[PATCH 1] Delete unused file common/dlmalloc.src.

Sascha Hauer s.hauer at pengutronix.de
Tue Dec 21 04:34:23 EST 2010


On Mon, Dec 20, 2010 at 11:40:44PM +0100, Krzysztof Halasa wrote:
> Delete unused file common/dlmalloc.src.
> Or is there any reason to have it here?

The reason probably is to keep the original code the implementation is
derived from around. I agree that we can remove it though, we have our
history in git and even this file can be restored from the history.

Sascha

> 
> Signed-off-by: Krzysztof Hałasa <khc at pm.waw.pl>
> 
> diff --git a/common/dlmalloc.src b/common/dlmalloc.src
> deleted file mode 100644
> index 32a38bc..0000000
> --- a/common/dlmalloc.src
> +++ /dev/null
> @@ -1,3265 +0,0 @@
> -/* ---------- To make a malloc.h, start cutting here ------------ */
> -
> -/*
> -  A version of malloc/free/realloc written by Doug Lea and released to the
> -  public domain.  Send questions/comments/complaints/performance data
> -  to dl at cs.oswego.edu
> -
> -* VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
> -
> -   Note: There may be an updated version of this malloc obtainable at
> -	   ftp://g.oswego.edu/pub/misc/malloc.c
> -	 Check before installing!
> -
> -* Why use this malloc?
> -
> -  This is not the fastest, most space-conserving, most portable, or
> -  most tunable malloc ever written. However it is among the fastest
> -  while also being among the most space-conserving, portable and tunable.
> -  Consistent balance across these factors results in a good general-purpose
> -  allocator. For a high-level description, see
> -     http://g.oswego.edu/dl/html/malloc.html
> -
> -* Synopsis of public routines
> -
> -  (Much fuller descriptions are contained in the program documentation below.)
> -
> -  malloc(size_t n);
> -     Return a pointer to a newly allocated chunk of at least n bytes, or null
> -     if no space is available.
> -  free(Void_t* p);
> -     Release the chunk of memory pointed to by p, or no effect if p is null.
> -  realloc(Void_t* p, size_t n);
> -     Return a pointer to a chunk of size n that contains the same data
> -     as does chunk p up to the minimum of (n, p's size) bytes, or null
> -     if no space is available. The returned pointer may or may not be
> -     the same as p. If p is null, equivalent to malloc.  Unless the
> -     #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
> -     size argument of zero (re)allocates a minimum-sized chunk.
> -  memalign(size_t alignment, size_t n);
> -     Return a pointer to a newly allocated chunk of n bytes, aligned
> -     in accord with the alignment argument, which must be a power of
> -     two.
> -  valloc(size_t n);
> -     Equivalent to memalign(pagesize, n), where pagesize is the page
> -     size of the system (or as near to this as can be figured out from
> -     all the includes/defines below.)
> -  pvalloc(size_t n);
> -     Equivalent to valloc(minimum-page-that-holds(n)), that is,
> -     round up n to nearest pagesize.
> -  calloc(size_t unit, size_t quantity);
> -     Returns a pointer to quantity * unit bytes, with all locations
> -     set to zero.
> -  cfree(Void_t* p);
> -     Equivalent to free(p).
> -  malloc_trim(size_t pad);
> -     Release all but pad bytes of freed top-most memory back
> -     to the system. Return 1 if successful, else 0.
> -  malloc_usable_size(Void_t* p);
> -     Report the number usable allocated bytes associated with allocated
> -     chunk p. This may or may not report more bytes than were requested,
> -     due to alignment and minimum size constraints.
> -  malloc_stats();
> -     Prints brief summary statistics on stderr.
> -  mallinfo()
> -     Returns (by copy) a struct containing various summary statistics.
> -  mallopt(int parameter_number, int parameter_value)
> -     Changes one of the tunable parameters described below. Returns
> -     1 if successful in changing the parameter, else 0.
> -
> -* Vital statistics:
> -
> -  Alignment:                            8-byte
> -       8 byte alignment is currently hardwired into the design.  This
> -       seems to suffice for all current machines and C compilers.
> -
> -  Assumed pointer representation:       4 or 8 bytes
> -       Code for 8-byte pointers is untested by me but has worked
> -       reliably by Wolfram Gloger, who contributed most of the
> -       changes supporting this.
> -
> -  Assumed size_t  representation:       4 or 8 bytes
> -       Note that size_t is allowed to be 4 bytes even if pointers are 8.
> -
> -  Minimum overhead per allocated chunk: 4 or 8 bytes
> -       Each malloced chunk has a hidden overhead of 4 bytes holding size
> -       and status information.
> -
> -  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
> -			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
> -
> -       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
> -       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
> -       needed; 4 (8) for a trailing size field
> -       and 8 (16) bytes for free list pointers. Thus, the minimum
> -       allocatable size is 16/24/32 bytes.
> -
> -       Even a request for zero bytes (i.e., malloc(0)) returns a
> -       pointer to something of the minimum allocatable size.
> -
> -  Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
> -			  8-byte size_t: 2^63 - 16 bytes
> -
> -       It is assumed that (possibly signed) size_t bit values suffice to
> -       represent chunk sizes. `Possibly signed' is due to the fact
> -       that `size_t' may be defined on a system as either a signed or
> -       an unsigned type. To be conservative, values that would appear
> -       as negative numbers are avoided.
> -       Requests for sizes with a negative sign bit when the request
> -       size is treaded as a long will return null.
> -
> -  Maximum overhead wastage per allocated chunk: normally 15 bytes
> -
> -       Alignnment demands, plus the minimum allocatable size restriction
> -       make the normal worst-case wastage 15 bytes (i.e., up to 15
> -       more bytes will be allocated than were requested in malloc), with
> -       two exceptions:
> -	 1. Because requests for zero bytes allocate non-zero space,
> -	    the worst case wastage for a request of zero bytes is 24 bytes.
> -	 2. For requests >= mmap_threshold that are serviced via
> -	    mmap(), the worst case wastage is 8 bytes plus the remainder
> -	    from a system page (the minimal mmap unit); typically 4096 bytes.
> -
> -* Limitations
> -
> -    Here are some features that are NOT currently supported
> -
> -    * No user-definable hooks for callbacks and the like.
> -    * No automated mechanism for fully checking that all accesses
> -      to malloced memory stay within their bounds.
> -    * No support for compaction.
> -
> -* Synopsis of compile-time options:
> -
> -    People have reported using previous versions of this malloc on all
> -    versions of Unix, sometimes by tweaking some of the defines
> -    below. It has been tested most extensively on Solaris and
> -    Linux. It is also reported to work on WIN32 platforms.
> -    People have also reported adapting this malloc for use in
> -    stand-alone embedded systems.
> -
> -    The implementation is in straight, hand-tuned ANSI C.  Among other
> -    consequences, it uses a lot of macros.  Because of this, to be at
> -    all usable, this code should be compiled using an optimizing compiler
> -    (for example gcc -O2) that can simplify expressions and control
> -    paths.
> -
> -  __STD_C                  (default: derived from C compiler defines)
> -     Nonzero if using ANSI-standard C compiler, a C++ compiler, or
> -     a C compiler sufficiently close to ANSI to get away with it.
> -  DEBUG                    (default: NOT defined)
> -     Define to enable debugging. Adds fairly extensive assertion-based
> -     checking to help track down memory errors, but noticeably slows down
> -     execution.
> -  REALLOC_ZERO_BYTES_FREES (default: NOT defined)
> -     Define this if you think that realloc(p, 0) should be equivalent
> -     to free(p). Otherwise, since malloc returns a unique pointer for
> -     malloc(0), so does realloc(p, 0).
> -  HAVE_MEMCPY               (default: defined)
> -     Define if you are not otherwise using ANSI STD C, but still
> -     have memcpy and memset in your C library and want to use them.
> -     Otherwise, simple internal versions are supplied.
> -  USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
> -     Define as 1 if you want the C library versions of memset and
> -     memcpy called in realloc and calloc (otherwise macro versions are used).
> -     At least on some platforms, the simple macro versions usually
> -     outperform libc versions.
> -  HAVE_MMAP                 (default: defined as 1)
> -     Define to non-zero to optionally make malloc() use mmap() to
> -     allocate very large blocks.
> -  HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
> -     Define to non-zero to optionally make realloc() use mremap() to
> -     reallocate very large blocks.
> -  malloc_getpagesize        (default: derived from system #includes)
> -     Either a constant or routine call returning the system page size.
> -  HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
> -     Optionally define if you are on a system with a /usr/include/malloc.h
> -     that declares struct mallinfo. It is not at all necessary to
> -     define this even if you do, but will ensure consistency.
> -  INTERNAL_SIZE_T           (default: size_t)
> -     Define to a 32-bit type (probably `unsigned int') if you are on a
> -     64-bit machine, yet do not want or need to allow malloc requests of
> -     greater than 2^31 to be handled. This saves space, especially for
> -     very small chunks.
> -  INTERNAL_LINUX_C_LIB      (default: NOT defined)
> -     Defined only when compiled as part of Linux libc.
> -     Also note that there is some odd internal name-mangling via defines
> -     (for example, internally, `malloc' is named `mALLOc') needed
> -     when compiling in this case. These look funny but don't otherwise
> -     affect anything.
> -  WIN32                     (default: undefined)
> -     Define this on MS win (95, nt) platforms to compile in sbrk emulation.
> -  LACKS_UNISTD_H            (default: undefined if not WIN32)
> -     Define this if your system does not have a <unistd.h>.
> -  LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
> -     Define this if your system does not have a <sys/param.h>.
> -  MORECORE                  (default: sbrk)
> -     The name of the routine to call to obtain more memory from the system.
> -  MORECORE_FAILURE          (default: -1)
> -     The value returned upon failure of MORECORE.
> -  MORECORE_CLEARS           (default 1)
> -     True (1) if the routine mapped to MORECORE zeroes out memory (which
> -     holds for sbrk).
> -  DEFAULT_TRIM_THRESHOLD
> -  DEFAULT_TOP_PAD
> -  DEFAULT_MMAP_THRESHOLD
> -  DEFAULT_MMAP_MAX
> -     Default values of tunable parameters (described in detail below)
> -     controlling interaction with host system routines (sbrk, mmap, etc).
> -     These values may also be changed dynamically via mallopt(). The
> -     preset defaults are those that give best performance for typical
> -     programs/systems.
> -  USE_DL_PREFIX             (default: undefined)
> -     Prefix all public routines with the string 'dl'.  Useful to
> -     quickly avoid procedure declaration conflicts and linker symbol
> -     conflicts with existing memory allocation routines.
> -
> -
> -*/
> -
> -
> -
> -
> -/* Preliminaries */
> -
> -#ifndef __STD_C
> -#ifdef __STDC__
> -#define __STD_C     1
> -#else
> -#if __cplusplus
> -#define __STD_C     1
> -#else
> -#define __STD_C     0
> -#endif /*__cplusplus*/
> -#endif /*__STDC__*/
> -#endif /*__STD_C*/
> -
> -#ifndef Void_t
> -#if (__STD_C || defined(WIN32))
> -#define Void_t      void
> -#else
> -#define Void_t      char
> -#endif
> -#endif /*Void_t*/
> -
> -#if __STD_C
> -#include <stddef.h>   /* for size_t */
> -#else
> -#include <sys/types.h>
> -#endif
> -
> -#ifdef __cplusplus
> -extern "C" {
> -#endif
> -
> -#include <stdio.h>    /* needed for malloc_stats */
> -
> -
> -/*
> -  Compile-time options
> -*/
> -
> -
> -/*
> -    Debugging:
> -
> -    Because freed chunks may be overwritten with link fields, this
> -    malloc will often die when freed memory is overwritten by user
> -    programs.  This can be very effective (albeit in an annoying way)
> -    in helping track down dangling pointers.
