allowing the entire memory to be read
+		 * starting from any offset. */
+		for (i = 0; i < words; i++) {
+			word_in = e1000_shift_in_ee_bits(hw, 16);
+			data[i] = (word_in >> 8) | (word_in << 8);
+		}
+	} else if (eeprom->type == e1000_eeprom_microwire) {
+		for (i = 0; i < words; i++) {
+			/* Send the READ command (opcode + addr)  */
+			e1000_shift_out_ee_bits(hw,
+				EEPROM_READ_OPCODE_MICROWIRE,
+				eeprom->opcode_bits);
+			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+				eeprom->address_bits);
+
+			/* Read the data.  For microwire, each word requires
+			 * the overhead of eeprom setup and tear-down. */
+			data[i] = e1000_shift_in_ee_bits(hw, 16);
+			e1000_standby_eeprom(hw);
+		}
+	}
+
+	/* End this read operation */
+	e1000_release_eeprom(hw);
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+	uint16_t i, checksum, checksum_reg;
+	uint16_t buf[EEPROM_CHECKSUM_REG + 1];
+
+	DEBUGFUNC();
+
+	/* Read the EEPROM */
+	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
+		dev_err(&hw->edev.dev, "Unable to read EEPROM!\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* Compute the checksum */
+	checksum = 0;
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+		checksum += buf[i];
+	checksum = ((uint16_t)EEPROM_SUM) - checksum;
+	checksum_reg = buf[i];
+
+	/* Verify it! */
+	if (checksum == checksum_reg)
+		return 0;
+
+	/* Hrm, verification failed, print an error */
+	dev_err(&hw->edev.dev, "EEPROM checksum is incorrect!\n");
+	dev_err(&hw->edev.dev, "  ...register was 0x%04hx, calculated 0x%04hx\n",
+			checksum_reg, checksum);
+
+	return -E1000_ERR_EEPROM;
+}
+
+/*****************************************************************************
+ * Set PHY to class A mode
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ ****************************************************************************/
+static int32_t e1000_set_phy_mode(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t eeprom_data;
+
+	DEBUGFUNC();
+
+	if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
+				1, &eeprom_data);
+		if (ret_val)
+			return ret_val;
+
+		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+			(eeprom_data & EEPROM_PHY_CLASS_A)) {
+			ret_val = e1000_write_phy_reg(hw,
+					M88E1000_PHY_PAGE_SELECT, 0x000B);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_write_phy_reg(hw,
+					M88E1000_PHY_GEN_CONTROL, 0x8104);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+	return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Obtaining software semaphore bit (SMBI) before resetting PHY.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to obtain semaphore.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t e1000_get_software_semaphore(struct e1000_hw *hw)
+{
+	 int32_t timeout = hw->eeprom.word_size + 1;
+	 uint32_t swsm;
+
+	DEBUGFUNC();
+
+	swsm = E1000_READ_REG(hw, SWSM);
+	swsm &= ~E1000_SWSM_SMBI;
+	E1000_WRITE_REG(hw, SWSM, swsm);
+
+	if (hw->mac_type != e1000_80003es2lan)
+		return E1000_SUCCESS;
+
+	while (timeout) {
+		swsm = E1000_READ_REG(hw, SWSM);
+		/* If SMBI bit cleared, it is now set and we hold
+		 * the semaphore */
+		if (!(swsm & E1000_SWSM_SMBI))
+			return 0;
+		mdelay(1);
+		timeout--;
+	}
+
+	dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n");
+	return -E1000_ERR_RESET;
+}
+
+/***************************************************************************
+ * This function clears HW semaphore bits.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - None.
+ *
+ ***************************************************************************/
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+	uint32_t swsm;
+
+	swsm = E1000_READ_REG(hw, SWSM);
+
+	if (hw->mac_type == e1000_80003es2lan)
+		/* Release both semaphores. */
+		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+	else
+		swsm &= ~(E1000_SWSM_SWESMBI);
+
+	E1000_WRITE_REG(hw, SWSM, swsm);
+}
+
+/***************************************************************************
+ *
+ * Using the combination of SMBI and SWESMBI semaphore bits when resetting
+ * adapter or Eeprom access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+	int32_t timeout;
+	uint32_t swsm;
+
+	if (hw->mac_type == e1000_80003es2lan) {
+		/* Get the SW semaphore. */
+		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
+			return -E1000_ERR_EEPROM;
+	}
+
+	/* Get the FW semaphore. */
+	timeout = hw->eeprom.word_size + 1;
+	while (timeout) {
+		swsm = E1000_READ_REG(hw, SWSM);
+		swsm |= E1000_SWSM_SWESMBI;
+		E1000_WRITE_REG(hw, SWSM, swsm);
+		/* if we managed to set the bit we got the semaphore. */
+		swsm = E1000_READ_REG(hw, SWSM);
+		if (swsm & E1000_SWSM_SWESMBI)
+			break;
+
+		udelay(50);
+		timeout--;
+	}
+
+	if (!timeout) {
+		/* Release semaphores */
+		e1000_put_hw_eeprom_semaphore(hw);
+		dev_dbg(hw->dev, "Driver can't access the Eeprom - "
+				"SWESMBI bit is set.\n");
+		return -E1000_ERR_EEPROM;
+	}
+	return E1000_SUCCESS;
+}
+
+static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
+{
+	uint32_t swfw_sync = 0;
+	uint32_t swmask = mask;
+	uint32_t fwmask = mask << 16;
+	int32_t timeout = 200;
+
+	DEBUGFUNC();
+	while (timeout) {
+		if (e1000_get_hw_eeprom_semaphore(hw))
+			return -E1000_ERR_SWFW_SYNC;
+
+		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/* firmware currently using resource (fwmask) */
+		/* or other software thread currently using resource (swmask) */
+		e1000_put_hw_eeprom_semaphore(hw);
+		mdelay(5);
+		timeout--;
+	}
+
+	if (!timeout) {
+		dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n");
+		return -E1000_ERR_SWFW_SYNC;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_eeprom_semaphore(hw);
+	return E1000_SUCCESS;
+}
+
+static bool e1000_is_second_port(struct e1000_hw *hw)
+{
+	switch (hw->mac_type) {
+	case e1000_80003es2lan:
+	case e1000_82546:
+	case e1000_82571:
+		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+			return true;
+		/* Fallthrough */
+	default:
+		return false;
+	}
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * edev - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr)
+{
+	struct e1000_hw *hw = edev->priv;
+	uint16_t eeprom_data;
+	uint32_t reg_data = 0;
+	int i;
+
+	DEBUGFUNC();
+
+	if (hw->mac_type == e1000_igb) {
+		/* i210 preloads MAC address into RAL/RAH registers */
+		reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
+		adr[0] = reg_data & 0xff;
+		adr[1] = (reg_data >> 8) & 0xff;
+		adr[2] = (reg_data >> 16) & 0xff;
+		adr[3] = (reg_data >> 24) & 0xff;
+		reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
+		adr[4] = reg_data & 0xff;
+		adr[5] = (reg_data >> 8) & 0xff;
+		return 0;
+	}
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+		if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) {
+			dev_dbg(hw->dev, "EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		adr[i] = eeprom_data & 0xff;
+		adr[i + 1] = (eeprom_data >> 8) & 0xff;
+	}
+
+	/* Invert the last bit if this is the second device */
+	if (e1000_is_second_port(hw))
+		adr[5] ^= 1;
+
+	return 0;
+}
+
+static int e1000_set_ethaddr(struct eth_device *edev, unsigned char *adr)
+{
+	struct e1000_hw *hw = edev->priv;
+	uint32_t addr_low;
+	uint32_t addr_high;
+
+	DEBUGFUNC();
+
+	dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n");
+
+	addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24));
+	addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV);
+
+	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+	return 0;
+}
+
+/******************************************************************************
+ * Clears the VLAN filter table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	uint32_t offset;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t e1000_set_mac_type(struct e1000_hw *hw)
+{
+	DEBUGFUNC();
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		switch (hw->revision_id) {
+		case E1000_82542_2_0_REV_ID:
+			hw->mac_type = e1000_82542_rev2_0;
+			break;
+		case E1000_82542_2_1_REV_ID:
+			hw->mac_type = e1000_82542_rev2_1;
+			break;
+		default:
+			/* Invalid 82542 revision ID */
+			return -E1000_ERR_MAC_TYPE;
+		}
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		hw->mac_type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		hw->mac_type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		hw->mac_type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		hw->mac_type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		hw->mac_type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		hw->mac_type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		hw->mac_type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		hw->mac_type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		hw->mac_type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		hw->mac_type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		hw->mac_type = e1000_82547_rev_2;
+		break;
+	case E1000_DEV_ID_82571EB_COPPER:
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
+		hw->mac_type = e1000_82571;
+		break;
+	case E1000_DEV_ID_82572EI_COPPER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82572EI_SERDES:
+	case E1000_DEV_ID_82572EI:
+		hw->mac_type = e1000_82572;
+		break;
+	case E1000_DEV_ID_82573E:
+	case E1000_DEV_ID_82573E_IAMT:
+	case E1000_DEV_ID_82573L:
+		hw->mac_type = e1000_82573;
+		break;
+	case E1000_DEV_ID_82574L:
+		hw->mac_type = e1000_82574;
+		break;
+	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->mac_type = e1000_80003es2lan;
+		break;
+	case E1000_DEV_ID_ICH8_IGP_M_AMT:
+	case E1000_DEV_ID_ICH8_IGP_AMT:
+	case E1000_DEV_ID_ICH8_IGP_C:
+	case E1000_DEV_ID_ICH8_IFE:
+	case E1000_DEV_ID_ICH8_IFE_GT:
+	case E1000_DEV_ID_ICH8_IFE_G:
+	case E1000_DEV_ID_ICH8_IGP_M:
+		hw->mac_type = e1000_ich8lan;
+		break;
+	case E1000_DEV_ID_I350_COPPER:
+	case E1000_DEV_ID_I210_UNPROGRAMMED:
+	case E1000_DEV_ID_I211_UNPROGRAMMED:
+	case E1000_DEV_ID_I210_COPPER:
+	case E1000_DEV_ID_I211_COPPER:
+	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
+	case E1000_DEV_ID_I210_SERDES:
+	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
+	case E1000_DEV_ID_I210_1000BASEKX:
+		hw->mac_type = e1000_igb;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		return -E1000_ERR_MAC_TYPE;
+	}
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_reset_hw(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+	uint32_t reg;
+
+	DEBUGFUNC();
+
+	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
+		pci_write_config_word(hw->pdev, PCI_COMMAND,
+				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+	}
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC with
+	 * the global reset.
+	 */
+	E1000_WRITE_REG(hw, RCTL, 0);
+	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/* Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	mdelay(10);
+
+	/* Issue a global reset to the MAC.  This will reset the chip's
+	 * transmit, receive, DMA, and link units.  It will not effect
+	 * the current PCI configuration.  The global reset bit is self-
+	 * clearing, and should clear within a microsecond.
+	 */
+	dev_dbg(hw->dev, "Issuing a global reset to MAC\n");
+	ctrl = E1000_READ_REG(hw, CTRL);
+
+	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+	/* Force a reload from the EEPROM if necessary */
+	if (hw->mac_type == e1000_igb) {
+		mdelay(20);
+		reg = E1000_READ_REG(hw, STATUS);
+		if (reg & E1000_STATUS_PF_RST_DONE)
+			dev_dbg(hw->dev, "PF OK\n");
+		reg = E1000_READ_REG(hw, I210_EECD);
+		if (reg & E1000_EECD_AUTO_RD)
+			dev_dbg(hw->dev, "EEC OK\n");
+	} else if (hw->mac_type < e1000_82540) {
+		uint32_t ctrl_ext;
+
+		/* Wait for reset to complete */
+		udelay(10);
+		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+		/* Wait for EEPROM reload */
+		mdelay(2);
+	} else {
+		uint32_t manc;
+
+		/* Wait for EEPROM reload (it happens automatically) */
+		mdelay(4);
+		/* Dissable HW ARPs on ASF enabled adapters */
+		manc = E1000_READ_REG(hw, MANC);
+		manc &= ~(E1000_MANC_ARP_EN);
+		E1000_WRITE_REG(hw, MANC, manc);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	if (hw->mac_type == e1000_igb)
+		E1000_WRITE_REG(hw, I210_IAM, 0);
+
+	E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+	/* Clear any pending interrupt events. */
+	E1000_READ_REG(hw, ICR);
+
+	/* If MWI was previously enabled, reenable it. */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+
+	if (hw->mac_type != e1000_igb) {
+		if (hw->mac_type < e1000_82571)
+			E1000_WRITE_REG(hw, PBA, 0x00000030);
+		else
+			E1000_WRITE_REG(hw, PBA, 0x000a0026);
+	}
+}
+
+/******************************************************************************
+ *
+ * Initialize a number of hardware-dependent bits
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * This function contains hardware limitation workarounds for PCI-E adapters
+ *
+ *****************************************************************************/
+static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
+{
+	uint32_t reg_ctrl, reg_ctrl_ext;
+	uint32_t reg_tarc0, reg_tarc1;
+	uint32_t reg_txdctl, reg_txdctl1;
+
+	if (hw->mac_type < e1000_82571)
+		return;
+
+	/* Settings common to all PCI-express silicon */
+
+	/* link autonegotiation/sync workarounds */
+	reg_tarc0 = E1000_READ_REG(hw, TARC0);
+	reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27));
+
+	/* Enable not-done TX descriptor counting */
+	reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+	reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+
+	reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+	reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
+	E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+	switch (hw->mac_type) {
+	case e1000_82571:
+	case e1000_82572:
+		/* Clear PHY TX compatible mode bits */
+		reg_tarc1 = E1000_READ_REG(hw, TARC1);
+		reg_tarc1 &= ~((1 << 30) | (1 << 29));
+
+		/* link autonegotiation/sync workarounds */
+		reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23);
+
+		/* TX ring control fixes */
+		reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24);
+
+		/* Multiple read bit is reversed polarity */
+		if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+			reg_tarc1 &= ~(1 << 28);
+		else
+			reg_tarc1 |= (1 << 28);
+
+		E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+		break;
+	case e1000_82573:
+	case e1000_82574:
+		reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		reg_ctrl_ext &= ~(1 << 23);
+		reg_ctrl_ext |= (1 << 22);
+
+		/* TX byte count fix */
+		reg_ctrl = E1000_READ_REG(hw, CTRL);
+		reg_ctrl &= ~(1 << 29);
+
+		E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+		E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+		break;
+	case e1000_80003es2lan:
+		/* improve small packet performace for fiber/serdes */
+		if (e1000_media_fiber_serdes(hw))
+			reg_tarc0 &= ~(1 << 20);
+
+		/* Multiple read bit is reversed polarity */
+		reg_tarc1 = E1000_READ_REG(hw, TARC1);
+		if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+			reg_tarc1 &= ~(1 << 28);
+		else
+			reg_tarc1 |= (1 << 28);
+
+		E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+		break;
+	case e1000_ich8lan:
+		/* Reduce concurrent DMA requests to 3 from 4 */
+		if ((hw->revision_id < 3) ||
+		   ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+		    (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
+			reg_tarc0 |= (1 << 29) | (1 << 28);
+
+		reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		reg_ctrl_ext |= (1 << 22);
+		E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+		/* workaround TX hang with TSO=on */
+		reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23);
+
+		/* Multiple read bit is reversed polarity */
+		reg_tarc1 = E1000_READ_REG(hw, TARC1);
+		if (E1000_READ_REG(hw, TCTL) & E1000_TCTL_MULR)
+			reg_tarc1 &= ~(1 << 28);
+		else
+			reg_tarc1 |= (1 << 28);
+
+		/* workaround TX hang with TSO=on */
+		reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24);
+
+		E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+		break;
+	case e1000_igb:
+		return;
+	default:
+		break;
+	}
+
+	E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+}
+
+static int e1000_open(struct eth_device *edev)
+{
+	struct e1000_hw *hw = edev->priv;
+	uint32_t ctrl_ext;
+	int32_t ret_val;
+	uint32_t ctrl;
+	uint32_t reg_data;
+
+	/* Call a subroutine to configure the link and setup flow control. */
+	ret_val = e1000_setup_link(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Set the transmit descriptor write-back policy */
+	if (hw->mac_type > e1000_82544) {
+		ctrl = E1000_READ_REG(hw, TXDCTL);
+		ctrl &= ~E1000_TXDCTL_WTHRESH;
+		ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
+		E1000_WRITE_REG(hw, TXDCTL, ctrl);
+	}
+
+	/* Set the receive descriptor write back policy */
+	if (hw->mac_type >= e1000_82571) {
+		ctrl = E1000_READ_REG(hw, RXDCTL);
+		ctrl &= ~E1000_RXDCTL_WTHRESH;
+		ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB;
+		E1000_WRITE_REG(hw, RXDCTL, ctrl);
+	}
+
+	switch (hw->mac_type) {
+	case e1000_80003es2lan:
+		/* Enable retransmit on late collisions */
+		reg_data = E1000_READ_REG(hw, TCTL);
+		reg_data |= E1000_TCTL_RTLC;
+		E1000_WRITE_REG(hw, TCTL, reg_data);
+
+		/* Configure Gigabit Carry Extend Padding */
+		reg_data = E1000_READ_REG(hw, TCTL_EXT);
+		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
+		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
+
+		/* Configure Transmit Inter-Packet Gap */
+		reg_data = E1000_READ_REG(hw, TIPG);
+		reg_data &= ~E1000_TIPG_IPGT_MASK;
+		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+		E1000_WRITE_REG(hw, TIPG, reg_data);
+
+		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
+		reg_data &= ~0x00100000;
+		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
+		/* Fall through */
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_ich8lan:
+		ctrl = E1000_READ_REG(hw, TXDCTL1);
+		ctrl &= ~E1000_TXDCTL_WTHRESH;
+		ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
+		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
+		break;
+	case e1000_82573:
+	case e1000_82574:
+		reg_data = E1000_READ_REG(hw, GCR);
+		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+		E1000_WRITE_REG(hw, GCR, reg_data);
+	case e1000_igb:
+	default:
+		break;
+	}
+
+	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		/* Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot. */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+	}
+
+	return 0;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+static int e1000_setup_link(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint32_t ctrl_ext;
+	uint16_t eeprom_data;
+
+	DEBUGFUNC();
+
+	/* In the case of the phy reset being blocked, we already have a link.
