[PATCH 4/8] ppc 8xxx: DIMM parameters calculation
Renaud Barbier
renaud.barbier at ge.com
Wed Jun 26 13:33:43 EDT 2013
This code calculates the DIMM characteritics i.e DIMM
organization parameters and timings for DDR2 memory based on
SPD data.
It also provides a function to find out the lowest common DIMM
parameters to be used for all DIMMs.
This code is based on the equivalent files in directory
arch/powerpc/cpu/mpc8xxx/ddr from U-Boot version git-a71d45d.
Signed-off-by: Renaud Barbier <renaud.barbier at ge.com>
---
arch/ppc/ddr-8xxx/ddr2_dimm_params.c | 303 +++++++++++++++++++++++++++++
arch/ppc/ddr-8xxx/lc_common_dimm_params.c | 214 ++++++++++++++++++++
2 files changed, 517 insertions(+), 0 deletions(-)
create mode 100644 arch/ppc/ddr-8xxx/ddr2_dimm_params.c
create mode 100644 arch/ppc/ddr-8xxx/lc_common_dimm_params.c
diff --git a/arch/ppc/ddr-8xxx/ddr2_dimm_params.c b/arch/ppc/ddr-8xxx/ddr2_dimm_params.c
new file mode 100644
index 0000000..b36a888
--- /dev/null
+++ b/arch/ppc/ddr-8xxx/ddr2_dimm_params.c
@@ -0,0 +1,303 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/fsl_ddr_sdram.h>
+#include "ddr.h"
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Table comes from Byte 31 of JEDEC SPD Spec.
+ *
+ * DDR II
+ * Bit Size Size
+ * --- -----
+ * 7 high 512MB
+ * 6 256MB
+ * 5 128MB
+ * 4 16GB
+ * 3 8GB
+ * 2 4GB
+ * 1 2GB
+ * 0 low 1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ *
+ */
+static uint64_t compute_ranksize(uint32_t mem_type, unsigned char row_dens)
+{
+ uint64_t bsize;
+
+ bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
+ bsize <<= 27ULL;
+
+ return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ */
+static uint32_t convert_bcd_tenths_to_cycle_time_ps(uint32_t spd_val)
+{
+ uint32_t tenths_ps[16] = {
+ 0,
+ 100,
+ 200,
+ 300,
+ 400,
+ 500,
+ 600,
+ 700,
+ 800,
+ 900,
+ 250,
+ 330,
+ 660,
+ 750,
+ 0,
+ 0
+ };
+ uint32_t whole_ns = (spd_val & 0xF0) >> 4;
+ uint32_t tenth_ns = spd_val & 0x0F;
+ uint32_t ps = (whole_ns * 1000) + tenths_ps[tenth_ns];
+
+ return ps;
+}
+
+static uint32_t convert_bcd_hundredths_to_cycle_time_ps(uint32_t spd_val)
+{
+ uint32_t tenth_ns = (spd_val & 0xF0) >> 4;
+ uint32_t hundredth_ns = spd_val & 0x0F;
+ uint32_t ps = (tenth_ns * 100) + (hundredth_ns * 10);
+
+ return ps;
+}
+
+static uint32_t byte40_table_ps[8] = {
+ 0,
+ 250,
+ 330,
+ 500,
+ 660,
+ 750,
+ 0,
+ 0
+};
+
+static uint32_t
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+ uint32_t trfc_ps;
+
+ trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000;
+ trfc_ps += byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+
+ return trfc_ps;
+}
+
+static uint32_t
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+ uint32_t trc_ps;
+
+ trc_ps = (trc * 1000);
+ trc_ps += byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+
+ return trc_ps;
+}
+
+/*
+ * Determine Refresh Rate.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static uint32_t determine_refresh_rate_ps(const uint32_t spd_refresh)
+{
+ uint32_t refresh_time_ps[8] = {
+ 15625000, /* 0 Normal 1.00x */
+ 3900000, /* 1 Reduced .25x */
+ 7800000, /* 2 Extended .50x */
+ 31300000, /* 3 Extended 2.00x */
+ 62500000, /* 4 Extended 4.00x */
+ 125000000, /* 5 Extended 8.00x */
+ 15625000, /* 6 Normal 1.00x filler */
+ 15625000, /* 7 Normal 1.00x filler */
+ };
+
+ return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period. The SPD only
+ * defines at most 3 CAS latencies. Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can.