> -
> -    If you compile with -DDEBUG, a number of assertion checks are
> -    enabled that will catch more memory errors. You probably won't be
> -    able to make much sense of the actual assertion errors, but they
> -    should help you locate incorrectly overwritten memory.  The
> -    checking is fairly extensive, and will slow down execution
> -    noticeably. Calling malloc_stats or mallinfo with DEBUG set will
> -    attempt to check every non-mmapped allocated and free chunk in the
> -    course of computing the summmaries. (By nature, mmapped regions
> -    cannot be checked very much automatically.)
> -
> -    Setting DEBUG may also be helpful if you are trying to modify
> -    this code. The assertions in the check routines spell out in more
> -    detail the assumptions and invariants underlying the algorithms.
> -
> -*/
> -
> -#if DEBUG
> -#include <assert.h>
> -#else
> -#define assert(x) ((void)0)
> -#endif
> -
> -
> -/*
> -  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
> -  of chunk sizes. On a 64-bit machine, you can reduce malloc
> -  overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
> -  at the expense of not being able to handle requests greater than
> -  2^31. This limitation is hardly ever a concern; you are encouraged
> -  to set this. However, the default version is the same as size_t.
> -*/
> -
> -#ifndef INTERNAL_SIZE_T
> -#define INTERNAL_SIZE_T size_t
> -#endif
> -
> -/*
> -  REALLOC_ZERO_BYTES_FREES should be set if a call to
> -  realloc with zero bytes should be the same as a call to free.
> -  Some people think it should. Otherwise, since this malloc
> -  returns a unique pointer for malloc(0), so does realloc(p, 0).
> -*/
> -
> -
> -/*   #define REALLOC_ZERO_BYTES_FREES */
> -
> -
> -/*
> -  WIN32 causes an emulation of sbrk to be compiled in
> -  mmap-based options are not currently supported in WIN32.
> -*/
> -
> -/* #define WIN32 */
> -#ifdef WIN32
> -#define MORECORE wsbrk
> -#define HAVE_MMAP 0
> -
> -#define LACKS_UNISTD_H
> -#define LACKS_SYS_PARAM_H
> -
> -/*
> -  Include 'windows.h' to get the necessary declarations for the
> -  Microsoft Visual C++ data structures and routines used in the 'sbrk'
> -  emulation.
> -
> -  Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
> -  Visual C++ header files are included.
> -*/
> -#define WIN32_LEAN_AND_MEAN
> -#include <windows.h>
> -#endif
> -
> -
> -/*
> -  HAVE_MEMCPY should be defined if you are not otherwise using
> -  ANSI STD C, but still have memcpy and memset in your C library
> -  and want to use them in calloc and realloc. Otherwise simple
> -  macro versions are defined here.
> -
> -  USE_MEMCPY should be defined as 1 if you actually want to
> -  have memset and memcpy called. People report that the macro
> -  versions are often enough faster than libc versions on many
> -  systems that it is better to use them.
> -
> -*/
> -
> -#define HAVE_MEMCPY
> -
> -#ifndef USE_MEMCPY
> -#ifdef HAVE_MEMCPY
> -#define USE_MEMCPY 1
> -#else
> -#define USE_MEMCPY 0
> -#endif
> -#endif
> -
> -#if (__STD_C || defined(HAVE_MEMCPY))
> -
> -#if __STD_C
> -void* memset(void*, int, size_t);
> -void* memcpy(void*, const void*, size_t);
> -#else
> -#ifdef WIN32
> -/* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
> -/* 'windows.h' */
> -#else
> -Void_t* memset();
> -Void_t* memcpy();
> -#endif
> -#endif
> -#endif
> -
> -#if USE_MEMCPY
> -
> -/* The following macros are only invoked with (2n+1)-multiples of
> -   INTERNAL_SIZE_T units, with a positive integer n. This is exploited
> -   for fast inline execution when n is small. */
> -
> -#define MALLOC_ZERO(charp, nbytes)                                            \
> -do {                                                                          \
> -  INTERNAL_SIZE_T mzsz = (nbytes);                                            \
> -  if(mzsz <= 9*sizeof(mzsz)) {                                                \
> -    INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
> -    if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
> -				     *mz++ = 0;                               \
> -      if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
> -				     *mz++ = 0;                               \
> -	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
> -				     *mz++ = 0; }}}                           \
> -				     *mz++ = 0;                               \
> -				     *mz++ = 0;                               \
> -				     *mz   = 0;                               \
> -  } else memset((charp), 0, mzsz);                                            \
> -} while(0)
> -
> -#define MALLOC_COPY(dest,src,nbytes)                                          \
> -do {                                                                          \
> -  INTERNAL_SIZE_T mcsz = (nbytes);                                            \
> -  if(mcsz <= 9*sizeof(mcsz)) {                                                \
> -    INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
> -    INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
> -    if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
> -				     *mcdst++ = *mcsrc++;                     \
> -      if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
> -				     *mcdst++ = *mcsrc++;                     \
> -	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
> -				     *mcdst++ = *mcsrc++; }}}                 \
> -				     *mcdst++ = *mcsrc++;                     \
> -				     *mcdst++ = *mcsrc++;                     \
> -				     *mcdst   = *mcsrc  ;                     \
> -  } else memcpy(dest, src, mcsz);                                             \
> -} while(0)
> -
> -#else /* !USE_MEMCPY */
> -
> -/* Use Duff's device for good zeroing/copying performance. */
> -
> -#define MALLOC_ZERO(charp, nbytes)                                            \
> -do {                                                                          \
> -  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
> -  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
> -  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
> -  switch (mctmp) {                                                            \
> -    case 0: for(;;) { *mzp++ = 0;                                             \
> -    case 7:           *mzp++ = 0;                                             \
> -    case 6:           *mzp++ = 0;                                             \
> -    case 5:           *mzp++ = 0;                                             \
> -    case 4:           *mzp++ = 0;                                             \
> -    case 3:           *mzp++ = 0;                                             \
> -    case 2:           *mzp++ = 0;                                             \
> -    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
> -  }                                                                           \
> -} while(0)
> -
> -#define MALLOC_COPY(dest,src,nbytes)                                          \
> -do {                                                                          \
> -  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
> -  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
> -  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
> -  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
> -  switch (mctmp) {                                                            \
> -    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
> -    case 7:           *mcdst++ = *mcsrc++;                                    \
> -    case 6:           *mcdst++ = *mcsrc++;                                    \
> -    case 5:           *mcdst++ = *mcsrc++;                                    \
> -    case 4:           *mcdst++ = *mcsrc++;                                    \
> -    case 3:           *mcdst++ = *mcsrc++;                                    \
> -    case 2:           *mcdst++ = *mcsrc++;                                    \
> -    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
> -  }                                                                           \
> -} while(0)
> -
> -#endif
> -
> -
> -/*
> -  Define HAVE_MMAP to optionally make malloc() use mmap() to
> -  allocate very large blocks.  These will be returned to the
> -  operating system immediately after a free().
> -*/
> -
> -#ifndef HAVE_MMAP
> -#define HAVE_MMAP 1
> -#endif
> -
> -/*
> -  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
> -  large blocks.  This is currently only possible on Linux with
> -  kernel versions newer than 1.3.77.
> -*/
> -
> -#ifndef HAVE_MREMAP
> -#ifdef INTERNAL_LINUX_C_LIB
> -#define HAVE_MREMAP 1
> -#else
> -#define HAVE_MREMAP 0
> -#endif
> -#endif
> -
> -#if HAVE_MMAP
> -
> -#include <unistd.h>
> -#include <fcntl.h>
> -#include <sys/mman.h>
> -
> -#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
> -#define MAP_ANONYMOUS MAP_ANON
> -#endif
> -
> -#endif /* HAVE_MMAP */
> -
> -/*
> -  Access to system page size. To the extent possible, this malloc
> -  manages memory from the system in page-size units.
> -
> -  The following mechanics for getpagesize were adapted from
> -  bsd/gnu getpagesize.h
> -*/
> -
> -#ifndef LACKS_UNISTD_H
> -#  include <unistd.h>
> -#endif
> -
> -#ifndef malloc_getpagesize
> -#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
> -#    ifndef _SC_PAGE_SIZE
> -#      define _SC_PAGE_SIZE _SC_PAGESIZE
> -#    endif
> -#  endif
> -#  ifdef _SC_PAGE_SIZE
> -#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
> -#  else
> -#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
> -       extern size_t getpagesize();
> -#      define malloc_getpagesize getpagesize()
> -#    else
> -#      ifdef WIN32
> -#        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
> -#      else
> -#        ifndef LACKS_SYS_PARAM_H
> -#          include <sys/param.h>
> -#        endif
> -#        ifdef EXEC_PAGESIZE
> -#          define malloc_getpagesize EXEC_PAGESIZE
> -#        else
> -#          ifdef NBPG
> -#            ifndef CLSIZE
> -#              define malloc_getpagesize NBPG
> -#            else
> -#              define malloc_getpagesize (NBPG * CLSIZE)
> -#            endif
> -#          else
> -#            ifdef NBPC
> -#              define malloc_getpagesize NBPC
> -#            else
> -#              ifdef PAGESIZE
> -#                define malloc_getpagesize PAGESIZE
> -#              else
> -#                define malloc_getpagesize (4096) /* just guess */
> -#              endif
> -#            endif
> -#          endif
> -#        endif
> -#      endif
> -#    endif
> -#  endif
> -#endif
> -
> -
> -/*
> -
> -  This version of malloc supports the standard SVID/XPG mallinfo
> -  routine that returns a struct containing the same kind of
> -  information you can get from malloc_stats. It should work on
> -  any SVID/XPG compliant system that has a /usr/include/malloc.h
> -  defining struct mallinfo. (If you'd like to install such a thing
> -  yourself, cut out the preliminary declarations as described above
> -  and below and save them in a malloc.h file. But there's no
> -  compelling reason to bother to do this.)
> -
> -  The main declaration needed is the mallinfo struct that is returned
> -  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
> -  bunch of fields, most of which are not even meaningful in this
> -  version of malloc. Some of these fields are are instead filled by
> -  mallinfo() with other numbers that might possibly be of interest.
> -
> -  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
> -  /usr/include/malloc.h file that includes a declaration of struct
> -  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
> -  version is declared below.  These must be precisely the same for
> -  mallinfo() to work.
> -
> -*/
> -
> -/* #define HAVE_USR_INCLUDE_MALLOC_H */
> -
> -#if HAVE_USR_INCLUDE_MALLOC_H
> -#include "/usr/include/malloc.h"
> -#else
> -
> -/* SVID2/XPG mallinfo structure */
> -
> -struct mallinfo {
> -  int arena;    /* total space allocated from system */
> -  int ordblks;  /* number of non-inuse chunks */
> -  int smblks;   /* unused -- always zero */
> -  int hblks;    /* number of mmapped regions */
> -  int hblkhd;   /* total space in mmapped regions */
> -  int usmblks;  /* unused -- always zero */
> -  int fsmblks;  /* unused -- always zero */
> -  int uordblks; /* total allocated space */
> -  int fordblks; /* total non-inuse space */
> -  int keepcost; /* top-most, releasable (via malloc_trim) space */
> -};
> -
> -/* SVID2/XPG mallopt options */
> -
> -#define M_MXFAST  1    /* UNUSED in this malloc */
> -#define M_NLBLKS  2    /* UNUSED in this malloc */
> -#define M_GRAIN   3    /* UNUSED in this malloc */
> -#define M_KEEP    4    /* UNUSED in this malloc */
> -
> -#endif
> -
> -/* mallopt options that actually do something */
> -
> -#define M_TRIM_THRESHOLD    -1
> -#define M_TOP_PAD           -2
> -#define M_MMAP_THRESHOLD    -3
> -#define M_MMAP_MAX          -4
> -
> -
> -#ifndef DEFAULT_TRIM_THRESHOLD
> -#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
> -#endif
> -
> -/*
> -    M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
> -      to keep before releasing via malloc_trim in free().