+	 * We do not have to set it up again. */
+	if (e1000_check_phy_reset_block(hw))
+		return E1000_SUCCESS;
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
+				&eeprom_data) < 0) {
+		dev_dbg(hw->dev, "EEPROM Read Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	switch (hw->mac_type) {
+	case e1000_ich8lan:
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_igb:
+		hw->fc = e1000_fc_full;
+		break;
+	default:
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+		if (ret_val) {
+			dev_dbg(hw->dev, "EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+
+		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+			hw->fc = e1000_fc_none;
+		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR)
+			hw->fc = e1000_fc_tx_pause;
+		else
+			hw->fc = e1000_fc_full;
+		break;
+	}
+
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		hw->fc &= ~e1000_fc_tx_pause;
+
+	hw->original_fc = hw->fc;
+
+	dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc);
+
+	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before e1000_setup_pcs_link()
+	 * or e1000_phy_setup() is called.
+	 */
+	if (hw->mac_type == e1000_82543) {
+		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+			    SWDPIO__EXT_SHIFT);
+		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+	}
+
+	/* Call the necessary subroutine to configure the link. */
+	if (e1000_media_fiber(hw))
+		ret_val = e1000_setup_fiber_link(hw);
+	else
+		ret_val = e1000_setup_copper_link(hw);
+
+	if (ret_val < 0)
+		return ret_val;
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n");
+
+	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
+	if (hw->mac_type != e1000_ich8lan) {
+		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+	}
+
+	E1000_WRITE_REG(hw, FCTTV, E1000_FC_PAUSE_TIME);
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames in not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (hw->fc & e1000_fc_tx_pause) {
+		/* We need to set up the Receive Threshold high and low water marks
+		 * as well as (optionally) enabling the transmission of XON frames.
+		 */
+		E1000_WRITE_REG(hw, FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE);
+		E1000_WRITE_REG(hw, FCRTH, E1000_FC_HIGH_THRESH);
+	} else {
+		E1000_WRITE_REG(hw, FCRTL, 0);
+		E1000_WRITE_REG(hw, FCRTH, 0);
+	}
+
+	return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int e1000_setup_fiber_link(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+	uint32_t status;
+	uint32_t txcw = 0;
+	uint32_t i;
+	uint32_t signal;
+
+	DEBUGFUNC();
+
+	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal
+	 */
+	ctrl = E1000_READ_REG(hw, CTRL);
+	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
+		signal = E1000_CTRL_SWDPIN1;
+	else
+		signal = 0;
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	e1000_config_collision_dist(hw);
+
+	/* Check for a software override of the flow control settings, and setup
+	 * the device accordingly.  If auto-negotiation is enabled, then software
+	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+	 * auto-negotiation is disabled, then software will have to manually
+	 * configure the two flow control enable bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *	0:  Flow control is completely disabled
+	 *	1:  Rx flow control is enabled (we can receive pause frames, but
+	 *	    not send pause frames).
+	 *	2:  Tx flow control is enabled (we can send pause frames but we do
+	 *	    not support receiving pause frames).
+	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc) {
+	case e1000_fc_none:
+		/* Flow control is completely disabled by a software over-ride. */
+		txcw = E1000_TXCW_ANE | E1000_TXCW_FD;
+		break;
+	case e1000_fc_rx_pause:
+		/* RX Flow control is enabled and TX Flow control is disabled by a
+		 * software over-ride. Since there really isn't a way to advertise
+		 * that we are capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE. Later, we will
+		 *  disable the adapter's ability to send PAUSE frames.
+		 */
+		txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
+		break;
+	case e1000_fc_tx_pause:
+		/* TX Flow control is enabled, and RX Flow control is disabled, by a
+		 * software over-ride.
+		 */
+		txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR;
+		break;
+	case e1000_fc_full:
+		/* Flow control (both RX and TX) is enabled by a software over-ride. */
+		txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
+		break;
+	default:
+		dev_dbg(hw->dev, "Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the link
+	 * will be in reset, because we previously reset the chip). This will
+	 * restart auto-negotiation.  If auto-neogtiation is successful then the
+	 * link-up status bit will be set and the flow control enable bits (RFCE
+	 * and TFCE) will be set according to their negotiated value.
+	 */
+	dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw);
+
+	E1000_WRITE_REG(hw, TXCW, txcw);
+	E1000_WRITE_REG(hw, CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	mdelay(1);
+
+	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+	 * indication in the Device Status Register.  Time-out if a link isn't
+	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+	 * less than 500 milliseconds even if the other end is doing it in SW).
+	 */
+	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+		dev_dbg(hw->dev, "Looking for Link\n");
+		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+			mdelay(10);
+			status = E1000_READ_REG(hw, STATUS);
+			if (status & E1000_STATUS_LU)
+				break;
+		}
+		if (i == (LINK_UP_TIMEOUT / 10)) {
+			/* AutoNeg failed to achieve a link, so we'll call
+			 * e1000_check_for_link. This routine will force the link up if we
+			 * detect a signal. This will allow us to communicate with
+			 * non-autonegotiating link partners.
+			 */
+			dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n");
+			hw->autoneg_failed = 1;
+			return -E1000_ERR_NOLINK;
+		} else {
+			hw->autoneg_failed = 0;
+			dev_dbg(hw->dev, "Valid Link Found\n");
+		}
+	} else {
+		dev_dbg(hw->dev, "No Signal Detected\n");
+		return -E1000_ERR_NOLINK;
+	}
+	return 0;
+}
+
+/******************************************************************************
+* Make sure we have a valid PHY and change PHY mode before link setup.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+	int32_t ret_val;
+	uint16_t phy_data;
+
+	DEBUGFUNC();
+
+	ctrl = E1000_READ_REG(hw, CTRL);
+	/* With 82543, we need to force speed and duplex on the MAC equal to what
+	 * the PHY speed and duplex configuration is. In addition, we need to
+	 * perform a hardware reset on the PHY to take it out of reset.
+	 */
+	if (hw->mac_type > e1000_82543) {
+		ctrl |= E1000_CTRL_SLU;
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, CTRL, ctrl);
+	} else {
+		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
+				| E1000_CTRL_SLU);
+		E1000_WRITE_REG(hw, CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Make sure we have a valid PHY */
+	ret_val = e1000_detect_gig_phy(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error, did not detect valid phy.\n");
+		return ret_val;
+	}
+	dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id);
+
+	/* Set PHY to class A mode (if necessary) */
+	ret_val = e1000_set_phy_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82545_rev_3) ||
+	    (hw->mac_type == e1000_82546_rev_3)) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		phy_data |= 0x00000008;
+		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw)
+{
+	uint32_t phy_ctrl = 0;
+	int32_t ret_val;
+	uint16_t phy_data;
+	DEBUGFUNC();
+
+	/* During driver activity LPLU should not be used or it will attain link
+	 * from the lowest speeds starting from 10Mbps. The capability is used
+	 * for Dx transitions and states */
+	if (hw->mac_type == e1000_82541_rev_2
+			|| hw->mac_type == e1000_82547_rev_2) {
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+				&phy_data);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->mac_type == e1000_ich8lan) {
+		/* MAC writes into PHY register based on the state transition
+		 * and start auto-negotiation. SW driver can overwrite the
+		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
+		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+	} else {
+		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->mac_type == e1000_82541_rev_2 ||
+	    hw->mac_type == e1000_82547_rev_2) {
+		phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		if (hw->mac_type == e1000_ich8lan) {
+			phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+		} else {
+			phy_data &= ~IGP02E1000_PM_D3_LPLU;
+			ret_val = e1000_write_phy_reg(hw,
+				IGP02E1000_PHY_POWER_MGMT, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu d0 state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw)
+{
+	uint32_t phy_ctrl = 0;
+	int32_t ret_val;
+	uint16_t phy_data;
+	DEBUGFUNC();
+
+	if (hw->mac_type <= e1000_82547_rev_2)
+		return E1000_SUCCESS;
+
+	if (hw->mac_type == e1000_ich8lan) {
+		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
+	} else if (hw->mac_type == e1000_igb) {
+		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
+	} else {
+		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+				&phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP02E1000_PM_D0_LPLU;
+
+		ret_val = e1000_write_phy_reg(hw,
+				IGP02E1000_PHY_POWER_MGMT, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_igp series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+	uint32_t led_ctrl;
+	int32_t ret_val;
+	uint16_t phy_data;
+
+	DEBUGFUNC();
+
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Wait 15ms for MAC to configure PHY from eeprom settings */
+	mdelay(15);
+	if (hw->mac_type != e1000_ich8lan) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = E1000_READ_REG(hw, LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+	}
+
+	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+	if (hw->phy_type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state_off(hw);
+		if (ret_val) {
+			dev_dbg(hw->dev, "Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
+
+	/* disable lplu d0 during driver init */
+	ret_val = e1000_set_d0_lplu_state_off(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error Disabling LPLU D0\n");
+		return ret_val;
+	}
+
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Force MDI for earlier revs of the IGP PHY */
+		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
+				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
+	} else {
+		phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	/* when autonegotiation advertisment is only 1000Mbps then we
+	  * should disable SmartSpeed and enable Auto MasterSlave
+	  * resolution as hardware default. */
+	if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+		/* Disable SmartSpeed */
+		ret_val = e1000_read_phy_reg(hw,
+				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+		if (ret_val)
+			return ret_val;
+		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = e1000_write_phy_reg(hw,
+				IGP01E1000_PHY_PORT_CONFIG, phy_data);
+		if (ret_val)
+			return ret_val;
+		/* Set auto Master/Slave resolution process */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+				&phy_data);
+		if (ret_val)
+			return ret_val;
+		phy_data &= ~CR_1000T_MS_ENABLE;
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+				phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * This function checks the mode of the firmware.
+ *
+ * returns  - true when the mode is IAMT or false.
+ ****************************************************************************/
+static bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+	uint32_t fwsm;
+
+	DEBUGFUNC();
+
+	fwsm = E1000_READ_REG(hw, FWSM);
+
+	if (hw->mac_type == e1000_ich8lan) {
+		if ((fwsm & E1000_FWSM_MODE_MASK) ==
+		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+			return true;
+	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
+			(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+			return true;
+
+	return false;
+}
+
+static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
+{
+	uint16_t swfw = E1000_SWFW_PHY0_SM;
+	uint32_t reg_val;
+	DEBUGFUNC();
+
+	if (e1000_is_second_port(hw))
+		swfw = E1000_SWFW_PHY1_SM;
+
+	if (e1000_swfw_sync_acquire(hw, swfw))
+		return -E1000_ERR_SWFW_SYNC;
+
+	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
+			& E1000_KUMCTRLSTA_OFFSET) | data;
+	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+	udelay(2);
+
+	return E1000_SUCCESS;
+}
+
+static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
+{
+	uint16_t swfw = E1000_SWFW_PHY0_SM;
+	uint32_t reg_val;
+	DEBUGFUNC();
+
+	if (e1000_is_second_port(hw))
+		swfw = E1000_SWFW_PHY1_SM;
+
+	if (e1000_swfw_sync_acquire(hw, swfw)) {
+		debug("%s[%i]\n", __func__, __LINE__);
+		return -E1000_ERR_SWFW_SYNC;
+	}
+
+	/* Write register address */
+	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
+			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
+	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
+	udelay(2);
+
+	/* Read the data returned */
+	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
+	*data = (uint16_t)reg_val;
+
+	return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_gg82563 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t phy_data;
+	uint32_t reg_data;
+
+	DEBUGFUNC();
+
+	/* Enable CRS on TX for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw,
+			GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
+	phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
+
+	ret_val = e1000_write_phy_reg(hw,
+			GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Bypass RX and TX FIFO's */
+	ret_val = e1000_write_kmrn_reg(hw,
+			E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
+			E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
+			| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	reg_data = E1000_READ_REG(hw, CTRL_EXT);
+	reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
+	E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Do not init these registers when the HW is in IAMT mode, since the
+	 * firmware will have already initialized them.  We only initialize
+	 * them if the HW is not in IAMT mode.
+	 */
+	if (e1000_check_mng_mode(hw) == false) {
+		/* Enable Electrical Idle on the PHY */
+		phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+		ret_val = e1000_write_phy_reg(hw,
+				GG82563_PHY_PWR_MGMT_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw,
+				GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+		ret_val = e1000_write_phy_reg(hw,
+				GG82563_PHY_KMRN_MODE_CTRL, phy_data);
+
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Workaround: Disable padding in Kumeran interface in the MAC
+	 * and in the PHY to avoid CRC errors.
+	 */
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+	phy_data |= GG82563_ICR_DIS_PADDING;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Copper link setup for e1000_phy_m88 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t phy_data;
+
+	DEBUGFUNC();
+
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_revision < M88E1011_I_REV_4) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val = e1000_read_phy_reg(hw,
+				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((hw->phy_revision == E1000_REVISION_2) &&
+			(hw->phy_id == M88E1111_I_PHY_ID)) {
+			/* Vidalia Phy, set the downshift counter to 5x */
+			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+			ret_val = e1000_write_phy_reg(hw,
+					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
+					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
+					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+			ret_val = e1000_write_phy_reg(hw,
+					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Setup auto-negotiation and flow control advertisements,
+* and then perform auto-negotiation.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t phy_data;
+
+	DEBUGFUNC();
+
+	hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	/* IFE phy only supports 10/100 */
+	if (hw->phy_type == e1000_phy_ife)
+		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
+
+	dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	dev_dbg(hw->dev, "Restarting Auto-Neg\n");
+
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_wait_autoneg(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Config the MAC and the PHY after link is up.
+*   1) Set up the MAC to the current PHY speed/duplex
+*      if we are on 82543.  If we
+*      are on newer silicon, we only need to configure
+*      collision distance in the Transmit Control Register.
+*   2) Set up flow control on the MAC to that established with
+*      the link partner.
+*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	DEBUGFUNC();
+
+	if (hw->mac_type >= e1000_82544) {
+		e1000_config_collision_dist(hw);
+	} else {
+		ret_val = e1000_config_mac_to_phy(hw);
+		if (ret_val) {
+			dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n");
+			return ret_val;
+		}
+	}
+
+	ret_val = e1000_config_fc_after_link_up(hw);
+	if (ret_val) {
+		dev_dbg(hw->dev, "Error Configuring Flow Control\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Detects which PHY is present and setup the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int e1000_setup_copper_link(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t i;
+	uint16_t phy_data;
+	uint16_t reg_data;
+
+	DEBUGFUNC();
+
+	switch (hw->mac_type) {
+	case e1000_80003es2lan:
+	case e1000_ich8lan:
+		/* Set the mac to wait the maximum time between each
+		 * iteration and increase the max iterations when
+		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
+		ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		reg_data |= 0x3F;
+
+		ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
+		if (ret_val)
+			return ret_val;
+	default:
+		break;
+	}
+
+	/* Check if it is a valid PHY and set PHY mode if necessary. */
+	ret_val = e1000_copper_link_preconfig(hw);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->mac_type) {
+	case e1000_80003es2lan:
+		/* Kumeran registers are written-only */
+		reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
+		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
+		ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
+				reg_data);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 ||
+	    hw->phy_type == e1000_phy_igp_2) {
+		ret_val = e1000_copper_link_igp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) {
+		ret_val = e1000_copper_link_mgp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_gg82563) {
+		ret_val = e1000_copper_link_ggp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_copper_link_autoneg(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	for (i = 0; i < 10; i++) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			/* Config the MAC and PHY after link is up */
+			ret_val = e1000_copper_link_postconfig(hw);
+			if (ret_val)
+				return ret_val;
+
+			dev_dbg(hw->dev, "Valid link established!!!\n");
+			return E1000_SUCCESS;
+		}
+		udelay(10);
+	}
+
+	dev_dbg(hw->dev, "Unable to establish link!!!\n");
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t mii_autoneg_adv_reg;
+	uint16_t mii_1000t_ctrl_reg;
+
+	DEBUGFUNC();
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_type != e1000_phy_ife) {
+		/* Read the MII 1000Base-T Control Register (Address 9). */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
+				&mii_1000t_ctrl_reg);
+		if (ret_val)
+			return ret_val;
+	} else
+		mii_1000t_ctrl_reg = 0;
+
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+	dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+		dev_dbg(hw->dev, "Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+		dev_dbg(hw->dev, "Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+		dev_dbg(hw->dev, "Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+		dev_dbg(hw->dev, "Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+		pr_debug
+		    ("Advertise 1000mb Half duplex requested, request denied!\n");
+	}
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+		dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *	0:  Flow control is completely disabled
+	 *	1:  Rx flow control is enabled (we can receive pause frames
+	 *	    but not send pause frames).
+	 *	2:  Tx flow control is enabled (we can send pause frames
+	 *	    but we do not support receiving pause frames).
+	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *	    in the EEPROM is used.
+	 */
+	switch (hw->fc) {
+	case e1000_fc_none:	/* 0 */
+		/* Flow control (RX & TX) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_rx_pause:	/* 1 */
+		/* RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		/* Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 *hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_tx_pause:	/* 2 */
+		/* TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case e1000_fc_full:	/* 3 */
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		dev_dbg(hw->dev, "Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	if (hw->phy_type != e1000_phy_ife) {
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
+				mii_1000t_ctrl_reg);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+static void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	uint32_t tctl, coll_dist;
+
+	DEBUGFUNC();
+
+	if (hw->mac_type < e1000_82543)
+		coll_dist = E1000_COLLISION_DISTANCE_82542;
+	else
+		coll_dist = E1000_COLLISION_DISTANCE;
+
+	tctl = E1000_READ_REG(hw, TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= coll_dist << E1000_COLD_SHIFT;
+
+	E1000_WRITE_REG(hw, TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+	uint16_t phy_data;
+
+	DEBUGFUNC();
+
+	/* Read the Device Control Register and set the bits to Force Speed
+	 * and Duplex.
+	 */
+	ctrl = E1000_READ_REG(hw, CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_ILOS);
+	ctrl |= (E1000_CTRL_SPD_SEL);
+
+	/* Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+		dev_dbg(hw->dev, "PHY Read Error\n");
+		return -E1000_ERR_PHY;
+	}
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+	else
+		ctrl &= ~E1000_CTRL_FD;
+
+	e1000_config_collision_dist(hw);
+
+	/* Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+	/* Write the configured values back to the Device Control Reg. */
+	E1000_WRITE_REG(hw, CTRL, ctrl);
+	return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+
+	DEBUGFUNC();
+
+	/* Get the current configuration of the Device Control Register */
+	ctrl = E1000_READ_REG(hw, CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *	0:  Flow control is completely disabled
+	 *	1:  Rx flow control is enabled (we can receive pause
+	 *	    frames but not send pause frames).
+	 *	2:  Tx flow control is enabled (we can send pause frames
+	 *	    frames but we do not receive pause frames).