+ * be. If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD. This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
+ * Table 40, "DDR2 SDRAM standard speed bins and tCK, tRCD, tRP, tRAS,
+ * and tRC for corresponding bin"
+ *
+ * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
+ * Not certain if any good value exists for CL=2
+ */
+ /* CL2 CL3 CL4 CL5 CL6 CL7 */
+uint16_t ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
+
+uint32_t compute_derated_DDR2_CAS_latency(uint32_t mclk_ps)
+{
+ const uint32_t num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
+ uint32_t lowest_tCKmin_found = 0, lowest_tCKmin_CL = 0, i, x;
+
+ for (i = 0; i < num_speed_bins; i++) {
+ x = ddr2_speed_bins[i];
+ if (x && (x <= mclk_ps) && (x >= lowest_tCKmin_found)) {
+ lowest_tCKmin_found = x;
+ lowest_tCKmin_CL = i + 2;
+ }
+ }
+
+ return lowest_tCKmin_CL;
+}
+
+/*
+ * compute_dimm_parameters for DDR2 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in SPD.
+ * Writes the results to the dimm_params_s structure pointed by pdimm.
+ */
+uint32_t
+compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
+ struct dimm_params_s *pdimm)
+{
+ const struct ddr2_spd_eeprom_s *spd = spdin;
+ uint32_t retval;
+
+ if (!spd->mem_type) {
+ memset(pdimm, 0, sizeof(struct dimm_params_s));
+ goto error;
+ }
+
+ if (spd->mem_type != SPD_MEMTYPE_DDR2)
+ goto error;
+
+ retval = ddr2_spd_checksum_pass(spd);
+ if (retval)
+ goto spd_err;
+
+ /*
+ * The part name in ASCII in the SPD EEPROM is not null terminated.
+ * Guarantee null termination here by presetting all bytes to 0
+ * and copying the part name in ASCII from the SPD onto it
+ */
+ memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+ memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+ /* DIMM organization parameters */
+ pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
+ pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
+ pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+ pdimm->data_width = spd->dataw;
+ pdimm->primary_sdram_width = spd->primw;
+ pdimm->ec_sdram_width = spd->ecw;
+
+ /* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
+ switch (spd->dimm_type) {
+ case DDR2_SPD_DIMMTYPE_RDIMM:
+ case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
+ case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
+ /* Registered/buffered DIMMs */
+ pdimm->registered_dimm = 1;
+ break;
+
+ case DDR2_SPD_DIMMTYPE_UDIMM:
+ case DDR2_SPD_DIMMTYPE_SO_DIMM:
+ case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
+ case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
+ /* Unbuffered DIMMs */
+ pdimm->registered_dimm = 0;
+ break;
+
+ case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
+ default:
+ goto error;
+ }
+
+ pdimm->n_row_addr = spd->nrow_addr;
+ pdimm->n_col_addr = spd->ncol_addr;
+ pdimm->n_banks_per_sdram_device = spd->nbanks;
+ pdimm->edc_config = spd->config;
+ pdimm->burst_lengths_bitmask = spd->burstl;
+ pdimm->row_density = spd->rank_dens;
+
+ /*
+ * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+ * The SPD clk_cycle field (tCKmin) is measured in tenths of
+ * nanoseconds and represented as BCD.
+ */
+ pdimm->tCKmin_X_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+ pdimm->tCKmin_X_minus_1_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+ pdimm->tCKmin_X_minus_2_ps
+ = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+ pdimm->tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
+
+ /*
+ * Compute CAS latencies defined by SPD
+ * The SPD caslat_X should have at least 1 and at most 3 bits set.
+ *
+ * If cas_lat after masking is 0, the __ilog2 function returns
+ * 255 into the variable. This behavior is abused once.