> -
> -      Automatic trimming is mainly useful in long-lived programs.
> -      Because trimming via sbrk can be slow on some systems, and can
> -      sometimes be wasteful (in cases where programs immediately
> -      afterward allocate more large chunks) the value should be high
> -      enough so that your overall system performance would improve by
> -      releasing.
> -
> -      The trim threshold and the mmap control parameters (see below)
> -      can be traded off with one another. Trimming and mmapping are
> -      two different ways of releasing unused memory back to the
> -      system. Between these two, it is often possible to keep
> -      system-level demands of a long-lived program down to a bare
> -      minimum. For example, in one test suite of sessions measuring
> -      the XF86 X server on Linux, using a trim threshold of 128K and a
> -      mmap threshold of 192K led to near-minimal long term resource
> -      consumption.
> -
> -      If you are using this malloc in a long-lived program, it should
> -      pay to experiment with these values.  As a rough guide, you
> -      might set to a value close to the average size of a process
> -      (program) running on your system.  Releasing this much memory
> -      would allow such a process to run in memory.  Generally, it's
> -      worth it to tune for trimming rather tham memory mapping when a
> -      program undergoes phases where several large chunks are
> -      allocated and released in ways that can reuse each other's
> -      storage, perhaps mixed with phases where there are no such
> -      chunks at all.  And in well-behaved long-lived programs,
> -      controlling release of large blocks via trimming versus mapping
> -      is usually faster.
> -
> -      However, in most programs, these parameters serve mainly as
> -      protection against the system-level effects of carrying around
> -      massive amounts of unneeded memory. Since frequent calls to
> -      sbrk, mmap, and munmap otherwise degrade performance, the default
> -      parameters are set to relatively high values that serve only as
> -      safeguards.
> -
> -      The default trim value is high enough to cause trimming only in
> -      fairly extreme (by current memory consumption standards) cases.
> -      It must be greater than page size to have any useful effect.  To
> -      disable trimming completely, you can set to (unsigned long)(-1);
> -
> -
> -*/
> -
> -
> -#ifndef DEFAULT_TOP_PAD
> -#define DEFAULT_TOP_PAD        (0)
> -#endif
> -
> -/*
> -    M_TOP_PAD is the amount of extra `padding' space to allocate or
> -      retain whenever sbrk is called. It is used in two ways internally:
> -
> -      * When sbrk is called to extend the top of the arena to satisfy
> -	a new malloc request, this much padding is added to the sbrk
> -	request.
> -
> -      * When malloc_trim is called automatically from free(),
> -	it is used as the `pad' argument.
> -
> -      In both cases, the actual amount of padding is rounded
> -      so that the end of the arena is always a system page boundary.
> -
> -      The main reason for using padding is to avoid calling sbrk so
> -      often. Having even a small pad greatly reduces the likelihood
> -      that nearly every malloc request during program start-up (or
> -      after trimming) will invoke sbrk, which needlessly wastes
> -      time.
> -
> -      Automatic rounding-up to page-size units is normally sufficient
> -      to avoid measurable overhead, so the default is 0.  However, in
> -      systems where sbrk is relatively slow, it can pay to increase
> -      this value, at the expense of carrying around more memory than
> -      the program needs.
> -
> -*/
> -
> -
> -#ifndef DEFAULT_MMAP_THRESHOLD
> -#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
> -#endif
> -
> -/*
> -
> -    M_MMAP_THRESHOLD is the request size threshold for using mmap()
> -      to service a request. Requests of at least this size that cannot
> -      be allocated using already-existing space will be serviced via mmap.
> -      (If enough normal freed space already exists it is used instead.)
> -
> -      Using mmap segregates relatively large chunks of memory so that
> -      they can be individually obtained and released from the host
> -      system. A request serviced through mmap is never reused by any
> -      other request (at least not directly; the system may just so
> -      happen to remap successive requests to the same locations).
> -
> -      Segregating space in this way has the benefit that mmapped space
> -      can ALWAYS be individually released back to the system, which
> -      helps keep the system level memory demands of a long-lived
> -      program low. Mapped memory can never become `locked' between
> -      other chunks, as can happen with normally allocated chunks, which
> -      menas that even trimming via malloc_trim would not release them.
> -
> -      However, it has the disadvantages that:
> -
> -	 1. The space cannot be reclaimed, consolidated, and then
> -	    used to service later requests, as happens with normal chunks.
> -	 2. It can lead to more wastage because of mmap page alignment
> -	    requirements
> -	 3. It causes malloc performance to be more dependent on host
> -	    system memory management support routines which may vary in
> -	    implementation quality and may impose arbitrary
> -	    limitations. Generally, servicing a request via normal
> -	    malloc steps is faster than going through a system's mmap.
> -
> -      All together, these considerations should lead you to use mmap
> -      only for relatively large requests.
> -
> -
> -*/
> -
> -
> -#ifndef DEFAULT_MMAP_MAX
> -#if HAVE_MMAP
> -#define DEFAULT_MMAP_MAX       (64)
> -#else
> -#define DEFAULT_MMAP_MAX       (0)
> -#endif
> -#endif
> -
> -/*
> -    M_MMAP_MAX is the maximum number of requests to simultaneously
> -      service using mmap. This parameter exists because:
> -
> -	 1. Some systems have a limited number of internal tables for
> -	    use by mmap.
> -	 2. In most systems, overreliance on mmap can degrade overall
> -	    performance.
> -	 3. If a program allocates many large regions, it is probably
> -	    better off using normal sbrk-based allocation routines that
> -	    can reclaim and reallocate normal heap memory. Using a
> -	    small value allows transition into this mode after the
> -	    first few allocations.
> -
> -      Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
> -      the default value is 0, and attempts to set it to non-zero values
> -      in mallopt will fail.
> -*/
> -
> -
> -/*
> -    USE_DL_PREFIX will prefix all public routines with the string 'dl'.
> -      Useful to quickly avoid procedure declaration conflicts and linker
> -      symbol conflicts with existing memory allocation routines.
> -
> -*/
> -
> -/* #define USE_DL_PREFIX */
> -
> -
> -/*
> -
> -  Special defines for linux libc
> -
> -  Except when compiled using these special defines for Linux libc
> -  using weak aliases, this malloc is NOT designed to work in
> -  multithreaded applications.  No semaphores or other concurrency
> -  control are provided to ensure that multiple malloc or free calls
> -  don't run at the same time, which could be disasterous. A single
> -  semaphore could be used across malloc, realloc, and free (which is
> -  essentially the effect of the linux weak alias approach). It would
> -  be hard to obtain finer granularity.
> -
> -*/
> -
> -
> -#ifdef INTERNAL_LINUX_C_LIB
> -
> -#if __STD_C
> -
> -Void_t * __default_morecore_init (ptrdiff_t);
> -Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
> -
> -#else
> -
> -Void_t * __default_morecore_init ();
> -Void_t *(*__morecore)() = __default_morecore_init;
> -
> -#endif
> -
> -#define MORECORE (*__morecore)
> -#define MORECORE_FAILURE 0
> -#define MORECORE_CLEARS 1
> -
> -#else /* INTERNAL_LINUX_C_LIB */
> -
> -#if __STD_C
> -extern Void_t*     sbrk(ptrdiff_t);
> -#else
> -extern Void_t*     sbrk();
> -#endif
> -
> -#ifndef MORECORE
> -#define MORECORE sbrk
> -#endif
> -
> -#ifndef MORECORE_FAILURE
> -#define MORECORE_FAILURE -1
> -#endif
> -
> -#ifndef MORECORE_CLEARS
> -#define MORECORE_CLEARS 1
> -#endif
> -
> -#endif /* INTERNAL_LINUX_C_LIB */
> -
> -#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
> -
> -#define cALLOc		__libc_calloc
> -#define fREe		__libc_free
> -#define mALLOc		__libc_malloc
> -#define mEMALIGn	__libc_memalign
> -#define rEALLOc		__libc_realloc
> -#define vALLOc		__libc_valloc
> -#define pvALLOc		__libc_pvalloc
> -#define mALLINFo	__libc_mallinfo
> -#define mALLOPt		__libc_mallopt
> -
> -#pragma weak calloc = __libc_calloc
> -#pragma weak free = __libc_free
> -#pragma weak cfree = __libc_free
> -#pragma weak malloc = __libc_malloc
> -#pragma weak memalign = __libc_memalign
> -#pragma weak realloc = __libc_realloc
> -#pragma weak valloc = __libc_valloc
> -#pragma weak pvalloc = __libc_pvalloc
> -#pragma weak mallinfo = __libc_mallinfo
> -#pragma weak mallopt = __libc_mallopt
> -
> -#else
> -
> -#ifdef USE_DL_PREFIX
> -#define cALLOc		dlcalloc
> -#define fREe		dlfree
> -#define mALLOc		dlmalloc
> -#define mEMALIGn	dlmemalign
> -#define rEALLOc		dlrealloc
> -#define vALLOc		dlvalloc
> -#define pvALLOc		dlpvalloc
> -#define mALLINFo	dlmallinfo
> -#define mALLOPt		dlmallopt
> -#else /* USE_DL_PREFIX */
> -#define cALLOc		calloc
> -#define fREe		free
> -#define mALLOc		malloc
> -#define mEMALIGn	memalign
> -#define rEALLOc		realloc
> -#define vALLOc		valloc
> -#define pvALLOc		pvalloc
> -#define mALLINFo	mallinfo
> -#define mALLOPt		mallopt
> -#endif /* USE_DL_PREFIX */
> -
> -#endif
> -
> -/* Public routines */
> -
> -#if __STD_C
> -
> -Void_t* mALLOc(size_t);
> -void    fREe(Void_t*);
> -Void_t* rEALLOc(Void_t*, size_t);
> -Void_t* mEMALIGn(size_t, size_t);
> -Void_t* vALLOc(size_t);
> -Void_t* pvALLOc(size_t);
> -Void_t* cALLOc(size_t, size_t);
> -void    cfree(Void_t*);
> -int     malloc_trim(size_t);
> -size_t  malloc_usable_size(Void_t*);
> -void    malloc_stats();
> -int     mALLOPt(int, int);
> -struct mallinfo mALLINFo(void);
> -#else
> -Void_t* mALLOc();
> -void    fREe();
> -Void_t* rEALLOc();
> -Void_t* mEMALIGn();
> -Void_t* vALLOc();
> -Void_t* pvALLOc();
> -Void_t* cALLOc();
> -void    cfree();
> -int     malloc_trim();
> -size_t  malloc_usable_size();
> -void    malloc_stats();
> -int     mALLOPt();
> -struct mallinfo mALLINFo();
> -#endif
> -
> -
> -#ifdef __cplusplus
> -};  /* end of extern "C" */
> -#endif
> -
> -/* ---------- To make a malloc.h, end cutting here ------------ */
> -
> -
> -/*
> -  Emulation of sbrk for WIN32
> -  All code within the ifdef WIN32 is untested by me.
> -
> -  Thanks to Martin Fong and others for supplying this.