+	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+
+	switch (hw->fc) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		dev_dbg(hw->dev, "Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Disable TX Flow Control for 82542 (rev 2.0) */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		ctrl &= (~E1000_CTRL_TFCE);
+
+	E1000_WRITE_REG(hw, CTRL, ctrl);
+	return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t mii_status_reg;
+	uint16_t mii_nway_adv_reg;
+	uint16_t mii_nway_lp_ability_reg;
+	uint16_t speed;
+	uint16_t duplex;
+
+	DEBUGFUNC();
+
+	/* Read the MII Status Register and check to see if AutoNeg
+	 * has completed.  We read this twice because this reg has
+	 * some "sticky" (latched) bits.
+	 */
+	if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+		dev_dbg(hw->dev, "PHY Read Error \n");
+		return -E1000_ERR_PHY;
+	}
+
+	if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+		dev_dbg(hw->dev, "PHY Read Error \n");
+		return -E1000_ERR_PHY;
+	}
+
+	if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+		dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n");
+		return 0;
+	}
+
+	/* The AutoNeg process has completed, so we now need to
+	 * read both the Auto Negotiation Advertisement Register
+	 * (Address 4) and the Auto_Negotiation Base Page Ability
+	 * Register (Address 5) to determine how flow control was
+	 * negotiated.
+	 */
+	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+		dev_dbg(hw->dev, "PHY Read Error\n");
+		return -E1000_ERR_PHY;
+	}
+
+	if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
+		dev_dbg(hw->dev, "PHY Read Error\n");
+		return -E1000_ERR_PHY;
+	}
+
+	/* Two bits in the Auto Negotiation Advertisement Register
+	 * (Address 4) and two bits in the Auto Negotiation Base
+	 * Page Ability Register (Address 5) determine flow control
+	 * for both the PHY and the link partner.  The following
+	 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+	 * 1999, describes these PAUSE resolution bits and how flow
+	 * control is determined based upon these settings.
+	 * NOTE:  DC = Don't Care
+	 *
+	 *   LOCAL DEVICE  |   LINK PARTNER
+	 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+	 *-------|---------|-------|---------|--------------------
+	 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
+	 *   0	 |    1    |   0   |   DC    | e1000_fc_none
+	 *   0	 |    1    |   1   |	0    | e1000_fc_none
+	 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
+	 *   1	 |    0    |   0   |   DC    | e1000_fc_none
+	 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
+	 *   1	 |    1    |   0   |	0    | e1000_fc_none
+	 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
+	 *
+	 */
+	/* Are both PAUSE bits set to 1?  If so, this implies
+	 * Symmetric Flow Control is enabled at both ends.  The
+	 * ASM_DIR bits are irrelevant per the spec.
+	 *
+	 * For Symmetric Flow Control:
+	 *
+	 *   LOCAL DEVICE  |   LINK PARTNER
+	 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+	 *-------|---------|-------|---------|--------------------
+	 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
+	 *
+	 */
+	if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+	    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+		/* Now we need to check if the user selected RX ONLY
+		 * of pause frames.  In this case, we had to advertise
+		 * FULL flow control because we could not advertise RX
+		 * ONLY. Hence, we must now check to see if we need to
+		 * turn OFF  the TRANSMISSION of PAUSE frames.
+		 */
+		if (hw->original_fc == e1000_fc_full) {
+			hw->fc = e1000_fc_full;
+			dev_dbg(hw->dev, "Flow Control = FULL.\r\n");
+		} else {
+			hw->fc = e1000_fc_rx_pause;
+			dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
+		}
+	}
+	/* For receiving PAUSE frames ONLY.
+	 *
+	 *   LOCAL DEVICE  |   LINK PARTNER
+	 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+	 *-------|---------|-------|---------|--------------------
+	 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
+	 *
+	 */
+	else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+	{
+		hw->fc = e1000_fc_tx_pause;
+		dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n");
+	}
+	/* For transmitting PAUSE frames ONLY.
+	 *
+	 *   LOCAL DEVICE  |   LINK PARTNER
+	 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+	 *-------|---------|-------|---------|--------------------
+	 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
+	 *
+	 */
+	else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+		 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+		 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+	{
+		hw->fc = e1000_fc_rx_pause;
+		dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
+	}
+	/* Per the IEEE spec, at this point flow control should be
+	 * disabled.  However, we want to consider that we could
+	 * be connected to a legacy switch that doesn't advertise
+	 * desired flow control, but can be forced on the link
+	 * partner.  So if we advertised no flow control, that is
+	 * what we will resolve to.  If we advertised some kind of
+	 * receive capability (Rx Pause Only or Full Flow Control)
+	 * and the link partner advertised none, we will configure
+	 * ourselves to enable Rx Flow Control only.  We can do
+	 * this safely for two reasons:  If the link partner really
+	 * didn't want flow control enabled, and we enable Rx, no
+	 * harm done since we won't be receiving any PAUSE frames
+	 * anyway.  If the intent on the link partner was to have
+	 * flow control enabled, then by us enabling RX only, we
+	 * can at least receive pause frames and process them.
+	 * This is a good idea because in most cases, since we are
+	 * predominantly a server NIC, more times than not we will
+	 * be asked to delay transmission of packets than asking
+	 * our link partner to pause transmission of frames.
+	 */
+	else if (hw->original_fc == e1000_fc_none ||
+		 hw->original_fc == e1000_fc_tx_pause) {
+		hw->fc = e1000_fc_none;
+		dev_dbg(hw->dev, "Flow Control = NONE.\r\n");
+	} else {
+		hw->fc = e1000_fc_rx_pause;
+		dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
+	}
+	/* Now we need to do one last check...	If we auto-
+	 * negotiated to HALF DUPLEX, flow control should not be
+	 * enabled per IEEE 802.3 spec.
+	 */
+	e1000_get_speed_and_duplex(hw, &speed, &duplex);
+	if (duplex == HALF_DUPLEX)
+		hw->fc = e1000_fc_none;
+	/* Now we call a subroutine to actually force the MAC
+	 * controller to use the correct flow control settings.
+	 */
+	ret_val = e1000_force_mac_fc(hw);
+	if (ret_val < 0) {
+		dev_dbg(hw->dev, "Error forcing flow control settings\n");
+		return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configure the MAC-to-PHY interface for 10/100Mbps
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
+{
+	int32_t ret_val = E1000_SUCCESS;
+	uint32_t tipg;
+	uint16_t reg_data;
+
+	DEBUGFUNC();
+
+	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
+	ret_val = e1000_write_kmrn_reg(hw,
+			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
+	E1000_WRITE_REG(hw, TIPG, tipg);
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+	if (ret_val)
+		return ret_val;
+
+	if (duplex == HALF_DUPLEX)
+		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+	else
+		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+	return ret_val;
+}
+
+static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
+{
+	int32_t ret_val = E1000_SUCCESS;
+	uint16_t reg_data;
+	uint32_t tipg;
+
+	DEBUGFUNC();
+
+	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
+	ret_val = e1000_write_kmrn_reg(hw,
+			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
+	E1000_WRITE_REG(hw, TIPG, tipg);
+
+	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+
+	if (ret_val)
+		return ret_val;
+
+	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+
+	return ret_val;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
+		uint16_t *duplex)
+{
+	uint32_t status;
+	int32_t ret_val;
+
+	DEBUGFUNC();
+
+	if (hw->mac_type >= e1000_82543) {
+		status = E1000_READ_REG(hw, STATUS);
+		if (status & E1000_STATUS_SPEED_1000) {
+			*speed = SPEED_1000;
+			dev_dbg(hw->dev, "1000 Mbs, ");
+		} else if (status & E1000_STATUS_SPEED_100) {
+			*speed = SPEED_100;
+			dev_dbg(hw->dev, "100 Mbs, ");
+		} else {
+			*speed = SPEED_10;
+			dev_dbg(hw->dev, "10 Mbs, ");
+		}
+
+		if (status & E1000_STATUS_FD) {
+			*duplex = FULL_DUPLEX;
+			dev_dbg(hw->dev, "Full Duplex\r\n");
+		} else {
+			*duplex = HALF_DUPLEX;
+			dev_dbg(hw->dev, " Half Duplex\r\n");
+		}
+	} else {
+		dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n");
+		*speed = SPEED_1000;
+		*duplex = FULL_DUPLEX;
+	}
+
+	if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) {
+		if (*speed == SPEED_1000)
+			ret_val = e1000_configure_kmrn_for_1000(hw);
+		else
+			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
+		if (ret_val)
+			return ret_val;
+	}
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	uint16_t i;
+	uint16_t phy_data;
+
+	DEBUGFUNC();
+	dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n");
+
+	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Auto-Neg
+		 * Complete bit to be set.
+		 */
+		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+			dev_dbg(hw->dev, "PHY Read Error\n");
+			return -E1000_ERR_PHY;
+		}
+		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+			dev_dbg(hw->dev, "PHY Read Error\n");
+			return -E1000_ERR_PHY;
+		}
+		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+			dev_dbg(hw->dev, "Auto-Neg complete.\n");
+			return 0;
+		}
+		mdelay(100);
+	}
+	dev_dbg(hw->dev, "Auto-Neg timedout.\n");
+	return -E1000_ERR_TIMEOUT;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+	/* Raise the clock input to the Management Data Clock (by setting the MDC
+	 * bit), and then delay 2 microseconds.
+	 */
+	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	udelay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
+{
+	/* Lower the clock input to the Management Data Clock (by clearing the MDC
+	 * bit), and then delay 2 microseconds.
+	 */
+	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	udelay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
+		uint16_t count)
+{
+	uint32_t ctrl;
+	uint32_t mask;
+
+	/* We need to shift "count" number of bits out to the PHY. So, the value
+	 * in the "data" parameter will be shifted out to the PHY one bit at a
+	 * time. In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = E1000_READ_REG(hw, CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+		 * then raising and lowering the Management Data Clock. A "0" is
+		 * shifted out to the PHY by setting the MDIO bit to "0" and then
+		 * raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		E1000_WRITE_REG(hw, CTRL, ctrl);
+		E1000_WRITE_FLUSH(hw);
+
+		udelay(2);
+
+		e1000_raise_mdi_clk(hw, &ctrl);
+		e1000_lower_mdi_clk(hw, &ctrl);
+
+		mask = mask >> 1;
+	}
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+	uint32_t ctrl;
+	uint16_t data = 0;
+	uint8_t i;
+
+	/* In order to read a register from the PHY, we need to shift in a total
+	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
+	 * to avoid contention on the MDIO pin when a read operation is performed.
+	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
+	 * by raising the input to the Management Data Clock (setting the MDC bit),
+	 * and then reading the value of the MDIO bit.
+	 */
+	ctrl = E1000_READ_REG(hw, CTRL);
+
+	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	E1000_WRITE_REG(hw, CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	/* Raise and Lower the clock before reading in the data. This accounts for
+	 * the turnaround bits. The first clock occurred when we clocked out the
+	 * last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data = data << 1;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		ctrl = E1000_READ_REG(hw, CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	return data;
+}
+
+static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr)
+{
+	struct e1000_hw *hw = bus->priv;
+	uint32_t i;
+	uint32_t mdic = 0;
+
+	if (phy_addr != 1)
+		return -EIO;
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, and register address in the MDI
+		 * Control register.  The MAC will take care of interfacing with the
+		 * PHY to retrieve the desired data.
+		 */
+		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_READ));
+
+		E1000_WRITE_REG(hw, MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(10);
+			mdic = E1000_READ_REG(hw, MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			dev_dbg(hw->dev, "MDI Read did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+		if (mdic & E1000_MDIC_ERROR) {
+			dev_dbg(hw->dev, "MDI Error\n");
+			return -E1000_ERR_PHY;
+		}
+		return mdic;
+	} else {
+		/* We must first send a preamble through the MDIO pin to signal the
+		 * beginning of an MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the next few fields that are required for a read
+		 * operation.  We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine five different times. The format of
+		 * a MII read instruction consists of a shift out of 14 bits and is
+		 * defined as follows:
+		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+		 * followed by a shift in of 18 bits.  This first two bits shifted in
+		 * are TurnAround bits used to avoid contention on the MDIO pin when a
+		 * READ operation is performed.  These two bits are thrown away
+		 * followed by a shift in of 16 bits which contains the desired data.
+		 */
+		mdic = ((reg_addr) | (phy_addr << 5) |
+			(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+		e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+		/* Now that we've shifted out the read command to the MII, we need to
+		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+		 * register address.
+		 */
+		return e1000_shift_in_mdi_bits(hw);
+	}
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
+		uint16_t *phy_data)
+{
+	int ret;
+
+	ret = e1000_phy_read(&hw->miibus, 1, reg_addr);
+	if (ret < 0)
+		return ret;
+
+	*phy_data = ret;
+
+	return 0;
+}
+
+static int e1000_phy_write(struct mii_bus *bus, int phy_addr,
+	int reg_addr, u16 phy_data)
+{
+	struct e1000_hw *hw = bus->priv;
+	uint32_t i;
+	uint32_t mdic = 0;
+
+	if (phy_addr != 1)
+		return -EIO;
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, register address, and data intended
+		 * for the PHY register in the MDI Control register.  The MAC will take
+		 * care of interfacing with the PHY to send the desired data.
+		 */
+		mdic = (((uint32_t) phy_data) |
+			(reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_WRITE));
+
+		E1000_WRITE_REG(hw, MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(10);
+			mdic = E1000_READ_REG(hw, MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			dev_dbg(hw->dev, "MDI Write did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+	} else {
+		/* We'll need to use the SW defined pins to shift the write command
+		 * out to the PHY. We first send a preamble to the PHY to signal the
+		 * beginning of the MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the remaining required fields that will indicate a
+		 * write operation. We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine for each field in the command. The
+		 * format of a MII write instruction is as follows:
+		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+		 */
+		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+		mdic <<= 16;
+		mdic |= (uint32_t) phy_data;
+
+		e1000_shift_out_mdi_bits(hw, mdic, 32);
+	}
+	return 0;
+}
+
+/******************************************************************************
+ * Writes a value to a PHY register
+ *
+ * hw - Struct containing variables accessed by shared code
+ * reg_addr - address of the PHY register to write
+ * data - data to write to the PHY
+ ******************************************************************************/
+static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
+{
+	return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data);
+}
+
+/******************************************************************************
+ * Checks if PHY reset is blocked due to SOL/IDER session, for example.
+ * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
+ * the caller to figure out how to deal with it.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_BLK_PHY_RESET
+ *            E1000_SUCCESS
+ *
+ *****************************************************************************/
+static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw)
+{
+	if (hw->mac_type == e1000_ich8lan) {
+		if (E1000_READ_REG(hw, FWSM) & E1000_FWSM_RSPCIPHY)
+			return E1000_SUCCESS;
+		else
+			return E1000_BLK_PHY_RESET;
+	}
+
+	if (hw->mac_type > e1000_82547_rev_2) {
+		if (E1000_READ_REG(hw, MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE)
+			return E1000_BLK_PHY_RESET;
+		else
+			return E1000_SUCCESS;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * Checks if the PHY configuration is done
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	int32_t timeout = PHY_CFG_TIMEOUT;
+	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
+
+	DEBUGFUNC();
+
+	switch (hw->mac_type) {
+	default:
+		mdelay(10);
+		break;
+
+	case e1000_80003es2lan:
+		/* Separate *_CFG_DONE_* bit for each port */
+		if (e1000_is_second_port(hw))
+			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
+		/* Fall Through */
+
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_igb:
+		while (timeout) {
+			if (hw->mac_type == e1000_igb) {
+				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
+					break;
+			} else {
+				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
+					break;
+			}
+			mdelay(1);
+			timeout--;
+		}
+		if (!timeout) {
+			dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n");
+			return -E1000_ERR_RESET;
+		}
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	uint16_t swfw = E1000_SWFW_PHY0_SM;
+	uint32_t ctrl, ctrl_ext;
+	uint32_t led_ctrl;
+	int32_t ret_val;
+
+	DEBUGFUNC();
+
+	/* In the case of the phy reset being blocked, it's not an error, we
+	 * simply return success without performing the reset. */
+	ret_val = e1000_check_phy_reset_block(hw);
+	if (ret_val)
+		return E1000_SUCCESS;
+
+	dev_dbg(hw->dev, "Resetting Phy...\n");
+
+	if (hw->mac_type > e1000_82543) {
+		if (e1000_is_second_port(hw))
+			swfw = E1000_SWFW_PHY1_SM;
+
+		if (e1000_swfw_sync_acquire(hw, swfw)) {
+			dev_dbg(hw->dev, "Unable to acquire swfw sync\n");
+			return -E1000_ERR_SWFW_SYNC;
+		}
+
+		/* Read the device control register and assert the E1000_CTRL_PHY_RST
+		 * bit. Then, take it out of reset.
+		 */
+		ctrl = E1000_READ_REG(hw, CTRL);
+		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+		E1000_WRITE_FLUSH(hw);
+
+		udelay(100);
+
+		E1000_WRITE_REG(hw, CTRL, ctrl);
+		E1000_WRITE_FLUSH(hw);
+
+		if (hw->mac_type >= e1000_82571)
+			mdelay(10);
+	} else {
+		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+		 * bit to put the PHY into reset. Then, take it out of reset.
+		 */
+		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+		mdelay(10);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+	}
+	udelay(150);
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = E1000_READ_REG(hw, LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+	}
+
+	/* Wait for FW to finish PHY configuration. */
+	return e1000_get_phy_cfg_done(hw);
+}
+
+/******************************************************************************
+ * IGP phy init script - initializes the GbE PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+	uint32_t ret_val;
+	uint16_t phy_saved_data;
+
+	DEBUGFUNC();
+
+	switch (hw->mac_type) {
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		break;
+	default:
+		return;
+	}
+
+	mdelay(20);
+
+	/* Save off the current value of register 0x2F5B to be
+	 * restored at the end of this routine. */
+	ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+	/* Disabled the PHY transmitter */
+	e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+	mdelay(20);
+
+	e1000_write_phy_reg(hw, 0x0000, 0x0140);
+
+	mdelay(5);
+
+	switch (hw->mac_type) {
+	case e1000_82541:
+	case e1000_82547:
+		e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+		e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+		e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+		e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+		e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+		e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+		e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+		e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+		e1000_write_phy_reg(hw, 0x2010, 0x0008);
+		break;
+
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+		break;
+	default:
+		break;
+	}
+
+	e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+	mdelay(20);
+
+	/* Now enable the transmitter */
+	if (!ret_val)
+		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+	if (hw->mac_type == e1000_82547) {
+		uint16_t fused, fine, coarse;
+
+		/* Move to analog registers page */
+		e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+		if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+			e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+			fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+			coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+			if (coarse >
+				IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+				coarse -=
+				IGP01E1000_ANALOG_FUSE_COARSE_10;
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+			} else if (coarse
+				== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+			fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+			e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
+			e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
+					IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+		}
+	}
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control register
+******************************************************************************/
+static int32_t e1000_phy_reset(struct e1000_hw *hw)
+{
+	uint16_t phy_data;
+	int ret;
+
+	DEBUGFUNC();
+
+	/*
+	 * In the case of the phy reset being blocked, it's not an error, we
+	 * simply return success without performing the reset.