+ */
+ pdimm->caslat_X = __ilog2(spd->cas_lat);
+ pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat
+ & ~(1 << pdimm->caslat_X));
+ pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat & ~(1 << pdimm->caslat_X)
+ & ~(1 << pdimm->caslat_X_minus_1));
+ pdimm->caslat_lowest_derated
+ = compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
+ pdimm->tRCD_ps = spd->trcd * 250;
+ pdimm->tRP_ps = spd->trp * 250;
+ pdimm->tRAS_ps = spd->tras * 1000;
+ pdimm->tWR_ps = spd->twr * 250;
+ pdimm->tWTR_ps = spd->twtr * 250;
+ pdimm->tRFC_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
+ pdimm->tRRD_ps = spd->trrd * 250;
+ pdimm->tRC_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
+ pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+ pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+ pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+ pdimm->tDS_ps
+ = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+ pdimm->tDH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+ pdimm->tRTP_ps = spd->trtp * 250;
+ pdimm->tDQSQ_max_ps = spd->tdqsq * 10;
+ pdimm->tQHS_ps = spd->tqhs * 10;
+
+ return 0;
+error:
+ return 1;
+spd_err:
+ return 2;
+}
diff --git a/arch/ppc/ddr-8xxx/lc_common_dimm_params.c b/arch/ppc/ddr-8xxx/lc_common_dimm_params.c
new file mode 100644
index 0000000..a1addb0
--- /dev/null
+++ b/arch/ppc/ddr-8xxx/lc_common_dimm_params.c
@@ -0,0 +1,214 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <config.h>
+#include <asm/fsl_ddr_sdram.h>
+
+#include "ddr.h"
+
+static unsigned int common_burst_length(
+ const struct dimm_params_s *dimm_params,
+ const unsigned int number_of_dimms)
+{
+ unsigned int i, temp;
+
+ temp = 0xff;
+ for (i = 0; i < number_of_dimms; i++)
+ if (dimm_params[i].n_ranks)
+ temp &= dimm_params[i].burst_lengths_bitmask;
+
+ return temp;
+}
+
+/* Compute a CAS latency suitable for all DIMMs */
+static unsigned int compute_lowest_caslat(
+ const struct dimm_params_s *dimm_params,
+ const unsigned int number_of_dimms)
+{
+ uint32_t temp1, temp2, i, not_ok, lowest_good_caslat,
+ tCKmin_X_minus_1_ps, tCKmin_X_minus_2_ps;
+ const unsigned int mclk_ps = get_memory_clk_period_ps();
+
+ /*
+ * Step 1: find CAS latency common to all DIMMs using bitwise
+ * operation.
+ */
+ temp1 = 0xFF;
+ for (i = 0; i < number_of_dimms; i++)
+ if (dimm_params[i].n_ranks) {
+ temp2 = 0;
+ temp2 |= 1 << dimm_params[i].caslat_X;
+ temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
+ temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
+ /*
+ * FIXME: If there was no entry for X-2 (X-1) in
+ * the SPD, then caslat_X_minus_2
+ * (caslat_X_minus_1) contains either 255 or
+ * 0xFFFFFFFF because that's what the __ilog2
+ * function returns for an input of 0.
+ * On 32-bit PowerPC, left shift counts with bit
+ * 26 set (that the value of 255 or 0xFFFFFFFF
+ * will have), cause the destination register to
+ * be 0. That is why this works.
+ */
+ temp1 &= temp2;
+ }
+
+ /*
+ * Step 2: check each common CAS latency against tCK of each
+ * DIMM's SPD.
+ */
+ lowest_good_caslat = 0;
+ temp2 = 0;
+ while (temp1) {
+ not_ok = 0;
+ temp2 = __ilog2(temp1);
+
+ for (i = 0; i < number_of_dimms; i++) {
+ if (!dimm_params[i].n_ranks)
+ continue;
+
+ if (dimm_params[i].caslat_X == temp2) {
+ if (mclk_ps >= dimm_params[i].tCKmin_X_ps)
+ continue;
+ else
+ not_ok++;
+ }
+
+ if (dimm_params[i].caslat_X_minus_1 == temp2) {
+ tCKmin_X_minus_1_ps =
+ dimm_params[i].tCKmin_X_minus_1_ps;
+ if (mclk_ps >= tCKmin_X_minus_1_ps)
+ continue;
+ else
+ not_ok++;
+ }
+
+ if (dimm_params[i].caslat_X_minus_2 == temp2) {
+ tCKmin_X_minus_2_ps
+ = dimm_params[i].tCKmin_X_minus_2_ps;
+ if (mclk_ps >= tCKmin_X_minus_2_ps)
+ continue;
+ else
+ not_ok++;
+ }
+ }
+
+ if (!not_ok)
+ lowest_good_caslat = temp2;
+
+ temp1 &= ~(1 << temp2);
+ }
+ return lowest_good_caslat;
+}
+
+/*
+ * compute_lowest_common_dimm_parameters()
+ *
+ * Determine the worst-case DIMM timing parameters from the set of DIMMs
+ * whose parameters have been computed into the array pointed to
+ * by dimm_params.
+ */
+unsigned int
+compute_lowest_common_dimm_parameters(const struct dimm_params_s *dimm,
+ struct common_timing_params_s *out,
+ const unsigned int number_of_dimms)
+{
+ const uint32_t mclk_ps = get_memory_clk_period_ps();
+ uint32_t temp1, i;
+ struct common_timing_params_s tmp = {0};
+
+ tmp.tCKmax_ps = 0xFFFFFFFF;
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++) {
+ if (dimm[i].n_ranks == 0) {
+ temp1++;
+ continue;
+ }
+
+ /*
+ * Find minimum tCKmax_ps to find fastest slow speed,
+ * i.e., this is the slowest the whole system can go.