> -*/
> -
> -
> -#ifdef WIN32
> -
> -#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
> -~(malloc_getpagesize-1))
> -#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
> -
> -/* resrve 64MB to insure large contiguous space */
> -#define RESERVED_SIZE (1024*1024*64)
> -#define NEXT_SIZE (2048*1024)
> -#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
> -
> -struct GmListElement;
> -typedef struct GmListElement GmListElement;
> -
> -struct GmListElement
> -{
> -	GmListElement* next;
> -	void* base;
> -};
> -
> -static GmListElement* head = 0;
> -static unsigned int gNextAddress = 0;
> -static unsigned int gAddressBase = 0;
> -static unsigned int gAllocatedSize = 0;
> -
> -static
> -GmListElement* makeGmListElement (void* bas)
> -{
> -	GmListElement* this;
> -	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
> -	assert (this);
> -	if (this)
> -	{
> -		this->base = bas;
> -		this->next = head;
> -		head = this;
> -	}
> -	return this;
> -}
> -
> -void gcleanup ()
> -{
> -	BOOL rval;
> -	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
> -	if (gAddressBase && (gNextAddress - gAddressBase))
> -	{
> -		rval = VirtualFree ((void*)gAddressBase,
> -							gNextAddress - gAddressBase,
> -							MEM_DECOMMIT);
> -	assert (rval);
> -	}
> -	while (head)
> -	{
> -		GmListElement* next = head->next;
> -		rval = VirtualFree (head->base, 0, MEM_RELEASE);
> -		assert (rval);
> -		LocalFree (head);
> -		head = next;
> -	}
> -}
> -
> -static
> -void* findRegion (void* start_address, unsigned long size)
> -{
> -	MEMORY_BASIC_INFORMATION info;
> -	if (size >= TOP_MEMORY) return NULL;
> -
> -	while ((unsigned long)start_address + size < TOP_MEMORY)
> -	{
> -		VirtualQuery (start_address, &info, sizeof (info));
> -		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
> -			return start_address;
> -		else
> -		{
> -			/* Requested region is not available so see if the */
> -			/* next region is available.  Set 'start_address' */
> -			/* to the next region and call 'VirtualQuery()' */
> -			/* again. */
> -
> -			start_address = (char*)info.BaseAddress + info.RegionSize;
> -
> -			/* Make sure we start looking for the next region */
> -			/* on the *next* 64K boundary.  Otherwise, even if */
> -			/* the new region is free according to */
> -			/* 'VirtualQuery()', the subsequent call to */
> -			/* 'VirtualAlloc()' (which follows the call to */
> -			/* this routine in 'wsbrk()') will round *down* */
> -			/* the requested address to a 64K boundary which */
> -			/* we already know is an address in the */
> -			/* unavailable region.  Thus, the subsequent call */
> -			/* to 'VirtualAlloc()' will fail and bring us back */
> -			/* here, causing us to go into an infinite loop. */
> -
> -			start_address =
> -				(void *) AlignPage64K((unsigned long) start_address);
> -		}
> -	}
> -	return NULL;
> -
> -}
> -
> -
> -void* wsbrk (long size)
> -{
> -	void* tmp;
> -	if (size > 0)
> -	{
> -		if (gAddressBase == 0)
> -		{
> -			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
> -			gNextAddress = gAddressBase =
> -				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
> -											MEM_RESERVE, PAGE_NOACCESS);
> -		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
> -gAllocatedSize))
> -		{
> -			long new_size = max (NEXT_SIZE, AlignPage (size));
> -			void* new_address = (void*)(gAddressBase+gAllocatedSize);
> -			do
> -			{
> -				new_address = findRegion (new_address, new_size);
> -
> -				if (new_address == 0)
> -					return (void*)-1;
> -
> -				gAddressBase = gNextAddress =
> -					(unsigned int)VirtualAlloc (new_address, new_size,
> -												MEM_RESERVE, PAGE_NOACCESS);
> -				/* repeat in case of race condition */
> -				/* The region that we found has been snagged */
> -				/* by another thread */
> -			}
> -			while (gAddressBase == 0);
> -
> -			assert (new_address == (void*)gAddressBase);
> -
> -			gAllocatedSize = new_size;
> -
> -			if (!makeGmListElement ((void*)gAddressBase))
> -				return (void*)-1;
> -		}
> -		if ((size + gNextAddress) > AlignPage (gNextAddress))
> -		{
> -			void* res;
> -			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
> -								(size + gNextAddress -
> -								 AlignPage (gNextAddress)),
> -								MEM_COMMIT, PAGE_READWRITE);
> -			if (res == 0)
> -				return (void*)-1;
> -		}
> -		tmp = (void*)gNextAddress;
> -		gNextAddress = (unsigned int)tmp + size;
> -		return tmp;
> -	}
> -	else if (size < 0)
> -	{
> -		unsigned int alignedGoal = AlignPage (gNextAddress + size);
> -		/* Trim by releasing the virtual memory */
> -		if (alignedGoal >= gAddressBase)
> -		{
> -			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
> -						 MEM_DECOMMIT);
> -			gNextAddress = gNextAddress + size;
> -			return (void*)gNextAddress;
> -		}
> -		else
> -		{
> -			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
> -						 MEM_DECOMMIT);
> -			gNextAddress = gAddressBase;
> -			return (void*)-1;
> -		}
> -	}
> -	else
> -	{
> -		return (void*)gNextAddress;
> -	}
> -}
> -
> -#endif
> -
> -
> -
> -/*
> -  Type declarations
> -*/
> -
> -
> -struct malloc_chunk
> -{
> -  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
> -  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
> -  struct malloc_chunk* fd;   /* double links -- used only if free. */
> -  struct malloc_chunk* bk;
> -};
> -
> -typedef struct malloc_chunk* mchunkptr;
> -
> -/*
> -
> -   malloc_chunk details:
> -
> -    (The following includes lightly edited explanations by Colin Plumb.)
> -
> -    Chunks of memory are maintained using a `boundary tag' method as
> -    described in e.g., Knuth or Standish.  (See the paper by Paul
> -    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
> -    survey of such techniques.)  Sizes of free chunks are stored both
> -    in the front of each chunk and at the end.  This makes
> -    consolidating fragmented chunks into bigger chunks very fast.  The
> -    size fields also hold bits representing whether chunks are free or
> -    in use.
> -
> -    An allocated chunk looks like this:
> -
> -
> -    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Size of previous chunk, if allocated            | |
> -	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Size of chunk, in bytes                         |P|
> -      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             User data starts here...                          .
> -	    .                                                               .
> -	    .             (malloc_usable_space() bytes)                     .
> -	    .                                                               |
> -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Size of chunk                                     |
> -	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -
> -
> -    Where "chunk" is the front of the chunk for the purpose of most of
> -    the malloc code, but "mem" is the pointer that is returned to the
> -    user.  "Nextchunk" is the beginning of the next contiguous chunk.
> -
> -    Chunks always begin on even word boundries, so the mem portion
> -    (which is returned to the user) is also on an even word boundary, and
> -    thus double-word aligned.
> -
> -    Free chunks are stored in circular doubly-linked lists, and look like this:
> -
> -    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Size of previous chunk                            |
> -	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -    `head:' |             Size of chunk, in bytes                         |P|
> -      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Forward pointer to next chunk in list             |
> -	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Back pointer to previous chunk in list            |
> -	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -	    |             Unused space (may be 0 bytes long)                .
> -	    .                                                               .
> -	    .                                                               |
> -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -    `foot:' |             Size of chunk, in bytes                           |
> -	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> -
> -    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
> -    chunk size (which is always a multiple of two words), is an in-use
> -    bit for the *previous* chunk.  If that bit is *clear*, then the
> -    word before the current chunk size contains the previous chunk
> -    size, and can be used to find the front of the previous chunk.
> -    (The very first chunk allocated always has this bit set,
> -    preventing access to non-existent (or non-owned) memory.)
> -
> -    Note that the `foot' of the current chunk is actually represented
> -    as the prev_size of the NEXT chunk. (This makes it easier to
> -    deal with alignments etc).
> -
> -    The two exceptions to all this are
> -
> -     1. The special chunk `top', which doesn't bother using the
> -	trailing size field since there is no
> -	next contiguous chunk that would have to index off it. (After
> -	initialization, `top' is forced to always exist.  If it would
> -	become less than MINSIZE bytes long, it is replenished via
> -	malloc_extend_top.)
> -
> -     2. Chunks allocated via mmap, which have the second-lowest-order
> -	bit (IS_MMAPPED) set in their size fields.  Because they are
> -	never merged or traversed from any other chunk, they have no
> -	foot size or inuse information.
> -
> -    Available chunks are kept in any of several places (all declared below):
> -
> -    * `av': An array of chunks serving as bin headers for consolidated
> -       chunks. Each bin is doubly linked.  The bins are approximately
> -       proportionally (log) spaced.  There are a lot of these bins
> -       (128). This may look excessive, but works very well in
> -       practice.  All procedures maintain the invariant that no
> -       consolidated chunk physically borders another one. Chunks in
> -       bins are kept in size order, with ties going to the
> -       approximately least recently used chunk.
> -
> -       The chunks in each bin are maintained in decreasing sorted order by
> -       size.  This is irrelevant for the small bins, which all contain
> -       the same-sized chunks, but facilitates best-fit allocation for
> -       larger chunks. (These lists are just sequential. Keeping them in
> -       order almost never requires enough traversal to warrant using
> -       fancier ordered data structures.)  Chunks of the same size are
> -       linked with the most recently freed at the front, and allocations
> -       are taken from the back.  This results in LRU or FIFO allocation
> -       order, which tends to give each chunk an equal opportunity to be
> -       consolidated with adjacent freed chunks, resulting in larger free
> -       chunks and less fragmentation.
> -
> -    * `top': The top-most available chunk (i.e., the one bordering the
> -       end of available memory) is treated specially. It is never
> -       included in any bin, is used only if no other chunk is
> -       available, and is released back to the system if it is very
> -       large (see M_TRIM_THRESHOLD).
> -
> -    * `last_remainder': A bin holding only the remainder of the
> -       most recently split (non-top) chunk. This bin is checked
> -       before other non-fitting chunks, so as to provide better
> -       locality for runs of sequentially allocated chunks.
> -
> -    *  Implicitly, through the host system's memory mapping tables.
> -       If supported, requests greater than a threshold are usually
> -       serviced via calls to mmap, and then later released via munmap.
> -
> -*/
> -
> -
> -
> -
> -
> -/*  sizes, alignments */
> -
> -#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
> -#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
> -#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
> -#define MINSIZE                (sizeof(struct malloc_chunk))
> -
> -/* conversion from malloc headers to user pointers, and back */
> -
> -#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
> -#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
> -
> -/* pad request bytes into a usable size */
> -
> -#define request2size(req) \
> - (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
> -  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
> -   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
> -
> -/* Check if m has acceptable alignment */
> -
> -#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
> -
> -
> -
> -
> -/*
> -  Physical chunk operations
> -*/
> -
> -
> -/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
> -
> -#define PREV_INUSE 0x1
> -
> -/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
> -
> -#define IS_MMAPPED 0x2
> -
> -/* Bits to mask off when extracting size */
> -
> -#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
> -
> -
> -/* Ptr to next physical malloc_chunk. */
> -
> -#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
> -
> -/* Ptr to previous physical malloc_chunk */
> -
> -#define prev_chunk(p)\
> -   ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
> -
> -
> -/* Treat space at ptr + offset as a chunk */
> -
> -#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
> -
> -
> -
> -
> -/*
> -  Dealing with use bits
> -*/
> -
> -/* extract p's inuse bit */
> -
> -#define inuse(p)\
> -((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
> -
> -/* extract inuse bit of previous chunk */
> -
> -#define prev_inuse(p)  ((p)->size & PREV_INUSE)
> -
> -/* check for mmap()'ed chunk */
> -
> -#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
> -
> -/* set/clear chunk as in use without otherwise disturbing */
> -
> -#define set_inuse(p)\
> -((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
> -
> -#define clear_inuse(p)\
> -((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
> -
> -/* check/set/clear inuse bits in known places */
> -
> -#define inuse_bit_at_offset(p, s)\
> - (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
> -
> -#define set_inuse_bit_at_offset(p, s)\
> - (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
> -
> -#define clear_inuse_bit_at_offset(p, s)\
> - (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
> -
> -
> -
> -
> -/*
> -  Dealing with size fields
> -*/
> -
> -/* Get size, ignoring use bits */
> -
> -#define chunksize(p)          ((p)->size & ~(SIZE_BITS))
> -
> -/* Set size at head, without disturbing its use bit */
> -
> -#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
> -
> -/* Set size/use ignoring previous bits in header */
> -
> -#define set_head(p, s)        ((p)->size = (s))
> -
> -/* Set size at footer (only when chunk is not in use) */
> -
> -#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
> -
> -
> -
> -
> -
> -/*
> -   Bins
> -
> -    The bins, `av_' are an array of pairs of pointers serving as the
> -    heads of (initially empty) doubly-linked lists of chunks, laid out
> -    in a way so that each pair can be treated as if it were in a
> -    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
> -    and chunks are the same).