+	 */
+	if (e1000_check_phy_reset_block(hw))
+		return E1000_SUCCESS;
+
+	switch (hw->phy_type) {
+	case e1000_phy_igp:
+	case e1000_phy_igp_2:
+	case e1000_phy_igp_3:
+	case e1000_phy_ife:
+	case e1000_phy_igb:
+		ret = e1000_phy_hw_reset(hw);
+		if (ret)
+			return ret;
+		break;
+	default:
+		ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+		if (ret)
+			return ret;
+
+		phy_data |= MII_CR_RESET;
+		ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+		if (ret)
+			return ret;
+
+		udelay(1);
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+		e1000_phy_init_script(hw);
+
+	return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+	int32_t ret_val;
+	uint16_t phy_id_high, phy_id_low;
+	e1000_phy_type phy_type = e1000_phy_undefined;
+
+	DEBUGFUNC();
+
+	/* The 82571 firmware may still be configuring the PHY.  In this
+	 * case, we cannot access the PHY until the configuration is done.  So
+	 * we explicitly set the PHY values. */
+	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+		hw->phy_id = IGP01E1000_I_PHY_ID;
+		hw->phy_type = e1000_phy_igp_2;
+		return E1000_SUCCESS;
+	}
+
+	/* Read the PHY ID Registers to identify which PHY is onboard. */
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id = (uint32_t) (phy_id_high << 16);
+	udelay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->phy_id == M88E1000_E_PHY_ID)
+			phy_type = e1000_phy_m88;
+		break;
+	case e1000_82544:
+		if (hw->phy_id == M88E1000_I_PHY_ID)
+			phy_type = e1000_phy_m88;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (hw->phy_id == M88E1011_I_PHY_ID)
+			phy_type = e1000_phy_m88;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (hw->phy_id == IGP01E1000_I_PHY_ID)
+			phy_type = e1000_phy_igp;
+
+		break;
+	case e1000_82573:
+		if (hw->phy_id == M88E1111_I_PHY_ID)
+			phy_type = e1000_phy_m88;
+		break;
+	case e1000_82574:
+		if (hw->phy_id == BME1000_E_PHY_ID)
+			phy_type = e1000_phy_bm;
+		break;
+	case e1000_80003es2lan:
+		if (hw->phy_id == GG82563_E_PHY_ID)
+			phy_type = e1000_phy_gg82563;
+		break;
+	case e1000_ich8lan:
+		if (hw->phy_id == IGP03E1000_E_PHY_ID)
+			phy_type = e1000_phy_igp_3;
+		if (hw->phy_id == IFE_E_PHY_ID)
+			phy_type = e1000_phy_ife;
+		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
+			phy_type = e1000_phy_ife;
+		if (hw->phy_id == IFE_C_E_PHY_ID)
+			phy_type = e1000_phy_ife;
+		break;
+	case e1000_igb:
+		if (hw->phy_id == I210_I_PHY_ID)
+			phy_type = e1000_phy_igb;
+		if (hw->phy_id == I350_I_PHY_ID)
+			phy_type = e1000_phy_igb;
+		break;
+	default:
+		dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type);
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (!phy_type == e1000_phy_undefined) {
+		dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id);
+		return -EINVAL;
+	}
+
+	hw->phy_type = phy_type;
+
+	return 0;
+}
+
+/*****************************************************************************
+ * Set media type and TBI compatibility.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * **************************************************************************/
+static void e1000_set_media_type(struct e1000_hw *hw)
+{
+	DEBUGFUNC();
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82572EI_SERDES:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->media_type = e1000_media_type_internal_serdes;
+		return;
+	default:
+		break;
+	}
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		hw->media_type = e1000_media_type_fiber;
+		return;
+	case e1000_ich8lan:
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_igb:
+		/* The STATUS_TBIMODE bit is reserved or reused
+		 * for the this device.
+		 */
+		hw->media_type = e1000_media_type_copper;
+		return;
+	default:
+		break;
+	}
+
+	if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_TBIMODE)
+		hw->media_type = e1000_media_type_fiber;
+	else
+		hw->media_type = e1000_media_type_copper;
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int e1000_sw_init(struct eth_device *edev)
+{
+	struct e1000_hw *hw = edev->priv;
+	int result;
+
+	/* PCI config space info */
+	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
+	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
+	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
+	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+	/* identify the MAC */
+	result = e1000_set_mac_type(hw);
+	if (result) {
+		dev_err(&hw->edev.dev, "Unknown MAC Type\n");
+		return result;
+	}
+
+	return E1000_SUCCESS;
+}
+
+static void fill_rx(struct e1000_hw *hw)
+{
+	volatile struct e1000_rx_desc *rd;
+	volatile u32 *bla;
+	int i;
+
+	hw->rx_last = hw->rx_tail;
+	rd = hw->rx_base + hw->rx_tail;
+	hw->rx_tail = (hw->rx_tail + 1) % 8;
+
+	bla = (void *)rd;
+	for (i = 0; i < 4; i++)
+		*bla++ = 0;
+
+	rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet);
+
+	E1000_WRITE_REG(hw, RDT, hw->rx_tail);
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void e1000_configure_tx(struct e1000_hw *hw)
+{
+	unsigned long tctl;
+	unsigned long tipg, tarc;
+	uint32_t ipgr1, ipgr2;
+
+	E1000_WRITE_REG(hw, TDBAL, (unsigned long)hw->tx_base);
+	E1000_WRITE_REG(hw, TDBAH, 0);
+
+	E1000_WRITE_REG(hw, TDLEN, 128);
+
+	/* Setup the HW Tx Head and Tail descriptor pointers */
+	E1000_WRITE_REG(hw, TDH, 0);
+	E1000_WRITE_REG(hw, TDT, 0);
+	hw->tx_tail = 0;
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	if (hw->mac_type <= e1000_82547_rev_2 &&
+	    (hw->media_type == e1000_media_type_fiber ||
+	     hw->media_type == e1000_media_type_internal_serdes))
+		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+	else
+		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+
+	/* Set the default values for the Tx Inter Packet Gap timer */
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		tipg = DEFAULT_82542_TIPG_IPGT;
+		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
+		break;
+	case e1000_80003es2lan:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
+		break;
+	default:
+		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
+		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
+		break;
+	}
+	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
+	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
+	E1000_WRITE_REG(hw, TIPG, tipg);
+	/* Program the Transmit Control Register */
+	tctl = E1000_READ_REG(hw, TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
+	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
+		tarc = E1000_READ_REG(hw, TARC0);
+		/* set the speed mode bit, we'll clear it if we're not at
+		 * gigabit link later */
+		/* git bit can be set to 1*/
+	} else if (hw->mac_type == e1000_80003es2lan) {
+		tarc = E1000_READ_REG(hw, TARC0);
+		tarc |= 1;
+		E1000_WRITE_REG(hw, TARC0, tarc);
+		tarc = E1000_READ_REG(hw, TARC1);
+		tarc |= 1;
+		E1000_WRITE_REG(hw, TARC1, tarc);
+	}
+
+
+	e1000_config_collision_dist(hw);
+	/* Setup Transmit Descriptor Settings for eop descriptor */
+	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
+
+	/* Need to set up RS bit */
+	if (hw->mac_type < e1000_82543)
+		hw->txd_cmd |= E1000_TXD_CMD_RPS;
+	else
+		hw->txd_cmd |= E1000_TXD_CMD_RS;
+
+
+	if (hw->mac_type == e1000_igb) {
+		uint32_t reg_txdctl;
+
+		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
+
+		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+		reg_txdctl |= 1 << 25;
+		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+		mdelay(20);
+	}
+
+	E1000_WRITE_REG(hw, TCTL, tctl);
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control register
+ * @adapter: Board private structure
+ **/
+static void e1000_setup_rctl(struct e1000_hw *hw)
+{
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, RCTL);
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
+		| E1000_RCTL_RDMTS_HALF;	/* |
+			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
+
+	rctl &= ~E1000_RCTL_SBP;
+
+	rctl &= ~(E1000_RCTL_SZ_4096);
+		rctl |= E1000_RCTL_SZ_2048;
+		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
+	E1000_WRITE_REG(hw, RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+static void e1000_configure_rx(struct e1000_hw *hw)
+{
+	unsigned long rctl, ctrl_ext;
+
+	hw->rx_tail = 0;
+	/* make sure receives are disabled while setting up the descriptors */
+	rctl = E1000_READ_REG(hw, RCTL);
+	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
+	if (hw->mac_type >= e1000_82540) {
+		/* Set the interrupt throttling rate.  Value is calculated
+		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
+#define MAX_INTS_PER_SEC	8000
+#define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
+		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
+	}
+
+	if (hw->mac_type >= e1000_82571) {
+		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+		/* Reset delay timers after every interrupt */
+		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
+		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+	}
+	/* Setup the Base and Length of the Rx Descriptor Ring */
+	E1000_WRITE_REG(hw, RDBAL, (unsigned long)hw->rx_base);
+	E1000_WRITE_REG(hw, RDBAH, 0);
+
+	E1000_WRITE_REG(hw, RDLEN, 128);
+
+	/* Setup the HW Rx Head and Tail Descriptor Pointers */
+	E1000_WRITE_REG(hw, RDH, 0);
+	E1000_WRITE_REG(hw, RDT, 0);
+	/* Enable Receives */
+
+	if (hw->mac_type == e1000_igb) {
+		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
+		reg_rxdctl |= 1 << 25;
+		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
+		mdelay(20);
+	}
+
+	E1000_WRITE_REG(hw, RCTL, rctl);
+
+	fill_rx(hw);
+}
+
+static int e1000_poll(struct eth_device *edev)
+{
+	struct e1000_hw *hw = edev->priv;
+	volatile struct e1000_rx_desc *rd;
+	uint32_t len;
+
+	rd = hw->rx_base + hw->rx_last;
+
+	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
+		return 0;
+
+	len = le32_to_cpu(rd->length);
+
+	dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE);
+
+	net_receive(edev, (uchar *)hw->packet, len);
+	fill_rx(hw);
+	return 1;
+}
+
+static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
+{
+	void *nv_packet = (void *)txpacket;
+	struct e1000_hw *hw = edev->priv;
+	volatile struct e1000_tx_desc *txp;
+	uint64_t to;
+
+	txp = hw->tx_base + hw->tx_tail;
+	hw->tx_tail = (hw->tx_tail + 1) % 8;
+
+	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
+	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
+	txp->upper.data = 0;
+
+	dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE);
+
+	E1000_WRITE_REG(hw, TDT, hw->tx_tail);
+
+	E1000_WRITE_FLUSH(hw);
+
+	to = get_time_ns();
+	while (1) {
+		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
+			break;
+		if (is_timeout(to, MSECOND)) {
+			dev_dbg(hw->dev, "e1000: tx timeout\n");
+			return -ETIMEDOUT;
+		}
+	}
+
+	return 0;
+}
+
+static void e1000_disable(struct eth_device *edev)
+{
+	struct e1000_hw *hw = edev->priv;
+printf("HUHUHUHUHU\n");
+	/* Turn off the ethernet interface */
+	E1000_WRITE_REG(hw, RCTL, 0);
+	E1000_WRITE_REG(hw, TCTL, 0);
+
+	/* Clear the transmit ring */
+	E1000_WRITE_REG(hw, TDH, 0);
+	E1000_WRITE_REG(hw, TDT, 0);
+
+	/* Clear the receive ring */
+	E1000_WRITE_REG(hw, RDH, 0);
+	E1000_WRITE_REG(hw, RDT, 0);
+
+	mdelay(10);
+}
+
+static int e1000_init(struct eth_device *edev)
+{
+	struct e1000_hw *hw = edev->priv;
+	uint32_t i;
+	uint32_t mta_size;
+	uint32_t reg_data;
+
+	DEBUGFUNC();
+
+	if (hw->mac_type >= e1000_82544)
+		E1000_WRITE_REG(hw, WUC, 0);
+
+	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
+	if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) ||
+	    ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+	     (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
+		reg_data = E1000_READ_REG(hw, STATUS);
+		reg_data &= ~0x80000000;
+		E1000_WRITE_REG(hw, STATUS, reg_data);
+	}
+
+	/* Set the media type and TBI compatibility */
+	e1000_set_media_type(hw);
+
+	/* Must be called after e1000_set_media_type
+	 * because media_type is used */
+	e1000_initialize_hardware_bits(hw);
+
+	/* Disabling VLAN filtering. */
+	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
+	if (hw->mac_type != e1000_ich8lan) {
+		if (hw->mac_type < e1000_82545_rev_3)
+			E1000_WRITE_REG(hw, VET, 0);
+		e1000_clear_vfta(hw);
+	}
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
+		pci_write_config_word(hw->pdev, PCI_COMMAND,
+				      hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
+		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH(hw);
+		mdelay(5);
+	}
+
+	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+	}
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		E1000_WRITE_REG(hw, RCTL, 0);
+		E1000_WRITE_FLUSH(hw);
+		mdelay(1);
+		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
+	}
+
+	/* Zero out the Multicast HASH table */
+	mta_size = E1000_MC_TBL_SIZE;
+	if (hw->mac_type == e1000_ich8lan)
+		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
+
+	for (i = 0; i < mta_size; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		/* use write flush to prevent Memory Write Block (MWB) from
+		 * occuring when accessing our register space */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* More time needed for PHY to initialize */
+	if (hw->mac_type == e1000_ich8lan)
+		mdelay(15);
+	if (hw->mac_type == e1000_igb)
+		mdelay(15);
+
+	e1000_configure_tx(hw);
+	e1000_configure_rx(hw);
+	e1000_setup_rctl(hw);
+
+	return 0;
+}
+
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+	struct e1000_hw *hw;
+	struct eth_device *edev;
+	int ret;
+
+	pci_enable_device(pdev);
+	pci_set_master(pdev);
+
+	hw = xzalloc(sizeof(*hw));
+
+	hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN);
+	hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN);
+	hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN);
+
+	edev = &hw->edev;
+
+	hw->pdev = pdev;
+	hw->dev = &pdev->dev;
+	pdev->dev.priv = hw;
+	edev->priv = hw;
+
+	hw->hw_addr = pci_iomap(pdev, 0);
+
+	/* MAC and Phy settings */
+	if (e1000_sw_init(edev) < 0) {
+		dev_err(&pdev->dev, "Software init failed\n");
+		return -EINVAL;
+	}
+
+	if (e1000_check_phy_reset_block(hw))
+		dev_err(&pdev->dev, "PHY Reset is blocked!\n");
+
+	/* Basic init was OK, reset the hardware and allow SPI access */
+	e1000_reset_hw(hw);
+
+	/* Validate the EEPROM and get chipset information */
+	if (e1000_init_eeprom_params(hw)) {
+		dev_err(&pdev->dev, "EEPROM is invalid!\n");
+		return -EINVAL;
+	}
+	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
+	    e1000_validate_eeprom_checksum(hw))
+		return -EINVAL;
+
+	e1000_get_ethaddr(edev, edev->ethaddr);
+
+	/* Set up the function pointers and register the device */
+	edev->init = e1000_init;
+	edev->recv = e1000_poll;
+	edev->send = e1000_transmit;
+	edev->halt = e1000_disable;
+	edev->open = e1000_open;
+	edev->get_ethaddr = e1000_get_ethaddr;
+	edev->set_ethaddr = e1000_set_ethaddr;
+
+	hw->miibus.read = e1000_phy_read;
+	hw->miibus.write = e1000_phy_write;
+	hw->miibus.priv = hw;
+	hw->miibus.parent = &edev->dev;
+
+	ret = eth_register(edev);
+	if (ret)
+		return ret;
+
+	/*
+	 * The e1000 driver does its own phy handling, but registering
+	 * the phy allows to show the phy registers for debugging purposes.
+	 */
+	ret = mdiobus_register(&hw->miibus);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+static void e1000_remove(struct pci_dev *pdev)
+{
+	struct e1000_hw *hw = pdev->dev.priv;
+
+	e1000_disable(&hw->edev);
+}
+
+static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), },
+	/* E1000 PCIe card */
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), },
+	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), },
+	{ /* sentinel */ }
+};
+
+static struct pci_driver e1000_eth_driver = {
+	.name = "e1000",
+	.id_table = e1000_pci_tbl,
+	.probe = e1000_probe,
+	.remove = e1000_remove,
+};
+
+static int e1000_driver_init(void)
+{
+	return pci_register_driver(&e1000_eth_driver);
+}
+device_initcall(e1000_driver_init);
diff --git a/drivers/net/e1000.h b/drivers/net/e1000.h
new file mode 100644
index 0000000..9fb0cb7
--- /dev/null
+++ b/drivers/net/e1000.h
@@ -0,0 +1,2093 @@
+/*******************************************************************************
+
+
+  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+  Copyright 2011 Freescale Semiconductor, Inc.