+ */
+ tmp.tCKmax_ps = min(tmp.tCKmax_ps, dimm[i].tCKmax_ps);
+
+ /* Find maximum value to determine slowest speed, delay, etc */
+ tmp.tCKmin_X_ps = max(tmp.tCKmin_X_ps, dimm[i].tCKmin_X_ps);
+ tmp.tCKmax_max_ps = max(tmp.tCKmax_max_ps, dimm[i].tCKmax_ps);
+ tmp.tRCD_ps = max(tmp.tRCD_ps, dimm[i].tRCD_ps);
+ tmp.tRP_ps = max(tmp.tRP_ps, dimm[i].tRP_ps);
+ tmp.tRAS_ps = max(tmp.tRAS_ps, dimm[i].tRAS_ps);
+ tmp.tWR_ps = max(tmp.tWR_ps, dimm[i].tWR_ps);
+ tmp.tWTR_ps = max(tmp.tWTR_ps, dimm[i].tWTR_ps);
+ tmp.tRFC_ps = max(tmp.tRFC_ps, dimm[i].tRFC_ps);
+ tmp.tRRD_ps = max(tmp.tRRD_ps, dimm[i].tRRD_ps);
+ tmp.tRC_ps = max(tmp.tRC_ps, dimm[i].tRC_ps);
+ tmp.tIS_ps = max(tmp.tIS_ps, dimm[i].tIS_ps);
+ tmp.tIH_ps = max(tmp.tIH_ps, dimm[i].tIH_ps);
+ tmp.tDS_ps = max(tmp.tDS_ps, dimm[i].tDS_ps);
+ tmp.tDH_ps = max(tmp.tDH_ps, dimm[i].tDH_ps);
+ tmp.tRTP_ps = max(tmp.tRTP_ps, dimm[i].tRTP_ps);
+ tmp.tQHS_ps = max(tmp.tQHS_ps, dimm[i].tQHS_ps);
+ tmp.refresh_rate_ps = max(tmp.refresh_rate_ps,
+ dimm[i].refresh_rate_ps);
+ /* Find maximum tDQSQ_max_ps to find slowest timing. */
+ tmp.tDQSQ_max_ps = max(tmp.tDQSQ_max_ps, dimm[i].tDQSQ_max_ps);
+ }
+ tmp.ndimms_present = number_of_dimms - temp1;
+
+ if (temp1 == number_of_dimms)
+ return 0;
+
+ temp1 = common_burst_length(dimm, number_of_dimms);
+ tmp.all_DIMMs_burst_lengths_bitmask = temp1;
+ tmp.all_DIMMs_registered = 0;
+
+ tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm,
+ number_of_dimms);
+ /*
+ * Compute a common 'de-rated' CAS latency.
+ *
+ * The strategy here is to find the *highest* de-rated cas latency
+ * with the assumption that all of the DIMMs will support a de-rated
+ * CAS latency higher than or equal to their lowest de-rated value.
+ */
+ temp1 = 0;
+ for (i = 0; i < number_of_dimms; i++)
+ temp1 = max(temp1, dimm[i].caslat_lowest_derated);
+ tmp.highest_common_derated_caslat = temp1;
+
+ temp1 = 1;
+ for (i = 0; i < number_of_dimms; i++)
+ if (dimm[i].n_ranks &&
+ !(dimm[i].edc_config & EDC_ECC)) {
+ temp1 = 0;
+ break;
+ }
+ tmp.all_DIMMs_ECC_capable = temp1;
+
+ if (mclk_ps > tmp.tCKmax_max_ps)
+ return 1;
+
+ /*
+ * AL must be less or equal to tRCD. Typically, AL would
+ * be AL = tRCD - 1;
+ *
+ * When ODT read or write is enabled the sum of CAS latency +
+ * additive latency must be at least 3 cycles.
+ *
+ */
+ if ((tmp.lowest_common_SPD_caslat < 4) && (picos_to_mclk(tmp.tRCD_ps) >
+ tmp.lowest_common_SPD_caslat))
+ tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) -
+ tmp.lowest_common_SPD_caslat;
+
+ memcpy(out, &tmp, sizeof(struct common_timing_params_s));
+
+ return 0;
+}
--
1.7.1
More information about the barebox
mailing list