> -
> -    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
> -    8 bytes apart. Larger bins are approximately logarithmically
> -    spaced. (See the table below.) The `av_' array is never mentioned
> -    directly in the code, but instead via bin access macros.
> -
> -    Bin layout:
> -
> -    64 bins of size       8
> -    32 bins of size      64
> -    16 bins of size     512
> -     8 bins of size    4096
> -     4 bins of size   32768
> -     2 bins of size  262144
> -     1 bin  of size what's left
> -
> -    There is actually a little bit of slop in the numbers in bin_index
> -    for the sake of speed. This makes no difference elsewhere.
> -
> -    The special chunks `top' and `last_remainder' get their own bins,
> -    (this is implemented via yet more trickery with the av_ array),
> -    although `top' is never properly linked to its bin since it is
> -    always handled specially.
> -
> -*/
> -
> -#define NAV             128   /* number of bins */
> -
> -typedef struct malloc_chunk* mbinptr;
> -
> -/* access macros */
> -
> -#define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
> -#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
> -#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
> -
> -/*
> -   The first 2 bins are never indexed. The corresponding av_ cells are instead
> -   used for bookkeeping. This is not to save space, but to simplify
> -   indexing, maintain locality, and avoid some initialization tests.
> -*/
> -
> -#define top            (bin_at(0)->fd)   /* The topmost chunk */
> -#define last_remainder (bin_at(1))       /* remainder from last split */
> -
> -
> -/*
> -   Because top initially points to its own bin with initial
> -   zero size, thus forcing extension on the first malloc request,
> -   we avoid having any special code in malloc to check whether
> -   it even exists yet. But we still need to in malloc_extend_top.
> -*/
> -
> -#define initial_top    ((mchunkptr)(bin_at(0)))
> -
> -/* Helper macro to initialize bins */
> -
> -#define IAV(i)  bin_at(i), bin_at(i)
> -
> -static mbinptr av_[NAV * 2 + 2] = {
> - 0, 0,
> - IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
> - IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
> - IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
> - IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
> - IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
> - IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
> - IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
> - IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
> - IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
> - IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
> - IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
> - IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
> - IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
> - IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
> - IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
> - IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
> -};
> -
> -
> -
> -/* field-extraction macros */
> -
> -#define first(b) ((b)->fd)
> -#define last(b)  ((b)->bk)
> -
> -/*
> -  Indexing into bins
> -*/
> -
> -#define bin_index(sz)                                                          \
> -(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
> - ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
> - ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
> - ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
> - ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
> - ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
> -					  126)
> -/*
> -  bins for chunks < 512 are all spaced 8 bytes apart, and hold
> -  identically sized chunks. This is exploited in malloc.
> -*/
> -
> -#define MAX_SMALLBIN         63
> -#define MAX_SMALLBIN_SIZE   512
> -#define SMALLBIN_WIDTH        8
> -
> -#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
> -
> -/*
> -   Requests are `small' if both the corresponding and the next bin are small
> -*/
> -
> -#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
> -
> -
> -
> -/*
> -    To help compensate for the large number of bins, a one-level index
> -    structure is used for bin-by-bin searching.  `binblocks' is a
> -    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
> -    have any (possibly) non-empty bins, so they can be skipped over
> -    all at once during during traversals. The bits are NOT always
> -    cleared as soon as all bins in a block are empty, but instead only
> -    when all are noticed to be empty during traversal in malloc.
> -*/
> -
> -#define BINBLOCKWIDTH     4   /* bins per block */
> -
> -#define binblocks      (bin_at(0)->size) /* bitvector of nonempty blocks */
> -
> -/* bin<->block macros */
> -
> -#define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
> -#define mark_binblock(ii)   (binblocks |= idx2binblock(ii))
> -#define clear_binblock(ii)  (binblocks &= ~(idx2binblock(ii)))
> -
> -
> -
> -
> -
> -/*  Other static bookkeeping data */
> -
> -/* variables holding tunable values */
> -
> -static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
> -static unsigned long top_pad          = DEFAULT_TOP_PAD;
> -static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
> -static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
> -
> -/* The first value returned from sbrk */
> -static char* sbrk_base = (char*)(-1);
> -
> -/* The maximum memory obtained from system via sbrk */
> -static unsigned long max_sbrked_mem = 0;
> -
> -/* The maximum via either sbrk or mmap */
> -static unsigned long max_total_mem = 0;
> -
> -/* internal working copy of mallinfo */
> -static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
> -
> -/* The total memory obtained from system via sbrk */
> -#define sbrked_mem  (current_mallinfo.arena)
> -
> -/* Tracking mmaps */
> -
> -static unsigned int n_mmaps = 0;
> -static unsigned int max_n_mmaps = 0;
> -static unsigned long mmapped_mem = 0;
> -static unsigned long max_mmapped_mem = 0;
> -
> -
> -
> -/*
> -  Debugging support
> -*/
> -
> -#if DEBUG
> -
> -
> -/*
> -  These routines make a number of assertions about the states
> -  of data structures that should be true at all times. If any
> -  are not true, it's very likely that a user program has somehow
> -  trashed memory. (It's also possible that there is a coding error
> -  in malloc. In which case, please report it!)
> -*/
> -
> -#if __STD_C
> -static void do_check_chunk(mchunkptr p)
> -#else
> -static void do_check_chunk(p) mchunkptr p;
> -#endif
> -{
> -  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
> -
> -  /* No checkable chunk is mmapped */
> -  assert(!chunk_is_mmapped(p));
> -
> -  /* Check for legal address ... */
> -  assert((char*)p >= sbrk_base);
> -  if (p != top)
> -    assert((char*)p + sz <= (char*)top);
> -  else
> -    assert((char*)p + sz <= sbrk_base + sbrked_mem);
> -
> -}
> -
> -
> -#if __STD_C
> -static void do_check_free_chunk(mchunkptr p)
> -#else
> -static void do_check_free_chunk(p) mchunkptr p;
> -#endif
> -{
> -  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
> -  mchunkptr next = chunk_at_offset(p, sz);
> -
> -  do_check_chunk(p);
> -
> -  /* Check whether it claims to be free ... */
> -  assert(!inuse(p));
> -
> -  /* Unless a special marker, must have OK fields */
> -  if ((long)sz >= (long)MINSIZE)
> -  {
> -    assert((sz & MALLOC_ALIGN_MASK) == 0);
> -    assert(aligned_OK(chunk2mem(p)));
> -    /* ... matching footer field */
> -    assert(next->prev_size == sz);
> -    /* ... and is fully consolidated */
> -    assert(prev_inuse(p));
> -    assert (next == top || inuse(next));
> -
> -    /* ... and has minimally sane links */
> -    assert(p->fd->bk == p);
> -    assert(p->bk->fd == p);
> -  }
> -  else /* markers are always of size SIZE_SZ */
> -    assert(sz == SIZE_SZ);
> -}
> -
> -#if __STD_C
> -static void do_check_inuse_chunk(mchunkptr p)
> -#else
> -static void do_check_inuse_chunk(p) mchunkptr p;
> -#endif
> -{
> -  mchunkptr next = next_chunk(p);
> -  do_check_chunk(p);
> -
> -  /* Check whether it claims to be in use ... */
> -  assert(inuse(p));
> -
> -  /* ... and is surrounded by OK chunks.
> -    Since more things can be checked with free chunks than inuse ones,
> -    if an inuse chunk borders them and debug is on, it's worth doing them.
> -  */
> -  if (!prev_inuse(p))
> -  {
> -    mchunkptr prv = prev_chunk(p);
> -    assert(next_chunk(prv) == p);
> -    do_check_free_chunk(prv);
> -  }
> -  if (next == top)
> -  {
> -    assert(prev_inuse(next));
> -    assert(chunksize(next) >= MINSIZE);
> -  }
> -  else if (!inuse(next))
> -    do_check_free_chunk(next);
> -
> -}
> -
> -#if __STD_C
> -static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
> -#else
> -static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
> -#endif
> -{
> -  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
> -  long room = sz - s;
> -
> -  do_check_inuse_chunk(p);
> -
> -  /* Legal size ... */
> -  assert((long)sz >= (long)MINSIZE);
> -  assert((sz & MALLOC_ALIGN_MASK) == 0);
> -  assert(room >= 0);
> -  assert(room < (long)MINSIZE);
> -
> -  /* ... and alignment */
> -  assert(aligned_OK(chunk2mem(p)));
> -
> -
> -  /* ... and was allocated at front of an available chunk */
> -  assert(prev_inuse(p));
> -
> -}
> -
> -
> -#define check_free_chunk(P)  do_check_free_chunk(P)
> -#define check_inuse_chunk(P) do_check_inuse_chunk(P)
> -#define check_chunk(P) do_check_chunk(P)
> -#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
> -#else
> -#define check_free_chunk(P)
> -#define check_inuse_chunk(P)
> -#define check_chunk(P)
> -#define check_malloced_chunk(P,N)
> -#endif
> -
> -
> -
> -/*
> -  Macro-based internal utilities
> -*/
> -
> -
> -/*
> -  Linking chunks in bin lists.
> -  Call these only with variables, not arbitrary expressions, as arguments.
> -*/
> -
> -/*
> -  Place chunk p of size s in its bin, in size order,
> -  putting it ahead of others of same size.
> -*/
> -
> -
> -#define frontlink(P, S, IDX, BK, FD)                                          \
> -{                                                                             \
> -  if (S < MAX_SMALLBIN_SIZE)                                                  \
> -  {                                                                           \
> -    IDX = smallbin_index(S);                                                  \
> -    mark_binblock(IDX);                                                       \
> -    BK = bin_at(IDX);                                                         \
> -    FD = BK->fd;                                                              \
> -    P->bk = BK;                                                               \
> -    P->fd = FD;                                                               \
> -    FD->bk = BK->fd = P;                                                      \
> -  }                                                                           \
> -  else                                                                        \
> -  {                                                                           \
> -    IDX = bin_index(S);                                                       \
> -    BK = bin_at(IDX);                                                         \
> -    FD = BK->fd;                                                              \
> -    if (FD == BK) mark_binblock(IDX);                                         \
> -    else                                                                      \
> -    {                                                                         \
> -      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
> -      BK = FD->bk;                                                            \
> -    }                                                                         \
> -    P->bk = BK;                                                               \
> -    P->fd = FD;                                                               \
> -    FD->bk = BK->fd = P;                                                      \
> -  }                                                                           \
> -}
> -
> -
> -/* take a chunk off a list */
> -
> -#define unlink(P, BK, FD)                                                     \
> -{                                                                             \
> -  BK = P->bk;                                                                 \
> -  FD = P->fd;                                                                 \
> -  FD->bk = BK;                                                                \
> -  BK->fd = FD;                                                                \
> -}                                                                             \
> -
> -/* Place p as the last remainder */
> -
> -#define link_last_remainder(P)                                                \
> -{                                                                             \
> -  last_remainder->fd = last_remainder->bk =  P;                               \
> -  P->fd = P->bk = last_remainder;                                             \
> -}
> -
> -/* Clear the last_remainder bin */
> -
> -#define clear_last_remainder \
> -  (last_remainder->fd = last_remainder->bk = last_remainder)
> -
> -
> -
> -
> -
> -/* Routines dealing with mmap(). */
> -
> -#if HAVE_MMAP
> -
> -#if __STD_C
> -static mchunkptr mmap_chunk(size_t size)
> -#else
> -static mchunkptr mmap_chunk(size) size_t size;
> -#endif
> -{
> -  size_t page_mask = malloc_getpagesize - 1;
> -  mchunkptr p;
> -
> -#ifndef MAP_ANONYMOUS
> -  static int fd = -1;
> -#endif
> -
> -  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
> -
> -  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
> -   * there is no following chunk whose prev_size field could be used.