+
+ * SPDX-License-Identifier:	GPL-2.0+
+
+  Contact Information:
+  Linux NICS <linux.nics at intel.com>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#ifdef E1000_DEBUG
+#define DEBUGFUNC()		printf("%s\n", __func__);
+#else
+#define DEBUGFUNC()		do { } while (0)
+#endif
+
+/* I/O wrapper functions */
+#define E1000_WRITE_REG(a, reg, value) \
+	writel((value), ((a)->hw_addr + E1000_##reg))
+#define E1000_READ_REG(a, reg) \
+	readl((a)->hw_addr + E1000_##reg)
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
+	writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))
+#define E1000_READ_REG_ARRAY(a, reg, offset) \
+	readl((a)->hw_addr + E1000_##reg + ((offset) << 2))
+#define E1000_WRITE_FLUSH(a) \
+	do { E1000_READ_REG(a, STATUS); } while (0)
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+	e1000_undefined = 0,
+	e1000_82542_rev2_0,
+	e1000_82542_rev2_1,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_82571,
+	e1000_82572,
+	e1000_82573,
+	e1000_82574,
+	e1000_80003es2lan,
+	e1000_ich8lan,
+	e1000_igb,
+	e1000_num_macs
+} e1000_mac_type;
+
+/* Media Types */
+typedef enum {
+	e1000_media_type_copper = 0,
+	e1000_media_type_fiber = 1,
+	e1000_media_type_internal_serdes = 2,
+	e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+	e1000_eeprom_uninitialized = 0,
+	e1000_eeprom_spi,
+	e1000_eeprom_microwire,
+	e1000_eeprom_flash,
+	e1000_eeprom_ich8,
+	e1000_eeprom_none, /* No NVM support */
+	e1000_eeprom_invm,
+	e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Flow Control Settings */
+typedef enum {
+	e1000_fc_none = 0,
+	e1000_fc_rx_pause = 1,
+	e1000_fc_tx_pause = 2,
+	e1000_fc_full = 3,
+	e1000_fc_default = 0xFF
+} e1000_fc_type;
+
+typedef enum {
+	e1000_phy_m88 = 0,
+	e1000_phy_igp,
+	e1000_phy_igp_2,
+	e1000_phy_gg82563,
+	e1000_phy_igp_3,
+	e1000_phy_ife,
+	e1000_phy_igb,
+	e1000_phy_bm,
+	e1000_phy_82580,
+	e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+/* Error Codes */
+#define E1000_SUCCESS				0
+#define E1000_ERR_EEPROM			1
+#define E1000_ERR_PHY				2
+#define E1000_ERR_CONFIG			3
+#define E1000_ERR_PARAM				4
+#define E1000_ERR_MAC_TYPE			5
+#define E1000_ERR_PHY_TYPE			6
+#define E1000_ERR_NOLINK			7
+#define E1000_ERR_TIMEOUT			8
+#define E1000_ERR_RESET				9
+#define E1000_ERR_MASTER_REQUESTS_PENDING	10
+#define E1000_ERR_HOST_INTERFACE_COMMAND	11
+#define E1000_BLK_PHY_RESET			12
+#define E1000_ERR_SWFW_SYNC 			13
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542			0x1000
+#define E1000_DEV_ID_82543GC_FIBER		0x1001
+#define E1000_DEV_ID_82543GC_COPPER		0x1004
+#define E1000_DEV_ID_82544EI_COPPER		0x1008
+#define E1000_DEV_ID_82544EI_FIBER		0x1009
+#define E1000_DEV_ID_82544GC_COPPER		0x100C
+#define E1000_DEV_ID_82544GC_LOM		0x100D
+#define E1000_DEV_ID_82540EM			0x100E
+#define E1000_DEV_ID_82540EM_LOM		0x1015
+#define E1000_DEV_ID_82540EP_LOM		0x1016
+#define E1000_DEV_ID_82540EP			0x1017
+#define E1000_DEV_ID_82540EP_LP			0x101E
+#define E1000_DEV_ID_82545EM_COPPER		0x100F
+#define E1000_DEV_ID_82545EM_FIBER		0x1011
+#define E1000_DEV_ID_82545GM_COPPER		0x1026
+#define E1000_DEV_ID_82545GM_FIBER		0x1027
+#define E1000_DEV_ID_82545GM_SERDES		0x1028
+#define E1000_DEV_ID_82546EB_COPPER		0x1010
+#define E1000_DEV_ID_82546EB_FIBER		0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER	0x101D
+#define E1000_DEV_ID_82541EI			0x1013
+#define E1000_DEV_ID_82541EI_MOBILE		0x1018
+#define E1000_DEV_ID_82541ER_LOM		0x1014
+#define E1000_DEV_ID_82541ER			0x1078
+#define E1000_DEV_ID_82547GI			0x1075
+#define E1000_DEV_ID_82541GI			0x1076
+#define E1000_DEV_ID_82541GI_MOBILE		0x1077
+#define E1000_DEV_ID_82541GI_LF			0x107C
+#define E1000_DEV_ID_82546GB_COPPER		0x1079
+#define E1000_DEV_ID_82546GB_FIBER		0x107A
+#define E1000_DEV_ID_82546GB_SERDES		0x107B
+#define E1000_DEV_ID_82546GB_PCIE		0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER	0x1099
+#define E1000_DEV_ID_82547EI			0x1019
+#define E1000_DEV_ID_82547EI_MOBILE		0x101A
+#define E1000_DEV_ID_82571EB_COPPER		0x105E
+#define E1000_DEV_ID_82571EB_FIBER		0x105F
+#define E1000_DEV_ID_82571EB_SERDES		0x1060
+#define E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER	0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE	0x10BC
+#define E1000_DEV_ID_82571EB_SERDES_DUAL	0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD	0x10DA
+#define E1000_DEV_ID_82572EI_COPPER		0x107D
+#define E1000_DEV_ID_82572EI_FIBER		0x107E
+#define E1000_DEV_ID_82572EI_SERDES		0x107F
+#define E1000_DEV_ID_82572EI			0x10B9
+#define E1000_DEV_ID_82573E			0x108B
+#define E1000_DEV_ID_82573E_IAMT		0x108C
+#define E1000_DEV_ID_82573L			0x109A
+#define E1000_DEV_ID_82574L			0x10D3
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3	0x10B5
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT     0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT     0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT     0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT     0x10BB
+
+#define E1000_DEV_ID_I350_COPPER		0x1521
+#define E1000_DEV_ID_I210_UNPROGRAMMED		0x1531
+#define E1000_DEV_ID_I211_UNPROGRAMMED		0x1532
+#define E1000_DEV_ID_I210_COPPER		0x1533
+#define E1000_DEV_ID_I210_SERDES		0x1536
+#define E1000_DEV_ID_I210_1000BASEKX		0x1537
+#define E1000_DEV_ID_I210_EXTPHY		0x1538
+#define E1000_DEV_ID_I211_COPPER		0x1539
+#define E1000_DEV_ID_I210_COPPER_FLASHLESS	0x157b
+#define E1000_DEV_ID_I210_SERDES_FLASHLESS	0x157c
+
+#define E1000_DEV_ID_ICH8_IGP_M_AMT      0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT        0x104A
+#define E1000_DEV_ID_ICH8_IGP_C          0x104B
+#define E1000_DEV_ID_ICH8_IFE            0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT         0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G          0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M          0x104D
+
+#define IGP03E1000_E_PHY_ID  0x02A80390
+#define IFE_E_PHY_ID         0x02A80330 /* 10/100 PHY */
+#define IFE_PLUS_E_PHY_ID    0x02A80320
+#define IFE_C_E_PHY_ID       0x02A80310
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL   0x10  /* 100BaseTx Extended Status,
+						   Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL           0x11  /* 100BaseTx PHY special
+						   control register */
+#define IFE_PHY_RCV_FALSE_CARRIER         0x13  /* 100BaseTx Receive false
+						   Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT            0x14  /* 100BaseTx Receive Disconnet
+						   Counter */
+#define IFE_PHY_RCV_ERROT_FRAME           0x15  /* 100BaseTx Receive Error
+						   Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR            0x16  /* Receive Symbol Error
+						   Counter */
+#define IFE_PHY_PREM_EOF_ERR              0x17  /* 100BaseTx Receive
+						   Premature End Of Frame
+						   Error Counter */
+#define IFE_PHY_RCV_EOF_ERR               0x18  /* 10BaseT Receive End Of
+						   Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT          0x19  /* 10BaseT Transmit Jabber
+						   Detect Counter */
+#define IFE_PHY_EQUALIZER                 0x1A  /* PHY Equalizer Control and
+						   Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED       0x1B  /* PHY special control and
+						   LED configuration */
+#define IFE_PHY_MDIX_CONTROL              0x1C  /* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL               0x1D  /* Hardware Integrity Control
+						   (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE  0x2000  /* Defaut 1 = Disable auto
+							reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN           0x0400  /* Indicates the power
+							state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN            0x0200  /* Indicates the power
+							state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED           0x0100  /* Indicates 10BASE-T
+							polarity */
+#define IFE_PESC_PHY_ADDR_MASK               0x007C  /* Bit 6:2 for sampled PHY
+							address */
+#define IFE_PESC_SPEED                       0x0002  /* Auto-negotiation speed
+						result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX                      0x0001  /* Auto-negotiation
+						duplex result 1=Full, 0=Half */
+#define IFE_PESC_POLARITY_REVERSED_SHIFT     8
+
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN   0x0100  /* 1 = Dyanmic Power Down
+							disabled */
+#define IFE_PSC_FORCE_POLARITY               0x0020  /* 1=Reversed Polarity,
+							0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE        0x0010  /* 1=Auto Polarity
+							Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE          0x0001  /* 1=Jabber Disabled,
+						0=Normal Jabber Operation */
+#define IFE_PSC_FORCE_POLARITY_SHIFT         5
+#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT  4
+
+#define IFE_PMC_AUTO_MDIX                    0x0080  /* 1=enable MDI/MDI-X
+						feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX                   0x0040  /* 1=force MDIX-X,
+							0=force MDI */
+#define IFE_PMC_MDIX_STATUS                  0x0020  /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE           0x0010  /* Resolution algorithm
+							is completed */
+#define IFE_PMC_MDIX_MODE_SHIFT              6
+#define IFE_PHC_MDIX_RESET_ALL_MASK          0x0000  /* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE                   0x8000  /* Enable the HWI
+							feature */
+#define IFE_PHC_ABILITY_CHECK                0x4000  /* 1= Test Passed,
+							0=failed */
+#define IFE_PHC_TEST_EXEC                    0x2000  /* PHY launch test pulses
+							on the wire */
+#define IFE_PHC_HIGHZ                        0x0200  /* 1 = Open Circuit */
+#define IFE_PHC_LOWZ                         0x0400  /* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK              0x0600  /* Mask for indication
+						type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK                0x01FF  /* Mask for distance to
+				the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK               0x0000  /* Disable HWI */
+#define IFE_PSCL_PROBE_MODE                  0x0020  /* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF              0x0006  /* Force LEDs 0 and 2
+							off */
+#define IFE_PSCL_PROBE_LEDS_ON               0x0007  /* Force LEDs 0 and 2 on */
+
+#define NODE_ADDRESS_SIZE 6
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0       0
+#define E1000_REVISION_1       1
+#define E1000_REVISION_2       2
+#define E1000_REVISION_3       3
+
+#define SPEED_10    10
+#define SPEED_100   100
+#define SPEED_1000  1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 16
+
+#define MIN_NUMBER_OF_DESCRIPTORS 8
+#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
+	uint16_t length;	/* Length of data DMAed into data buffer */
+	uint16_t csum;		/* Packet checksum */
+	uint8_t status;		/* Descriptor status */
+	uint8_t errors;		/* Descriptor Errors */
+	uint16_t special;
+};
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD	0x01	/* Descriptor Done */
+#define E1000_RXD_STAT_EOP	0x02	/* End of Packet */
+#define E1000_RXD_STAT_IXSM	0x04	/* Ignore checksum */
+#define E1000_RXD_STAT_VP	0x08	/* IEEE VLAN Packet */
+#define E1000_RXD_STAT_TCPCS	0x20	/* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS	0x40	/* IP xsum calculated */
+#define E1000_RXD_STAT_PIF	0x80	/* passed in-exact filter */
+#define E1000_RXD_ERR_CE	0x01	/* CRC Error */
+#define E1000_RXD_ERR_SE	0x02	/* Symbol Error */
+#define E1000_RXD_ERR_SEQ	0x04	/* Sequence Error */
+#define E1000_RXD_ERR_CXE	0x10	/* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE	0x20	/* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE	0x40	/* IP Checksum Error */
+#define E1000_RXD_ERR_RXE	0x80	/* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF	/* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK	0xE000	/* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 0x000D	/* Priority is in upper 3 of 16 */
+#define E1000_RXD_SPC_CFI_MASK	0x1000	/* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 0x000C	/* CFI is bit 12 */
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+    E1000_RXD_ERR_CE  |		       \
+    E1000_RXD_ERR_SE  |		       \
+    E1000_RXD_ERR_SEQ |		       \
+    E1000_RXD_ERR_CXE |		       \
+    E1000_RXD_ERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
+	union {
+		uint32_t data;
+		struct {
+			uint16_t length;	/* Data buffer length */
+			uint8_t cso;	/* Checksum offset */
+			uint8_t cmd;	/* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		uint32_t data;
+		struct {
+			uint8_t status;	/* Descriptor status */
+			uint8_t css;	/* Checksum start */
+			uint16_t special;
+		} fields;
+	} upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D     0x00100000	/* Data Descriptor */
+#define E1000_TXD_DTYP_C     0x00000000	/* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01	/* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02	/* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP    0x01000000	/* End of Packet */
+#define E1000_TXD_CMD_IFCS   0x02000000	/* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC     0x04000000	/* Insert Checksum */
+#define E1000_TXD_CMD_RS     0x08000000	/* Report Status */
+#define E1000_TXD_CMD_RPS    0x10000000	/* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT   0x20000000	/* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE    0x40000000	/* Add VLAN tag */
+#define E1000_TXD_CMD_IDE    0x80000000	/* Enable Tidv register */
+#define E1000_TXD_STAT_DD    0x00000001	/* Descriptor Done */
+#define E1000_TXD_STAT_EC    0x00000002	/* Excess Collisions */
+#define E1000_TXD_STAT_LC    0x00000004	/* Late Collisions */
+#define E1000_TXD_STAT_TU    0x00000008	/* Transmit underrun */
+#define E1000_TXD_CMD_TCP    0x01000000	/* TCP packet */
+#define E1000_TXD_CMD_IP     0x02000000	/* IP packet */
+#define E1000_TXD_CMD_TSE    0x04000000	/* TCP Seg enable */
+#define E1000_TXD_STAT_TC    0x00000004	/* Tx Underrun */
+
+/* Filters */
+#define E1000_NUM_UNICAST	   16	/* Unicast filter entries */
+#define E1000_MC_TBL_SIZE	   128	/* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128	/* VLAN Filter Table (4096 bits) */
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and  should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL     0x00000	/* Device Control - RW */
+#define E1000_STATUS   0x00008	/* Device Status - RO */
+#define E1000_EECD     0x00010	/* EEPROM/Flash Control - RW */
+#define E1000_I210_EECD     0x12010	/* EEPROM/Flash Control - RW */
+#define E1000_EERD     0x00014	/* EEPROM Read - RW */
+#define E1000_I210_EERD     0x12014	/* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018	/* Extended Device Control - RW */
+#define E1000_MDIC     0x00020	/* MDI Control - RW */
+#define E1000_FCAL     0x00028	/* Flow Control Address Low - RW */
+#define E1000_FCAH     0x0002C	/* Flow Control Address High -RW */
+#define E1000_FCT      0x00030	/* Flow Control Type - RW */
+#define E1000_VET      0x00038	/* VLAN Ether Type - RW */
+#define E1000_ICR      0x000C0	/* Interrupt Cause Read - R/clr */
+#define E1000_ITR      0x000C4	/* Interrupt Throttling Rate - RW */
+#define E1000_ICS      0x000C8	/* Interrupt Cause Set - WO */
+#define E1000_IMS      0x000D0	/* Interrupt Mask Set - RW */
+#define E1000_IMC      0x000D8	/* Interrupt Mask Clear - WO */
+#define E1000_I210_IAM      0x000E0	/* Interrupt Ack Auto Mask - RW */
+#define E1000_RCTL     0x00100	/* RX Control - RW */
+#define E1000_FCTTV    0x00170	/* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW     0x00178	/* TX Configuration Word - RW */
+#define E1000_RXCW     0x00180	/* RX Configuration Word - RO */
+#define E1000_TCTL     0x00400	/* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404  /* Extended TX Control - RW */
+#define E1000_TIPG     0x00410	/* TX Inter-packet gap -RW */
+#define E1000_TBT      0x00448	/* TX Burst Timer - RW */
+#define E1000_AIT      0x00458	/* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL   0x00E00	/* LED Control - RW */
+#define E1000_EXTCNF_CTRL  0x00F00  /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE  0x00F08  /* Extended Configuration Size */
+#define E1000_PHY_CTRL     0x00F10  /* PHY Control Register in CSR */
+#define E1000_I210_PHY_CTRL     0x00E14  /* PHY Control Register in CSR */
+#define FEXTNVM_SW_CONFIG  0x0001
+#define E1000_PBA      0x01000	/* Packet Buffer Allocation - RW */
+#define E1000_PBS      0x01008  /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010  /* MNG EEprom Control */
+#define E1000_I210_EEMNGCTL 0x12030  /* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC   0x01024  /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT   0x01028  /* FLASH Timer Register */
+#define E1000_EEWR     0x0102C  /* EEPROM Write Register - RW */
+#define E1000_I210_EEWR     0x12018  /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL  0x01030  /* FLASH control register */
+#define E1000_FLSWDATA 0x01034  /* FLASH data register */
+#define E1000_FLSWCNT  0x01038  /* FLASH Access Counter */
+#define E1000_FLOP     0x0103C  /* FLASH Opcode Register */
+#define E1000_ERT      0x02008  /* Early Rx Threshold - RW */
+#define E1000_FCRTL    0x02160	/* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH    0x02168	/* Flow Control Receive Threshold High - RW */
+#define E1000_RDBAL    0x02800	/* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH    0x02804	/* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN    0x02808	/* RX Descriptor Length - RW */
+#define E1000_RDH      0x02810	/* RX Descriptor Head - RW */
+#define E1000_RDT      0x02818	/* RX Descriptor Tail - RW */
+#define E1000_RDTR     0x02820	/* RX Delay Timer - RW */
+#define E1000_RXDCTL   0x02828	/* RX Descriptor Control - RW */
+#define E1000_RADV     0x0282C	/* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD    0x02C00	/* RX Small Packet Detect - RW */
+#define E1000_TXDMAC   0x03000	/* TX DMA Control - RW */
+#define E1000_TDFH     0x03410  /* TX Data FIFO Head - RW */
+#define E1000_TDFT     0x03418  /* TX Data FIFO Tail - RW */
+#define E1000_TDFHS    0x03420  /* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS    0x03428  /* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC    0x03430  /* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL    0x03800	/* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH    0x03804	/* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN    0x03808	/* TX Descriptor Length - RW */
+#define E1000_TDH      0x03810	/* TX Descriptor Head - RW */
+#define E1000_TDT      0x03818	/* TX Descripotr Tail - RW */
+#define E1000_TIDV     0x03820	/* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL   0x03828	/* TX Descriptor Control - RW */
+#define E1000_TADV     0x0382C	/* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT    0x03830	/* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0    0x03840  /* TX Arbitration Count (0) */
+#define E1000_TDBAL1   0x03900  /* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1   0x03904  /* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1   0x03908  /* TX Desc Length (1) - RW */