> -   */
> -  size = (size + SIZE_SZ + page_mask) & ~page_mask;
> -
> -#ifdef MAP_ANONYMOUS
> -  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
> -		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
> -#else /* !MAP_ANONYMOUS */
> -  if (fd < 0)
> -  {
> -    fd = open("/dev/zero", O_RDWR);
> -    if(fd < 0) return 0;
> -  }
> -  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
> -#endif
> -
> -  if(p == (mchunkptr)-1) return 0;
> -
> -  n_mmaps++;
> -  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
> -
> -  /* We demand that eight bytes into a page must be 8-byte aligned. */
> -  assert(aligned_OK(chunk2mem(p)));
> -
> -  /* The offset to the start of the mmapped region is stored
> -   * in the prev_size field of the chunk; normally it is zero,
> -   * but that can be changed in memalign().
> -   */
> -  p->prev_size = 0;
> -  set_head(p, size|IS_MMAPPED);
> -
> -  mmapped_mem += size;
> -  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
> -    max_mmapped_mem = mmapped_mem;
> -  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
> -    max_total_mem = mmapped_mem + sbrked_mem;
> -  return p;
> -}
> -
> -#if __STD_C
> -static void munmap_chunk(mchunkptr p)
> -#else
> -static void munmap_chunk(p) mchunkptr p;
> -#endif
> -{
> -  INTERNAL_SIZE_T size = chunksize(p);
> -  int ret;
> -
> -  assert (chunk_is_mmapped(p));
> -  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
> -  assert((n_mmaps > 0));
> -  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
> -
> -  n_mmaps--;
> -  mmapped_mem -= (size + p->prev_size);
> -
> -  ret = munmap((char *)p - p->prev_size, size + p->prev_size);
> -
> -  /* munmap returns non-zero on failure */
> -  assert(ret == 0);
> -}
> -
> -#if HAVE_MREMAP
> -
> -#if __STD_C
> -static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
> -#else
> -static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
> -#endif
> -{
> -  size_t page_mask = malloc_getpagesize - 1;
> -  INTERNAL_SIZE_T offset = p->prev_size;
> -  INTERNAL_SIZE_T size = chunksize(p);
> -  char *cp;
> -
> -  assert (chunk_is_mmapped(p));
> -  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
> -  assert((n_mmaps > 0));
> -  assert(((size + offset) & (malloc_getpagesize-1)) == 0);
> -
> -  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
> -  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
> -
> -  cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
> -
> -  if (cp == (char *)-1) return 0;
> -
> -  p = (mchunkptr)(cp + offset);
> -
> -  assert(aligned_OK(chunk2mem(p)));
> -
> -  assert((p->prev_size == offset));
> -  set_head(p, (new_size - offset)|IS_MMAPPED);
> -
> -  mmapped_mem -= size + offset;
> -  mmapped_mem += new_size;
> -  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
> -    max_mmapped_mem = mmapped_mem;
> -  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
> -    max_total_mem = mmapped_mem + sbrked_mem;
> -  return p;
> -}
> -
> -#endif /* HAVE_MREMAP */
> -
> -#endif /* HAVE_MMAP */
> -
> -
> -
> -
> -/*
> -  Extend the top-most chunk by obtaining memory from system.
> -  Main interface to sbrk (but see also malloc_trim).
> -*/
> -
> -#if __STD_C
> -static void malloc_extend_top(INTERNAL_SIZE_T nb)
> -#else
> -static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
> -#endif
> -{
> -  char*     brk;                  /* return value from sbrk */
> -  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
> -  INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
> -  char*     new_brk;              /* return of 2nd sbrk call */
> -  INTERNAL_SIZE_T top_size;       /* new size of top chunk */
> -
> -  mchunkptr old_top     = top;  /* Record state of old top */
> -  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
> -  char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
> -
> -  /* Pad request with top_pad plus minimal overhead */
> -
> -  INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
> -  unsigned long pagesz    = malloc_getpagesize;
> -
> -  /* If not the first time through, round to preserve page boundary */
> -  /* Otherwise, we need to correct to a page size below anyway. */
> -  /* (We also correct below if an intervening foreign sbrk call.) */
> -
> -  if (sbrk_base != (char*)(-1))
> -    sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
> -
> -  brk = (char*)(MORECORE (sbrk_size));
> -
> -  /* Fail if sbrk failed or if a foreign sbrk call killed our space */
> -  if (brk == (char*)(MORECORE_FAILURE) ||
> -      (brk < old_end && old_top != initial_top))
> -    return;
> -
> -  sbrked_mem += sbrk_size;
> -
> -  if (brk == old_end) /* can just add bytes to current top */
> -  {
> -    top_size = sbrk_size + old_top_size;
> -    set_head(top, top_size | PREV_INUSE);
> -  }
> -  else
> -  {
> -    if (sbrk_base == (char*)(-1))  /* First time through. Record base */
> -      sbrk_base = brk;
> -    else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
> -      sbrked_mem += brk - (char*)old_end;
> -
> -    /* Guarantee alignment of first new chunk made from this space */
> -    front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
> -    if (front_misalign > 0)
> -    {
> -      correction = (MALLOC_ALIGNMENT) - front_misalign;
> -      brk += correction;
> -    }
> -    else
> -      correction = 0;
> -
> -    /* Guarantee the next brk will be at a page boundary */
> -
> -    correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
> -		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
> -
> -    /* Allocate correction */
> -    new_brk = (char*)(MORECORE (correction));
> -    if (new_brk == (char*)(MORECORE_FAILURE)) return;
> -
> -    sbrked_mem += correction;
> -
> -    top = (mchunkptr)brk;
> -    top_size = new_brk - brk + correction;
> -    set_head(top, top_size | PREV_INUSE);
> -
> -    if (old_top != initial_top)
> -    {
> -
> -      /* There must have been an intervening foreign sbrk call. */
> -      /* A double fencepost is necessary to prevent consolidation */
> -
> -      /* If not enough space to do this, then user did something very wrong */
> -      if (old_top_size < MINSIZE)
> -      {
> -	set_head(top, PREV_INUSE); /* will force null return from malloc */
> -	return;
> -      }
> -
> -      /* Also keep size a multiple of MALLOC_ALIGNMENT */
> -      old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
> -      set_head_size(old_top, old_top_size);
> -      chunk_at_offset(old_top, old_top_size          )->size =
> -	SIZE_SZ|PREV_INUSE;
> -      chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
> -	SIZE_SZ|PREV_INUSE;
> -      /* If possible, release the rest. */
> -      if (old_top_size >= MINSIZE)
> -	fREe(chunk2mem(old_top));
> -    }
> -  }
> -
> -  if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
> -    max_sbrked_mem = sbrked_mem;
> -  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
> -    max_total_mem = mmapped_mem + sbrked_mem;
> -
> -  /* We always land on a page boundary */
> -  assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
> -}
> -
> -
> -
> -
> -/* Main public routines */
> -
> -
> -/*
> -  Malloc Algorthim:
> -
> -    The requested size is first converted into a usable form, `nb'.
> -    This currently means to add 4 bytes overhead plus possibly more to
> -    obtain 8-byte alignment and/or to obtain a size of at least
> -    MINSIZE (currently 16 bytes), the smallest allocatable size.
> -    (All fits are considered `exact' if they are within MINSIZE bytes.)
> -
> -    From there, the first successful of the following steps is taken:
> -
> -      1. The bin corresponding to the request size is scanned, and if
> -	 a chunk of exactly the right size is found, it is taken.
> -
> -      2. The most recently remaindered chunk is used if it is big
> -	 enough.  This is a form of (roving) first fit, used only in
> -	 the absence of exact fits. Runs of consecutive requests use
> -	 the remainder of the chunk used for the previous such request
> -	 whenever possible. This limited use of a first-fit style
> -	 allocation strategy tends to give contiguous chunks
> -	 coextensive lifetimes, which improves locality and can reduce
> -	 fragmentation in the long run.
> -
> -      3. Other bins are scanned in increasing size order, using a
> -	 chunk big enough to fulfill the request, and splitting off
> -	 any remainder.  This search is strictly by best-fit; i.e.,
> -	 the smallest (with ties going to approximately the least
> -	 recently used) chunk that fits is selected.
> -
> -      4. If large enough, the chunk bordering the end of memory
> -	 (`top') is split off. (This use of `top' is in accord with
> -	 the best-fit search rule.  In effect, `top' is treated as
> -	 larger (and thus less well fitting) than any other available
> -	 chunk since it can be extended to be as large as necessary
> -	 (up to system limitations).
> -
> -      5. If the request size meets the mmap threshold and the
> -	 system supports mmap, and there are few enough currently
> -	 allocated mmapped regions, and a call to mmap succeeds,
> -	 the request is allocated via direct memory mapping.
> -
> -      6. Otherwise, the top of memory is extended by
> -	 obtaining more space from the system (normally using sbrk,
> -	 but definable to anything else via the MORECORE macro).
> -	 Memory is gathered from the system (in system page-sized
> -	 units) in a way that allows chunks obtained across different
> -	 sbrk calls to be consolidated, but does not require
> -	 contiguous memory. Thus, it should be safe to intersperse
> -	 mallocs with other sbrk calls.
> -
> -
> -      All allocations are made from the the `lowest' part of any found
> -      chunk. (The implementation invariant is that prev_inuse is
> -      always true of any allocated chunk; i.e., that each allocated
> -      chunk borders either a previously allocated and still in-use chunk,
> -      or the base of its memory arena.)
> -
> -*/
> -
> -#if __STD_C
> -Void_t* mALLOc(size_t bytes)
> -#else
> -Void_t* mALLOc(bytes) size_t bytes;
> -#endif
> -{
> -  mchunkptr victim;                  /* inspected/selected chunk */
> -  INTERNAL_SIZE_T victim_size;       /* its size */
> -  int       idx;                     /* index for bin traversal */
> -  mbinptr   bin;                     /* associated bin */
> -  mchunkptr remainder;               /* remainder from a split */
> -  long      remainder_size;          /* its size */
> -  int       remainder_index;         /* its bin index */
> -  unsigned long block;               /* block traverser bit */
> -  int       startidx;                /* first bin of a traversed block */
> -  mchunkptr fwd;                     /* misc temp for linking */
> -  mchunkptr bck;                     /* misc temp for linking */
> -  mbinptr q;                         /* misc temp */
> -
> -  INTERNAL_SIZE_T nb;
> -
> -  if ((long)bytes < 0) return 0;
> -
> -  nb = request2size(bytes);  /* padded request size; */
> -
> -  /* Check for exact match in a bin */
> -
> -  if (is_small_request(nb))  /* Faster version for small requests */
> -  {
> -    idx = smallbin_index(nb);
> -
> -    /* No traversal or size check necessary for small bins.  */
> -
> -    q = bin_at(idx);
> -    victim = last(q);
> -
> -    /* Also scan the next one, since it would have a remainder < MINSIZE */
> -    if (victim == q)
> -    {
> -      q = next_bin(q);
> -      victim = last(q);
> -    }
> -    if (victim != q)
> -    {
> -      victim_size = chunksize(victim);
> -      unlink(victim, bck, fwd);
> -      set_inuse_bit_at_offset(victim, victim_size);
> -      check_malloced_chunk(victim, nb);
> -      return chunk2mem(victim);
> -    }
> -
> -    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
> -
> -  }
> -  else
> -  {
> -    idx = bin_index(nb);
> -    bin = bin_at(idx);
> -
> -    for (victim = last(bin); victim != bin; victim = victim->bk)
> -    {
> -      victim_size = chunksize(victim);
> -      remainder_size = victim_size - nb;
> -
> -      if (remainder_size >= (long)MINSIZE) /* too big */
> -      {
> -	--idx; /* adjust to rescan below after checking last remainder */
> -	break;
> -      }
> -
> -      else if (remainder_size >= 0) /* exact fit */
> -      {
> -	unlink(victim, bck, fwd);
> -	set_inuse_bit_at_offset(victim, victim_size);
> -	check_malloced_chunk(victim, nb);
> -	return chunk2mem(victim);
> -      }
> -    }
> -
> -    ++idx;
> -
> -  }
> -
> -  /* Try to use the last split-off remainder */
> -
> -  if ( (victim = last_remainder->fd) != last_remainder)
> -  {
> -    victim_size = chunksize(victim);
> -    remainder_size = victim_size - nb;
> -
> -    if (remainder_size >= (long)MINSIZE) /* re-split */
> -    {
> -      remainder = chunk_at_offset(victim, nb);
> -      set_head(victim, nb | PREV_INUSE);
> -      link_last_remainder(remainder);
> -      set_head(remainder, remainder_size | PREV_INUSE);
> -      set_foot(remainder, remainder_size);
> -      check_malloced_chunk(victim, nb);
> -      return chunk2mem(victim);
> -    }
> -
> -    clear_last_remainder;
> -
> -    if (remainder_size >= 0)  /* exhaust */
> -    {
> -      set_inuse_bit_at_offset(victim, victim_size);
> -      check_malloced_chunk(victim, nb);
> -      return chunk2mem(victim);
> -    }
> -
> -    /* Else place in bin */
> -
> -    frontlink(victim, victim_size, remainder_index, bck, fwd);
> -  }
> -
> -  /*
> -     If there are any possibly nonempty big-enough blocks,
> -     search for best fitting chunk by scanning bins in blockwidth units.
> -  */
> -
> -  if ( (block = idx2binblock(idx)) <= binblocks)
> -  {
> -
> -    /* Get to the first marked block */
> -
> -    if ( (block & binblocks) == 0)
> -    {
> -      /* force to an even block boundary */
> -      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
> -      block <<= 1;
> -      while ((block & binblocks) == 0)
> -      {
> -	idx += BINBLOCKWIDTH;
> -	block <<= 1;
> -      }
> -    }
> -
> -    /* For each possibly nonempty block ... */
> -    for (;;)
> -    {
> -      startidx = idx;          /* (track incomplete blocks) */
> -      q = bin = bin_at(idx);
> -
> -      /* For each bin in this block ... */
> -      do
> -      {
> -	/* Find and use first big enough chunk ... */
> -
> -	for (victim = last(bin); victim != bin; victim = victim->bk)
> -	{
> -	  victim_size = chunksize(victim);
> -	  remainder_size = victim_size - nb;
> -
> -	  if (remainder_size >= (long)MINSIZE) /* split */
> -	  {
> -	    remainder = chunk_at_offset(victim, nb);
> -	    set_head(victim, nb | PREV_INUSE);
> -	    unlink(victim, bck, fwd);
> -	    link_last_remainder(remainder);
> -	    set_head(remainder, remainder_size | PREV_INUSE);
> -	    set_foot(remainder, remainder_size);
> -	    check_malloced_chunk(victim, nb);
> -	    return chunk2mem(victim);
> -	  }
> -
> -	  else if (remainder_size >= 0)  /* take */
> -	  {
> -	    set_inuse_bit_at_offset(victim, victim_size);
> -	    unlink(victim, bck, fwd);
> -	    check_malloced_chunk(victim, nb);
> -	    return chunk2mem(victim);
> -	  }
> -
> -	}
> -
> -       bin = next_bin(bin);
> -
> -      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
> -
> -      /* Clear out the block bit. */
> -
> -      do   /* Possibly backtrack to try to clear a partial block */
> -      {
> -	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
> -	{
> -	  binblocks &= ~block;
> -	  break;
> -	}
> -	--startidx;
> -       q = prev_bin(q);
> -      } while (first(q) == q);
> -
> -      /* Get to the next possibly nonempty block */
> -
> -      if ( (block <<= 1) <= binblocks && (block != 0) )
> -      {
> -	while ((block & binblocks) == 0)
> -	{
> -	  idx += BINBLOCKWIDTH;
> -	  block <<= 1;
> -	}
> -      }
> -      else
> -	break;
> -    }
> -  }
> -
> -
> -  /* Try to use top chunk */
> -
> -  /* Require that there be a remainder, ensuring top always exists  */
> -  if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
> -  {
> -
> -#if HAVE_MMAP
> -    /* If big and would otherwise need to extend, try to use mmap instead */
> -    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
> -	(victim = mmap_chunk(nb)) != 0)
> -      return chunk2mem(victim);
> -#endif
> -
> -    /* Try to extend */
> -    malloc_extend_top(nb);
> -    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
> -      return 0; /* propagate failure */
> -  }
> -
> -  victim = top;
> -  set_head(victim, nb | PREV_INUSE);
> -  top = chunk_at_offset(victim, nb);
> -  set_head(top, remainder_size | PREV_INUSE);
> -  check_malloced_chunk(victim, nb);
> -  return chunk2mem(victim);
> -
> -}
> -
> -
> -
> -
> -/*
> -
> -  free() algorithm :
> -
> -    cases:
> -
> -       1. free(0) has no effect.
> -
> -       2. If the chunk was allocated via mmap, it is release via munmap().
> -
> -       3. If a returned chunk borders the current high end of memory,
> -	  it is consolidated into the top, and if the total unused
> -	  topmost memory exceeds the trim threshold, malloc_trim is
> -	  called.
> -
> -       4. Other chunks are consolidated as they arrive, and
> -	  placed in corresponding bins. (This includes the case of
> -	  consolidating with the current `last_remainder').
> -
> -*/
> -
> -
> -#if __STD_C
> -void fREe(Void_t* mem)
> -#else
> -void fREe(mem) Void_t* mem;
> -#endif
> -{
> -  mchunkptr p;         /* chunk corresponding to mem */
> -  INTERNAL_SIZE_T hd;  /* its head field */
> -  INTERNAL_SIZE_T sz;  /* its size */
> -  int       idx;       /* its bin index */
> -  mchunkptr next;      /* next contiguous chunk */
> -  INTERNAL_SIZE_T nextsz; /* its size */
> -  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
> -  mchunkptr bck;       /* misc temp for linking */
> -  mchunkptr fwd;       /* misc temp for linking */
> -  int       islr;      /* track whether merging with last_remainder */
> -
> -  if (mem == 0)                              /* free(0) has no effect */
> -    return;
> -
> -  p = mem2chunk(mem);
> -  hd = p->size;
> -
> -#if HAVE_MMAP
> -  if (hd & IS_MMAPPED)                       /* release mmapped memory. */
> -  {
> -    munmap_chunk(p);
> -    return;
> -  }
> -#endif
> -
> -  check_inuse_chunk(p);
> -
> -  sz = hd & ~PREV_INUSE;
> -  next = chunk_at_offset(p, sz);
> -  nextsz = chunksize(next);
> -
> -  if (next == top)                            /* merge with top */
> -  {
> -    sz += nextsz;
> -
> -    if (!(hd & PREV_INUSE))                    /* consolidate backward */
> -    {
> -      prevsz = p->prev_size;
> -      p = chunk_at_offset(p, -((long) prevsz));
> -      sz += prevsz;
> -      unlink(p, bck, fwd);
> -    }
> -
> -    set_head(p, sz | PREV_INUSE);
> -    top = p;
> -    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
> -      malloc_trim(top_pad);
> -    return;
> -  }
> -
> -  set_head(next, nextsz);                    /* clear inuse bit */
> -
> -  islr = 0;
> -
> -  if (!(hd & PREV_INUSE))                    /* consolidate backward */
> -  {
> -    prevsz = p->prev_size;
> -    p = chunk_at_offset(p, -((long) prevsz));
> -    sz += prevsz;
> -
> -    if (p->fd == last_remainder)             /* keep as last_remainder */
> -      islr = 1;
> -    else
> -      unlink(p, bck, fwd);
> -  }
> -
> -  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
> -  {
> -    sz += nextsz;
> -
> -    if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
> -    {
> -      islr = 1;
> -      link_last_remainder(p);
> -    }
> -    else
> -      unlink(next, bck, fwd);
> -  }
> -
> -
> -  set_head(p, sz | PREV_INUSE);
> -  set_foot(p, sz);
> -  if (!islr)
> -    frontlink(p, sz, idx, bck, fwd);
> -}
> -
> -
> -
> -
> -
> -/*
> -
> -  Realloc algorithm:
> -
> -    Chunks that were obtained via mmap cannot be extended or shrunk
> -    unless HAVE_MREMAP is defined, in which case mremap is used.
> -    Otherwise, if their reallocation is for additional space, they are
> -    copied.  If for less, they are just left alone.
> -
> -    Otherwise, if the reallocation is for additional space, and the
> -    chunk can be extended, it is, else a malloc-copy-free sequence is
> -    taken.  There are several different ways that a chunk could be
> -    extended. All are tried:
> -
> -       * Extending forward into following adjacent free chunk.
> -       * Shifting backwards, joining preceding adjacent space
> -       * Both shifting backwards and extending forward.
> -       * Extending into newly sbrked space
> -
> -    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
> -    size argument of zero (re)allocates a minimum-sized chunk.
> -
> -    If the reallocation is for less space, and the new request is for
> -    a `small' (<512 bytes) size, then the newly unused space is lopped
> -    off and freed.
> -
> -    The old unix realloc convention of allowing the last-free'd chunk
> -    to be used as an argument to realloc is no longer supported.
> -    I don't know of any programs still relying on this feature,
> -    and allowing it would also allow too many other incorrect
> -    usages of realloc to be sensible.