+#define E1000_TDH1     0x03910  /* TX Desc Head (1) - RW */
+#define E1000_TDT1     0x03918  /* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1  0x03928  /* TX Descriptor Control (1) - RW */
+#define E1000_TARC1    0x03940  /* TX Arbitration Count (1) */
+#define E1000_CRCERRS  0x04000	/* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004	/* Alignment Error Count - R/clr */
+#define E1000_SYMERRS  0x04008	/* Symbol Error Count - R/clr */
+#define E1000_RXERRC   0x0400C	/* Receive Error Count - R/clr */
+#define E1000_MPC      0x04010	/* Missed Packet Count - R/clr */
+#define E1000_SCC      0x04014	/* Single Collision Count - R/clr */
+#define E1000_ECOL     0x04018	/* Excessive Collision Count - R/clr */
+#define E1000_MCC      0x0401C	/* Multiple Collision Count - R/clr */
+#define E1000_LATECOL  0x04020	/* Late Collision Count - R/clr */
+#define E1000_COLC     0x04028	/* Collision Count - R/clr */
+#define E1000_DC       0x04030	/* Defer Count - R/clr */
+#define E1000_TNCRS    0x04034	/* TX-No CRS - R/clr */
+#define E1000_SEC      0x04038	/* Sequence Error Count - R/clr */
+#define E1000_CEXTERR  0x0403C	/* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC     0x04040	/* Receive Length Error Count - R/clr */
+#define E1000_XONRXC   0x04048	/* XON RX Count - R/clr */
+#define E1000_XONTXC   0x0404C	/* XON TX Count - R/clr */
+#define E1000_XOFFRXC  0x04050	/* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC  0x04054	/* XOFF TX Count - R/clr */
+#define E1000_FCRUC    0x04058	/* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64    0x0405C	/* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127   0x04060	/* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255   0x04064	/* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511   0x04068	/* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023  0x0406C	/* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522  0x04070	/* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC     0x04074	/* Good Packets RX Count - R/clr */
+#define E1000_BPRC     0x04078	/* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC     0x0407C	/* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC     0x04080	/* Good Packets TX Count - R/clr */
+#define E1000_GORCL    0x04088	/* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH    0x0408C	/* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL    0x04090	/* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH    0x04094	/* Good Octets TX Count High - R/clr */
+#define E1000_RNBC     0x040A0	/* RX No Buffers Count - R/clr */
+#define E1000_RUC      0x040A4	/* RX Undersize Count - R/clr */
+#define E1000_RFC      0x040A8	/* RX Fragment Count - R/clr */
+#define E1000_ROC      0x040AC	/* RX Oversize Count - R/clr */
+#define E1000_RJC      0x040B0	/* RX Jabber Count - R/clr */
+#define E1000_MGTPRC   0x040B4	/* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC   0x040B8	/* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC   0x040BC	/* Management Packets TX Count - R/clr */
+#define E1000_TORL     0x040C0	/* Total Octets RX Low - R/clr */
+#define E1000_TORH     0x040C4	/* Total Octets RX High - R/clr */
+#define E1000_TOTL     0x040C8	/* Total Octets TX Low - R/clr */
+#define E1000_TOTH     0x040CC	/* Total Octets TX High - R/clr */
+#define E1000_TPR      0x040D0	/* Total Packets RX - R/clr */
+#define E1000_TPT      0x040D4	/* Total Packets TX - R/clr */
+#define E1000_PTC64    0x040D8	/* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127   0x040DC	/* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255   0x040E0	/* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511   0x040E4	/* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023  0x040E8	/* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522  0x040EC	/* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC     0x040F0	/* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC     0x040F4	/* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC    0x040F8	/* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC   0x040FC	/* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_RXCSUM   0x05000	/* RX Checksum Control - RW */
+#define E1000_MTA      0x05200	/* Multicast Table Array - RW Array */
+#define E1000_RA       0x05400	/* Receive Address - RW Array */
+#define E1000_VFTA     0x05600	/* VLAN Filter Table Array - RW Array */
+#define E1000_WUC      0x05800	/* Wakeup Control - RW */
+#define E1000_WUFC     0x05808	/* Wakeup Filter Control - RW */
+#define E1000_WUS      0x05810	/* Wakeup Status - RO */
+#define E1000_MANC     0x05820	/* Management Control - RW */
+#define E1000_IPAV     0x05838	/* IP Address Valid - RW */
+#define E1000_IP4AT    0x05840	/* IPv4 Address Table - RW Array */
+#define E1000_IP6AT    0x05880	/* IPv6 Address Table - RW Array */
+#define E1000_WUPL     0x05900	/* Wakeup Packet Length - RW */
+#define E1000_WUPM     0x05A00	/* Wakeup Packet Memory - RO A */
+#define E1000_FFLT     0x05F00	/* Flexible Filter Length Table - RW Array */
+#define E1000_FFMT     0x09000	/* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT     0x09800	/* Flexible Filter Value Table - RW Array */
+
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL     E1000_CTRL
+#define E1000_82542_STATUS   E1000_STATUS
+#define E1000_82542_EECD     E1000_EECD
+#define E1000_82542_EERD     E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_MDIC     E1000_MDIC
+#define E1000_82542_FCAL     E1000_FCAL
+#define E1000_82542_FCAH     E1000_FCAH
+#define E1000_82542_FCT      E1000_FCT
+#define E1000_82542_VET      E1000_VET
+#define E1000_82542_RA	     0x00040
+#define E1000_82542_ICR      E1000_ICR
+#define E1000_82542_ITR      E1000_ITR
+#define E1000_82542_ICS      E1000_ICS
+#define E1000_82542_IMS      E1000_IMS
+#define E1000_82542_IMC      E1000_IMC
+#define E1000_82542_RCTL     E1000_RCTL
+#define E1000_82542_RDTR     0x00108
+#define E1000_82542_RDBAL    0x00110
+#define E1000_82542_RDBAH    0x00114
+#define E1000_82542_RDLEN    0x00118
+#define E1000_82542_RDH      0x00120
+#define E1000_82542_RDT      0x00128
+#define E1000_82542_FCRTH    0x00160
+#define E1000_82542_FCRTL    0x00168
+#define E1000_82542_FCTTV    E1000_FCTTV
+#define E1000_82542_TXCW     E1000_TXCW
+#define E1000_82542_RXCW     E1000_RXCW
+#define E1000_82542_MTA      0x00200
+#define E1000_82542_TCTL     E1000_TCTL
+#define E1000_82542_TIPG     E1000_TIPG
+#define E1000_82542_TDBAL    0x00420
+#define E1000_82542_TDBAH    0x00424
+#define E1000_82542_TDLEN    0x00428
+#define E1000_82542_TDH      0x00430
+#define E1000_82542_TDT      0x00438
+#define E1000_82542_TIDV     0x00440
+#define E1000_82542_TBT      E1000_TBT
+#define E1000_82542_AIT      E1000_AIT
+#define E1000_82542_VFTA     0x00600
+#define E1000_82542_LEDCTL   E1000_LEDCTL
+#define E1000_82542_PBA      E1000_PBA
+#define E1000_82542_RXDCTL   E1000_RXDCTL
+#define E1000_82542_RADV     E1000_RADV
+#define E1000_82542_RSRPD    E1000_RSRPD
+#define E1000_82542_TXDMAC   E1000_TXDMAC
+#define E1000_82542_TXDCTL   E1000_TXDCTL
+#define E1000_82542_TADV     E1000_TADV
+#define E1000_82542_TSPMT    E1000_TSPMT
+#define E1000_82542_CRCERRS  E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS  E1000_SYMERRS
+#define E1000_82542_RXERRC   E1000_RXERRC
+#define E1000_82542_MPC      E1000_MPC
+#define E1000_82542_SCC      E1000_SCC
+#define E1000_82542_ECOL     E1000_ECOL
+#define E1000_82542_MCC      E1000_MCC
+#define E1000_82542_LATECOL  E1000_LATECOL
+#define E1000_82542_COLC     E1000_COLC
+#define E1000_82542_DC	     E1000_DC
+#define E1000_82542_TNCRS    E1000_TNCRS
+#define E1000_82542_SEC      E1000_SEC
+#define E1000_82542_CEXTERR  E1000_CEXTERR
+#define E1000_82542_RLEC     E1000_RLEC
+#define E1000_82542_XONRXC   E1000_XONRXC
+#define E1000_82542_XONTXC   E1000_XONTXC
+#define E1000_82542_XOFFRXC  E1000_XOFFRXC
+#define E1000_82542_XOFFTXC  E1000_XOFFTXC
+#define E1000_82542_FCRUC    E1000_FCRUC
+#define E1000_82542_PRC64    E1000_PRC64
+#define E1000_82542_PRC127   E1000_PRC127
+#define E1000_82542_PRC255   E1000_PRC255
+#define E1000_82542_PRC511   E1000_PRC511
+#define E1000_82542_PRC1023  E1000_PRC1023
+#define E1000_82542_PRC1522  E1000_PRC1522
+#define E1000_82542_GPRC     E1000_GPRC
+#define E1000_82542_BPRC     E1000_BPRC
+#define E1000_82542_MPRC     E1000_MPRC
+#define E1000_82542_GPTC     E1000_GPTC
+#define E1000_82542_GORCL    E1000_GORCL
+#define E1000_82542_GORCH    E1000_GORCH
+#define E1000_82542_GOTCL    E1000_GOTCL
+#define E1000_82542_GOTCH    E1000_GOTCH
+#define E1000_82542_RNBC     E1000_RNBC
+#define E1000_82542_RUC      E1000_RUC
+#define E1000_82542_RFC      E1000_RFC
+#define E1000_82542_ROC      E1000_ROC
+#define E1000_82542_RJC      E1000_RJC
+#define E1000_82542_MGTPRC   E1000_MGTPRC
+#define E1000_82542_MGTPDC   E1000_MGTPDC
+#define E1000_82542_MGTPTC   E1000_MGTPTC
+#define E1000_82542_TORL     E1000_TORL
+#define E1000_82542_TORH     E1000_TORH
+#define E1000_82542_TOTL     E1000_TOTL
+#define E1000_82542_TOTH     E1000_TOTH
+#define E1000_82542_TPR      E1000_TPR
+#define E1000_82542_TPT      E1000_TPT
+#define E1000_82542_PTC64    E1000_PTC64
+#define E1000_82542_PTC127   E1000_PTC127
+#define E1000_82542_PTC255   E1000_PTC255
+#define E1000_82542_PTC511   E1000_PTC511
+#define E1000_82542_PTC1023  E1000_PTC1023
+#define E1000_82542_PTC1522  E1000_PTC1522
+#define E1000_82542_MPTC     E1000_MPTC
+#define E1000_82542_BPTC     E1000_BPTC
+#define E1000_82542_TSCTC    E1000_TSCTC
+#define E1000_82542_TSCTFC   E1000_TSCTFC
+#define E1000_82542_RXCSUM   E1000_RXCSUM
+#define E1000_82542_WUC      E1000_WUC
+#define E1000_82542_WUFC     E1000_WUFC
+#define E1000_82542_WUS      E1000_WUS
+#define E1000_82542_MANC     E1000_MANC
+#define E1000_82542_IPAV     E1000_IPAV
+#define E1000_82542_IP4AT    E1000_IP4AT
+#define E1000_82542_IP6AT    E1000_IP6AT
+#define E1000_82542_WUPL     E1000_WUPL
+#define E1000_82542_WUPM     E1000_WUPM
+#define E1000_82542_FFLT     E1000_FFLT
+#define E1000_82542_FFMT     E1000_FFMT
+#define E1000_82542_FFVT     E1000_FFVT
+
+struct e1000_eeprom_info {
+	e1000_eeprom_type type;
+	uint16_t word_size;
+	uint16_t opcode_bits;
+	uint16_t address_bits;
+	uint16_t delay_usec;
+	uint16_t page_size;
+	bool use_eerd;
+	bool use_eewr;
+};
+
+#define E1000_EEPROM_SWDPIN0   0x0001	/* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020	/* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA   16   /* Offset to data in EEPROM
+					   read/write registers */
+#define E1000_EEPROM_RW_REG_DONE   2    /* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START  1    /* First bit for telling part to start
+					   operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2    /* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE    1    /* Flag for polling for write
+					   complete */
+#define E1000_EEPROM_POLL_READ     0    /* Flag for polling for read complete */
+#define EEPROM_RESERVED_WORD          0xFFFF
+
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD	    0x00000001	/* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM	    0x00000002	/* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR    0x00000004	/* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_LRST     0x00000008	/* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME	    0x00000010	/* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE	    0x00000020	/* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE     0x00000020	/* Auto-speed detect enable */
+#define E1000_CTRL_SLU	    0x00000040	/* Set link up (Force Link) */
+#define E1000_CTRL_ILOS     0x00000080	/* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL  0x00000300	/* Speed Select Mask */
+#define E1000_CTRL_SPD_10   0x00000000	/* Force 10Mb */
+#define E1000_CTRL_SPD_100  0x00000100	/* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200	/* Force 1Gb */
+#define E1000_CTRL_BEM32    0x00000400	/* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD   0x00000800	/* Force Speed */
+#define E1000_CTRL_FRCDPX   0x00001000	/* Force Duplex */
+#define E1000_CTRL_SWDPIN0  0x00040000	/* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1  0x00080000	/* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2  0x00100000	/* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3  0x00200000	/* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0  0x00400000	/* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1  0x00800000	/* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2  0x01000000	/* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3  0x02000000	/* SWDPIN 3 input or output */
+#define E1000_CTRL_RST	    0x04000000	/* Global reset */
+#define E1000_CTRL_RFCE     0x08000000	/* Receive Flow Control enable */
+#define E1000_CTRL_TFCE     0x10000000	/* Transmit flow control enable */
+#define E1000_CTRL_RTE	    0x20000000	/* Routing tag enable */
+#define E1000_CTRL_VME	    0x40000000	/* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST  0x80000000	/* PHY Reset */
+
+/* Device Status */
+#define E1000_STATUS_FD		0x00000001	/* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU		0x00000002	/* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK	0x0000000C	/* PCI Function Mask */
+#define E1000_STATUS_FUNC_0	0x00000000	/* Function 0 */
+#define E1000_STATUS_FUNC_1	0x00000004	/* Function 1 */
+#define E1000_STATUS_TXOFF	0x00000010	/* transmission paused */
+#define E1000_STATUS_TBIMODE	0x00000020	/* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10	0x00000000	/* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100	0x00000040	/* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080	/* Speed 1000Mb/s */
+#define E1000_STATUS_ASDV	0x00000300	/* Auto speed detect value */
+#define E1000_STATUS_MTXCKOK	0x00000400	/* MTX clock running OK */
+#define E1000_STATUS_PCI66	0x00000800	/* In 66Mhz slot */
+#define E1000_STATUS_BUS64	0x00001000	/* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE	0x00002000	/* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000	/* PCI-X bus speed */
+#define E1000_STATUS_PF_RST_DONE 0x00200000	/* PCI-X bus speed */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66  0x00000000	/* PCI-X bus speed  50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000	/* PCI-X bus speed  66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000	/* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK	     0x00000001	/* EEPROM Clock */
+#define E1000_EECD_CS	     0x00000002	/* EEPROM Chip Select */
+#define E1000_EECD_DI	     0x00000004	/* EEPROM Data In */
+#define E1000_EECD_DO	     0x00000008	/* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK  0x00000030
+#define E1000_EECD_FWE_DIS   0x00000010	/* Disable FLASH writes */
+#define E1000_EECD_FWE_EN    0x00000020	/* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_SIZE      0x00000200	/* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_REQ	     0x00000040	/* EEPROM Access Request */
+#define E1000_EECD_GNT	     0x00000080	/* EEPROM Access Grant */
+#define E1000_EECD_PRES      0x00000100	/* EEPROM Present */
+#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
+					 * (0-small, 1-large) */
+
+#define E1000_EECD_TYPE      0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD          0x00000200  /* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK     0x00007800  /* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT    11
+#define E1000_EECD_NVADDS    0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD   0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM  0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD     0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN    0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV     0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL   0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT      22
+#define E1000_STM_OPCODE     0xDB00
+#define E1000_HICR_FW_RESET  0xC0
+
+#define E1000_SHADOW_RAM_WORDS     2048
+#define E1000_ICH_NVM_SIG_WORD     0x13
+#define E1000_ICH_NVM_SIG_MASK     0xC0
+
+/* EEPROM Read */
+#define E1000_EERD_START      0x00000001	/* Start Read */
+#define E1000_EERD_DONE       0x00000010	/* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK  0x0000FF00	/* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK  0xFFFF0000	/* Read Data */
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE  0x6  /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5  /* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7  /* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE  0x13 /* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE  0x10 /* EEPROM erast/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI        5000 /* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI      0x03  /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI     0x02  /* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI        0x08  /* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI      0x06  /* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI      0x04  /* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI      0x05  /* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI      0x01  /* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI   0x20  /* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI  0xD8  /* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI  0xDB  /* EEPROM ERASE 256B */
+
+/* EEPROM Size definitions */
+#define EEPROM_WORD_SIZE_SHIFT  6
+#define EEPROM_SIZE_SHIFT       10
+#define EEPROM_SIZE_MASK        0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT                 0x0003
+#define EEPROM_ID_LED_SETTINGS        0x0004
+#define EEPROM_VERSION                0x0005
+#define EEPROM_SERDES_AMPLITUDE       0x0006 /* For SERDES output amplitude
+						adjustment. */
+#define EEPROM_PHY_CLASS_WORD         0x0007
+#define EEPROM_INIT_CONTROL1_REG      0x000A
+#define EEPROM_INIT_CONTROL2_REG      0x000F
+#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define EEPROM_INIT_CONTROL3_PORT_B   0x0014
+#define EEPROM_INIT_3GIO_3            0x001A
+#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define EEPROM_INIT_CONTROL3_PORT_A   0x0024
+#define EEPROM_CFG                    0x0012
+#define EEPROM_FLASH_VERSION          0x0032
+#define EEPROM_CHECKSUM_REG           0x003F
+
+#define E1000_EEPROM_CFG_DONE         0x00040000   /* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1  0x00080000   /* ...for second port */
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN	 0x00000001	/* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN	 0x00000002	/* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN	 0x00000004	/* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN	 0x00000008	/* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010	/* Value of SW Defineable
+						   Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020	/* Value of SW Defineable
+						   Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT	 E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040	/* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SWDPIN6	 0x00000040	/* SWDPIN 6 value */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080	/* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SWDPIN7	 0x00000080	/* SWDPIN 7 value */
+#define E1000_CTRL_EXT_SDP4_DIR  0x00000100	/* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR  0x00000200	/* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR  0x00000400	/* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SWDPIO6	 0x00000400	/* SWDPIN 6 Input or output */
+#define E1000_CTRL_EXT_SDP7_DIR  0x00000800	/* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_SWDPIO7	 0x00000800	/* SWDPIN 7 Input or output */
+#define E1000_CTRL_EXT_ASDCHK	 0x00001000	/* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST	 0x00002000	/* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS	 0x00004000	/* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS  0x00008000	/* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS    0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000
+#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK  0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK  0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE  0x04000000
+#define E1000_MDIC_OP_READ   0x08000000
+#define E1000_MDIC_READY     0x10000000
+#define E1000_MDIC_INT_EN    0x20000000
+#define E1000_MDIC_ERROR     0x40000000
+
+#define E1000_PHY_CTRL_SPD_EN                  0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU                0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU             0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE      0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE             0x00000040
+#define E1000_PHY_CTRL_B2B_EN                  0x00000080
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK  0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_IVRT	     0x00000040
+#define E1000_LEDCTL_LED0_BLINK      0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK  0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_IVRT	     0x00004000
+#define E1000_LEDCTL_LED1_BLINK      0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK  0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_IVRT	     0x00400000
+#define E1000_LEDCTL_LED2_BLINK      0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK  0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_IVRT	     0x40000000
+#define E1000_LEDCTL_LED3_BLINK      0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000	0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP	0x2
+#define E1000_LEDCTL_MODE_ACTIVITY	0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10	0x5
+#define E1000_LEDCTL_MODE_LINK_100	0x6
+#define E1000_LEDCTL_MODE_LINK_1000	0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE	0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX	0x9
+#define E1000_LEDCTL_MODE_COLLISION	0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED	0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE	0xC
+#define E1000_LEDCTL_MODE_PAUSED	0xD
+#define E1000_LEDCTL_MODE_LED_ON	0xE
+#define E1000_LEDCTL_MODE_LED_OFF	0xF
+
+/* Receive Address */
+#define E1000_RAH_AV  0x80000000	/* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW	  0x00000001	/* Transmit desc written back */
+#define E1000_ICR_TXQE	  0x00000002	/* Transmit Queue empty */
+#define E1000_ICR_LSC	  0x00000004	/* Link Status Change */
+#define E1000_ICR_RXSEQ   0x00000008	/* rx sequence error */
+#define E1000_ICR_RXDMT0  0x00000010	/* rx desc min. threshold (0) */
+#define E1000_ICR_RXO	  0x00000040	/* rx overrun */
+#define E1000_ICR_RXT0	  0x00000080	/* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC	  0x00000200	/* MDIO access complete */
+#define E1000_ICR_RXCFG   0x00000400	/* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800	/* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000	/* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000	/* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000	/* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD	  0x00010000
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW	  E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_ICS_TXQE	  E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_ICS_LSC	  E1000_ICR_LSC	/* Link Status Change */
+#define E1000_ICS_RXSEQ   E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_ICS_RXDMT0  E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_ICS_RXO	  E1000_ICR_RXO	/* rx overrun */
+#define E1000_ICS_RXT0	  E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_ICS_MDAC	  E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_ICS_RXCFG   E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD	  E1000_ICR_SRPD
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW	  E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMS_TXQE	  E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMS_LSC	  E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMS_RXSEQ   E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMS_RXDMT0  E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMS_RXO	  E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMS_RXT0	  E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMS_MDAC	  E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMS_RXCFG   E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD	  E1000_ICR_SRPD
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW	  E1000_ICR_TXDW	/* Transmit desc written back */
+#define E1000_IMC_TXQE	  E1000_ICR_TXQE	/* Transmit Queue empty */
+#define E1000_IMC_LSC	  E1000_ICR_LSC	/* Link Status Change */
+#define E1000_IMC_RXSEQ   E1000_ICR_RXSEQ	/* rx sequence error */
+#define E1000_IMC_RXDMT0  E1000_ICR_RXDMT0	/* rx desc min. threshold */
+#define E1000_IMC_RXO	  E1000_ICR_RXO	/* rx overrun */
+#define E1000_IMC_RXT0	  E1000_ICR_RXT0	/* rx timer intr */
+#define E1000_IMC_MDAC	  E1000_ICR_MDAC	/* MDIO access complete */
+#define E1000_IMC_RXCFG   E1000_ICR_RXCFG	/* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0	/* GP Int 0 */
+#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1	/* GP Int 1 */
+#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2	/* GP Int 2 */
+#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3	/* GP Int 3 */
+#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD	  E1000_ICR_SRPD
+
+/* Receive Control */
+#define E1000_RCTL_RST		0x00000001	/* Software reset */
+#define E1000_RCTL_EN		0x00000002	/* enable */
+#define E1000_RCTL_SBP		0x00000004	/* store bad packet */
+#define E1000_RCTL_UPE		0x00000008	/* unicast promiscuous enable */
+#define E1000_RCTL_MPE		0x00000010	/* multicast promiscuous enab */
+#define E1000_RCTL_LPE		0x00000020	/* long packet enable */
+#define E1000_RCTL_LBM_NO	0x00000000	/* no loopback mode */
+#define E1000_RCTL_LBM_MAC	0x00000040	/* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP	0x00000080	/* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR	0x000000C0	/* tcvr loopback mode */
+#define E1000_RCTL_RDMTS_HALF	0x00000000	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT	0x00000100	/* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH	0x00000200	/* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT	12	/* multicast offset shift */
+#define E1000_RCTL_MO_0		0x00000000	/* multicast offset 11:0 */
+#define E1000_RCTL_MO_1		0x00001000	/* multicast offset 12:1 */
+#define E1000_RCTL_MO_2		0x00002000	/* multicast offset 13:2 */
+#define E1000_RCTL_MO_3		0x00003000	/* multicast offset 15:4 */
+#define E1000_RCTL_MDR		0x00004000	/* multicast desc ring 0 */
+#define E1000_RCTL_BAM		0x00008000	/* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048	0x00000000	/* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024	0x00010000	/* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512	0x00020000	/* rx buffer size 512 */
+#define E1000_RCTL_SZ_256	0x00030000	/* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384	0x00010000	/* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192	0x00020000	/* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096	0x00030000	/* rx buffer size 4096 */
+#define E1000_RCTL_VFE		0x00040000	/* vlan filter enable */
+#define E1000_RCTL_CFIEN	0x00080000	/* canonical form enable */
+#define E1000_RCTL_CFI		0x00100000	/* canonical form indicator */
+#define E1000_RCTL_DPF		0x00400000	/* discard pause frames */
+#define E1000_RCTL_PMCF		0x00800000	/* pass MAC control frames */
+#define E1000_RCTL_BSEX		0x02000000	/* Buffer size extension */
+
+/* SW_W_SYNC definitions */
+#define E1000_SWFW_EEP_SM     0x0001
+#define E1000_SWFW_PHY0_SM    0x0002
+#define E1000_SWFW_PHY1_SM    0x0004
+#define E1000_SWFW_MAC_CSR_SM 0x0008
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff	/* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB	0x80000000	/* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80	/* descriptor length */
+#define E1000_RDH_RDH	0x0000ffff	/* receive descriptor head */
+#define E1000_RDT_RDT	0x0000ffff	/* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH  0x0000FFF8	/* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000	/* External Flow Control Enable */
+#define E1000_FCRTL_RTL  0x0000FFF8	/* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000	/* Enable XON frame transmission */
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F	/* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00	/* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000	/* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN    0x01000000	/* RXDCTL Granularity */
+#define E1000_RXDCTL_FULL_RX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F	/* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00	/* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000	/* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN    0x01000000	/* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000	/* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
+					      still to be processed. */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD	      0x00000020	/* TXCW full duplex */
+#define E1000_TXCW_HD	      0x00000040	/* TXCW half duplex */
+#define E1000_TXCW_PAUSE      0x00000080	/* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR    0x00000100	/* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180	/* TXCW pause request mask */
+#define E1000_TXCW_RF	      0x00003000	/* TXCW remote fault */
+#define E1000_TXCW_NP	      0x00008000	/* TXCW next page */
+#define E1000_TXCW_CW	      0x0000ffff	/* TxConfigWord mask */
+#define E1000_TXCW_TXC	      0x40000000	/* Transmit Config control */
+#define E1000_TXCW_ANE	      0x80000000	/* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW	 0x0000ffff	/* RxConfigWord mask */
+#define E1000_RXCW_NC	 0x04000000	/* Receive config no carrier */
+#define E1000_RXCW_IV	 0x08000000	/* Receive config invalid */
+#define E1000_RXCW_CC	 0x10000000	/* Receive config change */
+#define E1000_RXCW_C	 0x20000000	/* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000	/* Receive config synch */
+#define E1000_RXCW_ANC	 0x80000000	/* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST	  0x00000001	/* software reset */
+#define E1000_TCTL_EN	  0x00000002	/* enable tx */
+#define E1000_TCTL_BCE	  0x00000004	/* busy check enable */
+#define E1000_TCTL_PSP	  0x00000008	/* pad short packets */
+#define E1000_TCTL_CT	  0x00000ff0	/* collision threshold */
+#define E1000_TCTL_COLD   0x003ff000	/* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */
+#define E1000_TCTL_PBE	  0x00800000	/* Packet Burst Enable */
+#define E1000_TCTL_RTLC   0x01000000	/* Re-transmit on late collision */
+#define E1000_TCTL_NRTU   0x02000000	/* No Re-transmit on underrun */
+#define E1000_TCTL_MULR   0x10000000    /* Multiple request support */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF	/* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL     0x00000100	/* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL     0x00000200	/* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL   0x00000400	/* IPv6 checksum offload */
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME	     0x00000001	/* APM Enable */
+#define E1000_WUC_PME_EN     0x00000002	/* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004	/* PME Status */
+#define E1000_WUC_APMPME     0x00000008	/* Assert PME on APM Wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001	/* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG	0x00000002	/* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX	0x00000004	/* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC	0x00000008	/* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC	0x00000010	/* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP	0x00000020	/* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0 0x00010000	/* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000	/* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000	/* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000	/* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF	/* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16	/* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001	/* Link Status Changed */
+#define E1000_WUS_MAG  0x00000002	/* Magic Packet Received */
+#define E1000_WUS_EX   0x00000004	/* Directed Exact Received */
+#define E1000_WUS_MC   0x00000008	/* Directed Multicast Received */
+#define E1000_WUS_BC   0x00000010	/* Broadcast Received */
+#define E1000_WUS_ARP  0x00000020	/* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000	/* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000	/* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000	/* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000	/* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN	 0x00000001	/* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN	 0x00000002	/* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE	 0x00000004	/* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN	 0x00000100	/* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN	 0x00000200	/* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN	 0x00000400	/* Enable IPv4 */
+#define E1000_MANC_IPV6_EN	 0x00000800	/* Enable IPv6 */
+#define E1000_MANC_SNAP_EN	 0x00001000	/* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN	 0x00002000	/* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN	 0x00004000	/* Enable Neighbor Discovery
+						 * Filtering */
+#define E1000_MANC_TCO_RESET	 0x00010000	/* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN	 0x00020000	/* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000	/* Status Reporting Enabled */
+#define E1000_MANC_SMB_REQ	 0x01000000	/* SMBus Request */
+#define E1000_MANC_SMB_GNT	 0x02000000	/* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN	 0x04000000	/* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN	 0x08000000	/* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT  0x10000000	/* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT	 0x20000000	/* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT  28	/* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT   29	/* SMBus Clock Out Shift */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF	/* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN	       4096
+
+/* EEPROM Commands */
+#define EEPROM_READ_OPCODE  0x6	/* EERPOM read opcode */
+#define EEPROM_WRITE_OPCODE 0x5	/* EERPOM write opcode */
+#define EEPROM_ERASE_OPCODE 0x7	/* EERPOM erase opcode */
+#define EEPROM_EWEN_OPCODE  0x13	/* EERPOM erase/write enable */
+#define EEPROM_EWDS_OPCODE  0x10	/* EERPOM erast/write disable */
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT	     ((ID_LED_OFF1_ON2 << 12) | \
+			      (ID_LED_OFF1_OFF2 << 8) | \
+			      (ID_LED_DEF1_DEF2 << 4) | \
+			      (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2     0x1
+#define ID_LED_DEF1_ON2      0x2
+#define ID_LED_DEF1_OFF2     0x3
+#define ID_LED_ON1_DEF2      0x4
+#define ID_LED_ON1_ON2	     0x5
+#define ID_LED_ON1_OFF2      0x6
+#define ID_LED_OFF1_DEF2     0x7
+#define ID_LED_OFF1_ON2      0x8
+#define ID_LED_OFF1_OFF2     0x9
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define EEPROM_COMPAT_SERVER 0x0400
+#define EEPROM_COMPAT_CLIENT 0x0200
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS   0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST   0x0200
+#define EEPROM_WORD0A_FD     0x0400
+#define EEPROM_WORD0A_66MHZ  0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE	 0x1000
+#define EEPROM_WORD0F_ASM_DIR	 0x2000
+#define EEPROM_WORD0F_ANE	 0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1	   8
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD	0xF
+#define E1000_CT_SHIFT			4
+#define E1000_COLLISION_DISTANCE        63
+#define E1000_COLLISION_DISTANCE_82542  64
+#define E1000_FDX_COLLISION_DISTANCE	E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE	E1000_COLLISION_DISTANCE
+#define E1000_GB_HDX_COLLISION_DISTANCE 512
+#define E1000_COLD_SHIFT		12
+
+/* The number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT        10
+#define DEFAULT_82543_TIPG_IPGT_FIBER  9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK  0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT	10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT	20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START     8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP      190
+#define TX_THRESHOLD_DISABLE   0
+#define TX_THRESHOLD_TIMER_MS  10000
+#define MIN_NUM_XMITS	       1000
+#define IFS_MAX		       80
+#define IFS_STEP	       10
+#define IFS_MIN		       40
+#define IFS_RATIO	       4
+
+/* PBA constants */
+#define E1000_PBA_16K 0x0010	/* 16KB, default TX allocation */
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030	/* 48KB, default RX allocation */
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE	  0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH	    (0x8000)	/* 32KB */
+#define FC_DEFAULT_LO_THRESH	    (0x4000)	/* 16KB */
+#define FC_DEFAULT_TX_TIMER	    (0x100)	/* ~130 us */
+
+/* Flow Control High-Watermark: 43464 bytes */
+#define E1000_FC_HIGH_THRESH 0xA9C8
+/* Flow Control Low-Watermark: 43456 bytes */
+#define E1000_FC_LOW_THRESH 0xA9C0
+/* Flow Control Pause Time: 858 usec */
+#define E1000_FC_PAUSE_TIME 0x0680
+
+/* The number of bits that we need to shift right to move the "pause"
+ * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field
+ * in the TXCW register
+ */
+#define PAUSE_SHIFT 5
+
+/* The number of bits that we need to shift left to move the "SWDPIO"
+ * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field
+ * in the CTRL register
+ */
+#define SWDPIO_SHIFT 17
+
+/* The number of bits that we need to shift left to move the "SWDPIO_EXT"
+ * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The
+ * Extended CTRL register.
+ * in the CTRL register
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+#define RECEIVE_BUFFER_ALIGN_SIZE  (256)
+
+/* The number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT		    500
+
+#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR	E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET		E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR		E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO			E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR		E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC			E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4	E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4		E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL			0x00	/* Control Register */
+#define PHY_STATUS			0x01	/* Status Regiser */
+#define PHY_ID1				0x02	/* Phy Id Reg (word 1) */
+#define PHY_ID2				0x03	/* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV		0x04	/* Autoneg Advertisement */
+#define PHY_LP_ABILITY			0x05	/* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP		0x06	/* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX		0x07	/* Next Page TX */
+#define PHY_LP_NEXT_PAGE		0x08	/* Link Partner Next Page */
+#define PHY_1000T_CTRL			0x09	/* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS		0x0A	/* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS			0x0F	/* Extended Status Reg */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL		0x10	/* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS	0x11	/* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE		0x12	/* Interrupt Enable Register */
+#define M88E1000_INT_STATUS		0x13	/* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL	0x14	/* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR		0x15	/* Receive Error Counter */
+
+#define M88E1000_PHY_PAGE_SELECT   0x1D  /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL   0x1E  /* Its meaning depends on reg 29 */
+
+#define MAX_PHY_REG_ADDRESS		0x1F	/* 5 bit address bus (0-0x1F) */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK  0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X    0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X    0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X    0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X    0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X    0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X    0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X    0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X    0x0E00
+
+/* IGP01E1000 specifics */
+#define IGP01E1000_IEEE_REGS_PAGE	0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA	0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG	0x10 /* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS	0x11 /* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL	0x12 /* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO		0x14 /* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY	0x15 /* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT	0x19
+#define IGP01E1000_PHY_PAGE_SELECT	0x1F /* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A        0x1172
+#define IGP01E1000_PHY_AGC_B        0x1272
+#define IGP01E1000_PHY_AGC_C        0x1472
+#define IGP01E1000_PHY_AGC_D        0x1872
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT  0x0010
+#define IGP01E1000_PSCFR_PRE_EN                0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED           0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK    0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER        0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT      0x2000
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A        0x11B1
+#define IGP02E1000_PHY_AGC_B        0x12B1
+#define IGP02E1000_PHY_AGC_C        0x14B1
+#define IGP02E1000_PHY_AGC_D        0x18B1
+
+#define IGP02E1000_PM_SPD                         0x0001  /* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU                     0x0004  /* Enable LPLU in
+							     non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU                     0x0002  /* Enable LPLU in
+							     D0a mode */
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET   0x1F33
+#define IGP01E1000_PHY_DSP_SET     0x1F71
+#define IGP01E1000_PHY_DSP_FFE     0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM    4
+#define IGP02E1000_PHY_CHANNEL_NUM    4
+
+#define IGP01E1000_PHY_AGC_PARAM_A    0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B    0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C    0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D    0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX        0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE      0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A       0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE  0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP        0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT      0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG  0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG  0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE  0x20C0
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD               0x10 /* Enable flexible speed
+							* on Link-Up */
+#define IGP01E1000_GMII_SPD                    0x20 /* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS       0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS             0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL            0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS             0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK            0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK            0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK          0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED        0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL    0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH        0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10            0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1               0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10              0x0500
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK            0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR      0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT         0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP              0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX              0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX         0x2000 /* 0-MDI, 1-MDIX */
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_DISABLE_JABBER             0x0001 /* 1=Disable Jabber */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE  0x0002 /* 1=Polarity Reversal
+							  Disabled */
+#define GG82563_PSCR_POWER_DOWN                 0x0004 /* 1=Power Down */
+#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE  0x0008 /* 1=Transmitter
+							  Disabled */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK        0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI         0x0000 /* 00=Manual MDI
+							  configuration */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX        0x0020 /* 01=Manual MDIX
+							  configuration */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO        0x0060 /* 11=Automatic
+							  crossover */
+#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE   0x0080 /* 1=Enable Extended
+							  Distance */
+#define GG82563_PSCR_ENERGY_DETECT_MASK         0x0300
+#define GG82563_PSCR_ENERGY_DETECT_OFF          0x0000 /* 00,01=Off */
+#define GG82563_PSCR_ENERGY_DETECT_RX           0x0200 /* 10=Sense on Rx only
+							  (Energy Detect) */
+#define GG82563_PSCR_ENERGY_DETECT_RX_TM        0x0300 /* 11=Sense and Tx NLP */
+#define GG82563_PSCR_FORCE_LINK_GOOD            0x0400 /* 1=Force Link Good */
+#define GG82563_PSCR_DOWNSHIFT_ENABLE           0x0800 /* 1=Enable Downshift */
+#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK     0x7000
+#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT    12
+
+/* PHY Specific Status Register (Page 0, Register 17) */
+#define GG82563_PSSR_JABBER                0x0001 /* 1=Jabber */
+#define GG82563_PSSR_POLARITY              0x0002 /* 1=Polarity Reversed */
+#define GG82563_PSSR_LINK                  0x0008 /* 1=Link is Up */
+#define GG82563_PSSR_ENERGY_DETECT         0x0010 /* 1=Sleep, 0=Active */
+#define GG82563_PSSR_DOWNSHIFT             0x0020 /* 1=Downshift */
+#define GG82563_PSSR_CROSSOVER_STATUS      0x0040 /* 1=MDIX, 0=MDI */
+#define GG82563_PSSR_RX_PAUSE_ENABLED      0x0100 /* 1=Receive Pause Enabled */
+#define GG82563_PSSR_TX_PAUSE_ENABLED      0x0200 /* 1=Transmit Pause Enabled */
+#define GG82563_PSSR_LINK_UP               0x0400 /* 1=Link Up */
+#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
+#define GG82563_PSSR_PAGE_RECEIVED         0x1000 /* 1=Page Received */
+#define GG82563_PSSR_DUPLEX                0x2000 /* 1-Full-Duplex */
+#define GG82563_PSSR_SPEED_MASK            0xC000
+#define GG82563_PSSR_SPEED_10MBPS          0x0000 /* 00=10Mbps */
+#define GG82563_PSSR_SPEED_100MBPS         0x4000 /* 01=100Mbps */
+#define GG82563_PSSR_SPEED_1000MBPS        0x8000 /* 10=1000Mbps */
+
+/* PHY Specific Status Register 2 (Page 0, Register 19) */
+#define GG82563_PSSR2_JABBER                0x0001 /* 1=Jabber */
+#define GG82563_PSSR2_POLARITY_CHANGED      0x0002 /* 1=Polarity Changed */
+#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
+#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT   0x0020 /* 1=Downshift Detected */
+#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE  0x0040 /* 1=Crossover Changed */
+#define GG82563_PSSR2_FALSE_CARRIER         0x0100 /* 1=false Carrier */
+#define GG82563_PSSR2_SYMBOL_ERROR          0x0200 /* 1=Symbol Error */
+#define GG82563_PSSR2_LINK_STATUS_CHANGED   0x0400 /* 1=Link Status Changed */
+#define GG82563_PSSR2_AUTO_NEG_COMPLETED    0x0800 /* 1=Auto-Neg Completed */
+#define GG82563_PSSR2_PAGE_RECEIVED         0x1000 /* 1=Page Received */
+#define GG82563_PSSR2_DUPLEX_CHANGED        0x2000 /* 1=Duplex Changed */
+#define GG82563_PSSR2_SPEED_CHANGED         0x4000 /* 1=Speed Changed */
+#define GG82563_PSSR2_AUTO_NEG_ERROR        0x8000 /* 1=Auto-Neg Error */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_10BT_POLARITY_FORCE           0x0002 /* 1=Force Negative
+							      Polarity */
+#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK       0x000C
+#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL     0x0000 /* 00,01=Normal
+							      Operation */
+#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS      0x0008 /* 10=Select 112ns
+							      Sequence */
+#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS       0x000C /* 11=Select 16ns
+							      Sequence */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG              0x2000 /* 1=Reverse
+							Auto-Negotiation */
+#define GG82563_PSCR2_1000BT_DISABLE                0x4000 /* 1=Disable
+							      1000BASE-T */
+#define GG82563_PSCR2_TRANSMITER_TYPE_MASK          0x8000
+#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B      0x0000 /* 0=Class B */
+#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A      0x8000 /* 1=Class A */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK                    0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ           0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ           0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ         0x0006
+#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ          0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX               0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26) */
+#define GG82563_DSPD_CABLE_LENGTH               0x0007 /* 0 = <50M;
+							  1 = 50-80M;
+							  2 = 80-110M;
+							  3 = 110-140M;
+							  4 = >140M */
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PHY_LEDS_EN                    0x0020 /* 1=PHY LEDs,
+							0=Kumeran Inband LEDs */
+#define GG82563_KMCR_FORCE_LINK_UP                  0x0040 /* 1=Force Link Up */
+#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT         0x0080
+#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK     0x0400
+#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT          0x0400 /* 1=6.25MHz,
+							      0=0.8MHz */
+#define GG82563_KMCR_PASS_FALSE_CARRIER             0x0800
+
+/* Power Management Control Register (Page 193, Register 20) */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE    0x0001 /* 1=Enalbe SERDES
+						Electrical Idle */
+#define GG82563_PMCR_DISABLE_PORT              0x0002 /* 1=Disable Port */
+#define GG82563_PMCR_DISABLE_SERDES            0x0004 /* 1=Disable SERDES */
+#define GG82563_PMCR_REVERSE_AUTO_NEG          0x0008 /* 1=Enable Reverse
+						Auto-Negotiation */
+#define GG82563_PMCR_DISABLE_1000_NON_D0       0x0010 /* 1=Disable 1000Mbps
+							 Auto-Neg in non D0 */
+#define GG82563_PMCR_DISABLE_1000              0x0020 /* 1=Disable 1000Mbps
+							 Auto-Neg Always */
+#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A      0x0040 /* 1=Enable D0a
+						Reverse Auto-Negotiation */
+#define GG82563_PMCR_FORCE_POWER_STATE         0x0080 /* 1=Force Power State */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK    0x0300
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR      0x0000 /* 00=Dr */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U     0x0100 /* 01=D0u */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A     0x0200 /* 10=D0a */
+#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3      0x0300 /* 11=D3 */
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING		0x0010 /* Disable Padding Use */
+
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT        5
+#define GG82563_REG(page, reg)    \
+	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG       30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL           \
+	GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS         \
+	GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE          \
+	GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2       \
+	GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR         \
+	GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT         \
+	GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2         \
+	GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT     \
+	GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL       \
+	GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL       \
+	GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2     \
+	GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE    \
+	GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL   \
+	GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET          \
+	GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID         \
+	GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID           \
+	GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL       \
+	GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL     \
+	GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+	GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL           \
+	GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL         \
+	GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC     \
+	GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS        \
+	GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY         \
+	GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+	GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE       \
+	GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+	GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC           \
+	GG82563_REG(194, 26) /* Misc. */
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB		0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE		0x0080	/* Collision test enable */
+#define MII_CR_FULL_DUPLEX		0x0100	/* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG		0x0200	/* Restart auto negotiation */
+#define MII_CR_ISOLATE			0x0400	/* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN		0x0800	/* Power down */
+#define MII_CR_AUTO_NEG_EN		0x1000	/* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB		0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK			0x4000	/* 0 = normal, 1 = loopback */
+#define MII_CR_RESET			0x8000	/* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS		0x0001	/* Extended register capabilities */
+#define MII_SR_JABBER_DETECT		0x0002	/* Jabber Detected */
+#define MII_SR_LINK_STATUS		0x0004	/* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS		0x0008	/* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT		0x0010	/* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE		0x0020	/* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS	0x0040	/* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS		0x0100	/* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS		0x0200	/* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS		0x0400	/* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS		0x0800	/* 10T	 Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS		0x1000	/* 10T	 Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS		0x2000	/* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS		0x4000	/* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS		0x8000	/* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD		0x0001	/* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS		0x0020	/* 10T	 Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS		0x0040	/* 10T	 Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS		0x0080	/* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS		0x0100	/* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS		0x0200	/* 100T4 Capable */
+#define NWAY_AR_PAUSE			0x0400	/* Pause operation desired */
+#define NWAY_AR_ASM_DIR		0x0800	/* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT		0x2000	/* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE		0x8000	/* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD	0x0000	/* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS		0x0020	/* LP is 10T   Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS		0x0040	/* LP is 10T   Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS	0x0080	/* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS	0x0100	/* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS		0x0200	/* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE			0x0400	/* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR		0x0800	/* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT		0x2000	/* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE		0x4000	/* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE		0x8000	/* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS		0x0001	/* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD		0x0002	/* LP is 10T   Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS		0x0004	/* LP is 10T   Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS	0x0008	/* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT	0x0100	/* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD		0x0001	/* NP msg code or unformatted data */
+#define NPTX_TOGGLE			0x0800	/* Toggles between exchanges
+						 * of different NP
+						 */
+#define NPTX_ACKNOWLDGE2		0x1000	/* 1 = will comply with msg
+						 * 0 = cannot comply with msg
+						 */
+#define NPTX_MSG_PAGE			0x2000	/* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE			0x8000	/* 1 = addition NP will follow
+						 * 0 = sending last NP
+						 */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD		0x0001	/* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE			0x0800	/* Toggles between exchanges
+						 * of different NP
+						 */
+#define LP_RNPR_ACKNOWLDGE2		0x1000	/* 1 = will comply with msg
+						 * 0 = cannot comply with msg
+						 */
+#define LP_RNPR_MSG_PAGE		0x2000	/* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE		0x4000	/* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE		0x8000	/* 1 = addition NP will follow
+						 * 0 = sending last NP
+						 */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE		0x0080	/* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS		0x0100	/* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS		0x0200	/* Advertise 1000T FD capability  */
+#define CR_1000T_REPEATER_DTE		0x0400	/* 1=Repeater/switch device port */
+						/* 0=DTE device */
+#define CR_1000T_MS_VALUE		0x0800	/* 1=Configure PHY as Master */
+						/* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE		0x1000	/* 1=Master/Slave manual config value */
+						/* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL	0x0000	/* Normal Operation */
+#define CR_1000T_TEST_MODE_1		0x2000	/* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2		0x4000	/* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3		0x6000	/* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4		0x8000	/* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT	0x00FF	/* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR	0x0100	/* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS		0x0400	/* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS		0x0800	/* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS	0x1000	/* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS	0x2000	/* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES		0x4000	/* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT	0x8000	/* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT	13
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS		0x1000	/* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS		0x2000	/* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS		0x4000	/* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS		0x8000	/* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK		0x0100	/* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY		0	/* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE		0x0010	/* register 11h bit 4 */
+						/* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE	0x0001	/* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002	/* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST		0x0004	/* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE	0x0010	/* 1=CLK125 low,
+						 * 0=CLK125 toggling
+						 */
+#define M88E1000_PSCR_MDI_MANUAL_MODE	0x0000	/* MDI Crossover Mode bits 6:5 */
+						/* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE	0x0020	/* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T	0x0040	/* 1000BASE-T: Auto crossover,
+						 *  100BASE-TX/10BASE-T:
+						 *  MDI Mode
+						 */
+#define M88E1000_PSCR_AUTO_X_MODE	0x0060	/* Auto crossover enabled
+						 * all speeds.
+						 */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+						/* 1=Enable Extended 10BASE-T distance
+						 * (Lower 10BASE-T RX Threshold)
+						 * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE	0x0100
+						/* 1=5-Bit interface in 100BASE-TX
+						 * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200	/* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD	0x0400	/* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX	0x0800	/* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT	 1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT		 5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER		0x0001	/* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY	0x0002	/* 1=Polarity reversed */
+#define M88E1000_PSSR_MDIX		0x0040	/* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH	0x0380	/* 0=<50M;1=50-80M;2=80-110M;
+						 * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK		0x0400	/* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800	/* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD		0x1000	/* 1=Page received */
+#define M88E1000_PSSR_DPLX		0x2000	/* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED		0xC000	/* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS		0x0000	/* 00=10Mbs */
+#define M88E1000_PSSR_100MBS		0x4000	/* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS		0x8000	/* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_MDIX_SHIFT	 6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK	0x4000	/* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE	0x8000	/* 1=Lost lock detect enabled.
+						 * Will assert lost lock and bring
+						 * link down if idle not seen
+						 * within 1ms in 1000BASE-T
+						 */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5	0x0060	/* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25	0x0070	/* 25  MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0	0x0000	/* NO  TX_CLK */
+
+/* Bit definitions for valid PHY IDs. */
+#define M88E1000_E_PHY_ID		0x01410C50
+#define M88E1000_I_PHY_ID		0x01410C30
+#define M88E1011_I_PHY_ID		0x01410C20
+#define M88E1000_12_PHY_ID		M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID		M88E1000_E_PHY_ID
+#define IGP01E1000_I_PHY_ID		0x02A80380
+#define M88E1011_I_REV_4   0x04
+#define M88E1111_I_PHY_ID  0x01410CC0
+#define L1LXT971A_PHY_ID   0x001378E0
+#define GG82563_E_PHY_ID   0x01410CA0
+#define I350_I_PHY_ID			0x015403B0
+
+#define BME1000_E_PHY_ID     0x01410CB0
+
+#define I210_I_PHY_ID		0x01410C00
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE			0xFFFFFFFF
+#define PHY_SOF				0x01
+#define PHY_OP_READ			0x02
+#define PHY_OP_WRITE			0x01
+#define PHY_TURNAROUND			0x02
+#define PHY_PREAMBLE_SIZE		32
+#define MII_CR_SPEED_1000		0x0040
+#define MII_CR_SPEED_100		0x2000
+#define MII_CR_SPEED_10		0x0000
+#define E1000_PHY_ADDRESS		0x01
+#define PHY_AUTO_NEG_TIME		45	/* 4.5 Seconds */
+#define PHY_FORCE_TIME			20	/* 2.0 Seconds */
+#define PHY_REVISION_MASK		0xFFFFFFF0
+#define DEVICE_SPEED_MASK		0x00000300	/* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK		0x01E0
+#define REG9_SPEED_MASK		0x0300
+#define ADVERTISE_10_HALF		0x0001
+#define ADVERTISE_10_FULL		0x0002
+#define ADVERTISE_100_HALF		0x0004
+#define ADVERTISE_100_FULL		0x0008
+#define ADVERTISE_1000_HALF		0x0010
+#define ADVERTISE_1000_FULL		0x0020
+
+#define ICH_FLASH_GFPREG   0x0000
+#define ICH_FLASH_HSFSTS   0x0004
+#define ICH_FLASH_HSFCTL   0x0006
+#define ICH_FLASH_FADDR    0x0008
+#define ICH_FLASH_FDATA0   0x0010
+#define ICH_FLASH_FRACC    0x0050
+#define ICH_FLASH_FREG0    0x0054
+#define ICH_FLASH_FREG1    0x0058
+#define ICH_FLASH_FREG2    0x005C
+#define ICH_FLASH_FREG3    0x0060
+#define ICH_FLASH_FPR0     0x0074
+#define ICH_FLASH_FPR1     0x0078
+#define ICH_FLASH_SSFSTS   0x0090
+#define ICH_FLASH_SSFCTL   0x0092
+#define ICH_FLASH_PREOP    0x0094
+#define ICH_FLASH_OPTYPE   0x0096
+#define ICH_FLASH_OPMENU   0x0098
+
+#define ICH_FLASH_REG_MAPSIZE      0x00A0
+#define ICH_FLASH_SECTOR_SIZE      4096
+#define ICH_GFPREG_BASE_MASK       0x1FFF
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+
+#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI  0x01
+#define EEPROM_STATUS_WEN_SPI  0x02
+#define EEPROM_STATUS_BP0_SPI  0x04
+#define EEPROM_STATUS_BP1_SPI  0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI		0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI	0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG		0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD	0x00000008 /* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK    0x0000000E /* FW mode */
+#define E1000_FWSM_MODE_SHIFT            1
+#define E1000_FWSM_FW_VALID     0x00008000 /* FW established a valid mode */
+
+#define E1000_FWSM_RSPCIPHY        0x00000040 /* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW           0x10000000 /* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK     0x60000000 /* LAN SKU select */
+#define E1000_FWSM_SKUEL_SHIFT     29
+#define E1000_FWSM_SKUSEL_EMB      0x0 /* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS     0x1 /* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
+
+#define E1000_GCR       0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1    0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2    0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3    0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4    0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS    0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM      0x05B50 /* SW Semaphore */
+#define E1000_FWSM      0x05B54 /* FW Semaphore */
+#define E1000_FFLT_DBG  0x05F04 /* Debug Register */
+#define E1000_HICR      0x08F00 /* Host Inteface Control */
+
+#define IGP_ACTIVITY_LED_MASK   0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE           0x07000000
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A   0x8000
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F  /* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL    0x000F /* All 10/100 speeds*/
+#define AUTONEG_ADVERTISE_10_ALL        0x0003 /* 10Mbps Full & Half speeds*/
+
+#define E1000_KUMCTRLSTA_MASK           0x0000FFFF
+#define E1000_KUMCTRLSTA_OFFSET         0x001F0000
+#define E1000_KUMCTRLSTA_OFFSET_SHIFT   16
+#define E1000_KUMCTRLSTA_REN            0x00200000
+
+#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL      0x00000000
+#define E1000_KUMCTRLSTA_OFFSET_CTRL           0x00000001
+#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL       0x00000002
+#define E1000_KUMCTRLSTA_OFFSET_DIAG           0x00000003
+#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS       0x00000004
+#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM      0x00000009
+#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL        0x00000010
+#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES     0x0000001E
+#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES      0x0000001F
+
+/* FIFO Control */
+#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS   0x00000008
+#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS   0x00000800
+
+/* In-Band Control */
+#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT    0x00000500
+#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING  0x00000010
+
+/* Half-Duplex Control */
+#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
+#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT  0x00000000
+
+#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL       0x0000001E
+
+#define E1000_KUMCTRLSTA_DIAG_FELPBK           0x2000
+#define E1000_KUMCTRLSTA_DIAG_NELPBK           0x1000
+
+#define E1000_KUMCTRLSTA_K0S_100_EN            0x2000
+#define E1000_KUMCTRLSTA_K0S_GBE_EN            0x1000
+#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK   0x0003
+
+#define E1000_MNG_ICH_IAMT_MODE         0x2
+#define E1000_MNG_IAMT_MODE             0x3
+#define E1000_MANC_BLK_PHY_RST_ON_IDE   0x00040000 /* Block phy resets */
+#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT             100
+#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
+#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000   0x00000008
+#define AUTO_ALL_MODES	0
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE	e1000_ms_hw_default
+#endif
+/* Extended Transmit Control */
+#define E1000_TCTL_EXT_BST_MASK  0x000003FF /* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
+
+#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX   0x00010000
+
+#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
+#define E1000_MC_TBL_SIZE_ICH8LAN  32
+
+#define E1000_CTRL_EXT_INT_TIMER_CLR  0x20000000 /* Clear Interrupt timers
+							after IMS clear */
+#endif	/* _E1000_HW_H_ */
-- 
2.1.4




More information about the barebox mailing list