> -
> -
> -*/
> -
> -
> -#if __STD_C
> -Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
> -#else
> -Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
> -#endif
> -{
> -  INTERNAL_SIZE_T    nb;      /* padded request size */
> -
> -  mchunkptr oldp;             /* chunk corresponding to oldmem */
> -  INTERNAL_SIZE_T    oldsize; /* its size */
> -
> -  mchunkptr newp;             /* chunk to return */
> -  INTERNAL_SIZE_T    newsize; /* its size */
> -  Void_t*   newmem;           /* corresponding user mem */
> -
> -  mchunkptr next;             /* next contiguous chunk after oldp */
> -  INTERNAL_SIZE_T  nextsize;  /* its size */
> -
> -  mchunkptr prev;             /* previous contiguous chunk before oldp */
> -  INTERNAL_SIZE_T  prevsize;  /* its size */
> -
> -  mchunkptr remainder;        /* holds split off extra space from newp */
> -  INTERNAL_SIZE_T  remainder_size;   /* its size */
> -
> -  mchunkptr bck;              /* misc temp for linking */
> -  mchunkptr fwd;              /* misc temp for linking */
> -
> -#ifdef REALLOC_ZERO_BYTES_FREES
> -  if (bytes == 0) { fREe(oldmem); return 0; }
> -#endif
> -
> -  if ((long)bytes < 0) return 0;
> -
> -  /* realloc of null is supposed to be same as malloc */
> -  if (oldmem == 0) return mALLOc(bytes);
> -
> -  newp    = oldp    = mem2chunk(oldmem);
> -  newsize = oldsize = chunksize(oldp);
> -
> -
> -  nb = request2size(bytes);
> -
> -#if HAVE_MMAP
> -  if (chunk_is_mmapped(oldp))
> -  {
> -#if HAVE_MREMAP
> -    newp = mremap_chunk(oldp, nb);
> -    if(newp) return chunk2mem(newp);
> -#endif
> -    /* Note the extra SIZE_SZ overhead. */
> -    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
> -    /* Must alloc, copy, free. */
> -    newmem = mALLOc(bytes);
> -    if (newmem == 0) return 0; /* propagate failure */
> -    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
> -    munmap_chunk(oldp);
> -    return newmem;
> -  }
> -#endif
> -
> -  check_inuse_chunk(oldp);
> -
> -  if ((long)(oldsize) < (long)(nb))
> -  {
> -
> -    /* Try expanding forward */
> -
> -    next = chunk_at_offset(oldp, oldsize);
> -    if (next == top || !inuse(next))
> -    {
> -      nextsize = chunksize(next);
> -
> -      /* Forward into top only if a remainder */
> -      if (next == top)
> -      {
> -	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
> -	{
> -	  newsize += nextsize;
> -	  top = chunk_at_offset(oldp, nb);
> -	  set_head(top, (newsize - nb) | PREV_INUSE);
> -	  set_head_size(oldp, nb);
> -	  return chunk2mem(oldp);
> -	}
> -      }
> -
> -      /* Forward into next chunk */
> -      else if (((long)(nextsize + newsize) >= (long)(nb)))
> -      {
> -	unlink(next, bck, fwd);
> -	newsize  += nextsize;
> -	goto split;
> -      }
> -    }
> -    else
> -    {
> -      next = 0;
> -      nextsize = 0;
> -    }
> -
> -    /* Try shifting backwards. */
> -
> -    if (!prev_inuse(oldp))
> -    {
> -      prev = prev_chunk(oldp);
> -      prevsize = chunksize(prev);
> -
> -      /* try forward + backward first to save a later consolidation */
> -
> -      if (next != 0)
> -      {
> -	/* into top */
> -	if (next == top)
> -	{
> -	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
> -	  {
> -	    unlink(prev, bck, fwd);
> -	    newp = prev;
> -	    newsize += prevsize + nextsize;
> -	    newmem = chunk2mem(newp);
> -	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> -	    top = chunk_at_offset(newp, nb);
> -	    set_head(top, (newsize - nb) | PREV_INUSE);
> -	    set_head_size(newp, nb);
> -	    return newmem;
> -	  }
> -	}
> -
> -	/* into next chunk */
> -	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
> -	{
> -	  unlink(next, bck, fwd);
> -	  unlink(prev, bck, fwd);
> -	  newp = prev;
> -	  newsize += nextsize + prevsize;
> -	  newmem = chunk2mem(newp);
> -	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> -	  goto split;
> -	}
> -      }
> -
> -      /* backward only */
> -      if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
> -      {
> -	unlink(prev, bck, fwd);
> -	newp = prev;
> -	newsize += prevsize;
> -	newmem = chunk2mem(newp);
> -	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> -	goto split;
> -      }
> -    }
> -
> -    /* Must allocate */
> -
> -    newmem = mALLOc (bytes);
> -
> -    if (newmem == 0)  /* propagate failure */
> -      return 0;
> -
> -    /* Avoid copy if newp is next chunk after oldp. */
> -    /* (This can only happen when new chunk is sbrk'ed.) */
> -
> -    if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
> -    {
> -      newsize += chunksize(newp);
> -      newp = oldp;
> -      goto split;
> -    }
> -
> -    /* Otherwise copy, free, and exit */
> -    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
> -    fREe(oldmem);
> -    return newmem;
> -  }
> -
> -
> - split:  /* split off extra room in old or expanded chunk */
> -
> -  if (newsize - nb >= MINSIZE) /* split off remainder */
> -  {
> -    remainder = chunk_at_offset(newp, nb);
> -    remainder_size = newsize - nb;
> -    set_head_size(newp, nb);
> -    set_head(remainder, remainder_size | PREV_INUSE);
> -    set_inuse_bit_at_offset(remainder, remainder_size);
> -    fREe(chunk2mem(remainder)); /* let free() deal with it */
> -  }
> -  else
> -  {
> -    set_head_size(newp, newsize);
> -    set_inuse_bit_at_offset(newp, newsize);
> -  }
> -
> -  check_inuse_chunk(newp);
> -  return chunk2mem(newp);
> -}
> -
> -
> -
> -
> -/*
> -
> -  memalign algorithm:
> -
> -    memalign requests more than enough space from malloc, finds a spot
> -    within that chunk that meets the alignment request, and then
> -    possibly frees the leading and trailing space.
> -
> -    The alignment argument must be a power of two. This property is not
> -    checked by memalign, so misuse may result in random runtime errors.
> -
> -    8-byte alignment is guaranteed by normal malloc calls, so don't
> -    bother calling memalign with an argument of 8 or less.
> -
> -    Overreliance on memalign is a sure way to fragment space.
> -
> -*/
> -
> -
> -#if __STD_C
> -Void_t* mEMALIGn(size_t alignment, size_t bytes)
> -#else
> -Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
> -#endif
> -{
> -  INTERNAL_SIZE_T    nb;      /* padded  request size */
> -  char*     m;                /* memory returned by malloc call */
> -  mchunkptr p;                /* corresponding chunk */
> -  char*     brk;              /* alignment point within p */
> -  mchunkptr newp;             /* chunk to return */
> -  INTERNAL_SIZE_T  newsize;   /* its size */
> -  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
> -  mchunkptr remainder;        /* spare room at end to split off */
> -  long      remainder_size;   /* its size */
> -
> -  if ((long)bytes < 0) return 0;
> -
> -  /* If need less alignment than we give anyway, just relay to malloc */
> -
> -  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
> -
> -  /* Otherwise, ensure that it is at least a minimum chunk size */
> -
> -  if (alignment <  MINSIZE) alignment = MINSIZE;
> -
> -  /* Call malloc with worst case padding to hit alignment. */
> -
> -  nb = request2size(bytes);
> -  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
> -
> -  if (m == 0) return 0; /* propagate failure */
> -
> -  p = mem2chunk(m);
> -
> -  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
> -  {
> -#if HAVE_MMAP
> -    if(chunk_is_mmapped(p))
> -      return chunk2mem(p); /* nothing more to do */
> -#endif
> -  }
> -  else /* misaligned */
> -  {
> -    /*
> -      Find an aligned spot inside chunk.
> -      Since we need to give back leading space in a chunk of at
> -      least MINSIZE, if the first calculation places us at
> -      a spot with less than MINSIZE leader, we can move to the
> -      next aligned spot -- we've allocated enough total room so that
> -      this is always possible.
> -    */
> -
> -    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
> -    if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
> -
> -    newp = (mchunkptr)brk;
> -    leadsize = brk - (char*)(p);
> -    newsize = chunksize(p) - leadsize;
> -
> -#if HAVE_MMAP
> -    if(chunk_is_mmapped(p))
> -    {
> -      newp->prev_size = p->prev_size + leadsize;
> -      set_head(newp, newsize|IS_MMAPPED);
> -      return chunk2mem(newp);
> -    }
> -#endif
> -
> -    /* give back leader, use the rest */
> -
> -    set_head(newp, newsize | PREV_INUSE);
> -    set_inuse_bit_at_offset(newp, newsize);
> -    set_head_size(p, leadsize);
> -    fREe(chunk2mem(p));
> -    p = newp;
> -
> -    assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
> -  }
> -
> -  /* Also give back spare room at the end */
> -
> -  remainder_size = chunksize(p) - nb;
> -
> -  if (remainder_size >= (long)MINSIZE)
> -  {
> -    remainder = chunk_at_offset(p, nb);
> -    set_head(remainder, remainder_size | PREV_INUSE);
> -    set_head_size(p, nb);
> -    fREe(chunk2mem(remainder));
> -  }
> -
> -  check_inuse_chunk(p);
> -  return chunk2mem(p);
> -
> -}
> -
> -
> -
> -
> -/*
> -    valloc just invokes memalign with alignment argument equal
> -    to the page size of the system (or as near to this as can
> -    be figured out from all the includes/defines above.)
> -*/
> -
> -#if __STD_C
> -Void_t* vALLOc(size_t bytes)
> -#else
> -Void_t* vALLOc(bytes) size_t bytes;
> -#endif
> -{
> -  return mEMALIGn (malloc_getpagesize, bytes);
> -}
> -
> -/*
> -  pvalloc just invokes valloc for the nearest pagesize
> -  that will accommodate request
> -*/
> -
> -
> -#if __STD_C
> -Void_t* pvALLOc(size_t bytes)
> -#else
> -Void_t* pvALLOc(bytes) size_t bytes;
> -#endif
> -{
> -  size_t pagesize = malloc_getpagesize;
> -  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
> -}
> -
> -/*
> -
> -  calloc calls malloc, then zeroes out the allocated chunk.
> -
> -*/
> -
> -#if __STD_C
> -Void_t* cALLOc(size_t n, size_t elem_size)
> -#else
> -Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
> -#endif
> -{
> -  mchunkptr p;
> -  INTERNAL_SIZE_T csz;
> -
> -  INTERNAL_SIZE_T sz = n * elem_size;
> -
> -
> -  /* check if expand_top called, in which case don't need to clear */
> -#if MORECORE_CLEARS
> -  mchunkptr oldtop = top;
> -  INTERNAL_SIZE_T oldtopsize = chunksize(top);
> -#endif
> -  Void_t* mem = mALLOc (sz);
> -
> -  if ((long)n < 0) return 0;
> -
> -  if (mem == 0)
> -    return 0;
> -  else
> -  {
> -    p = mem2chunk(mem);
> -
> -    /* Two optional cases in which clearing not necessary */
> -
> -
> -#if HAVE_MMAP
> -    if (chunk_is_mmapped(p)) return mem;
> -#endif
> -
> -    csz = chunksize(p);
> -
> -#if MORECORE_CLEARS
> -    if (p == oldtop && csz > oldtopsize)
> -    {
> -      /* clear only the bytes from non-freshly-sbrked memory */
> -      csz = oldtopsize;
> -    }
> -#endif
> -
> -    MALLOC_ZERO(mem, csz - SIZE_SZ);
> -    return mem;
> -  }
> -}
> -
> -/*
> -
> -  cfree just calls free. It is needed/defined on some systems
> -  that pair it with calloc, presumably for odd historical reasons.
> -
> -*/
> -
> -#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
> -#if __STD_C
> -void cfree(Void_t *mem)
> -#else
> -void cfree(mem) Void_t *mem;
> -#endif
> -{
> -  fREe(mem);
> -}
> -#endif
> -
> -
> -
> -/*
> -
> -    Malloc_trim gives memory back to the system (via negative
> -    arguments to sbrk) if there is unused memory at the `high' end of
> -    the malloc pool. You can call this after freeing large blocks of
> -    memory to potentially reduce the system-level memory requirements
> -    of a program. However, it cannot guarantee to reduce memory. Under
> -    some allocation patterns, some large free blocks of memory will be
> -    locked between two used chunks, so they cannot be given back to
> -    the system.
> -
> -    The `pad' argument to malloc_trim represents the amount of free
> -    trailing space to leave untrimmed. If this argument is zero,
> -    only the minimum amount of memory to maintain internal data
> -    structures will be left (one page or less). Non-zero arguments
> -    can be supplied to maintain enough trailing space to service
> -    future expected allocations without having to re-obtain memory
> -    from the system.
> -
> -    Malloc_trim returns 1 if it actually released any memory, else 0.
> -
> -*/
> -
> -#if __STD_C
> -int malloc_trim(size_t pad)
> -#else
> -int malloc_trim(pad) size_t pad;
> -#endif
> -{
> -  long  top_size;        /* Amount of top-most memory */
> -  long  extra;           /* Amount to release */
> -  char* current_brk;     /* address returned by pre-check sbrk call */
> -  char* new_brk;         /* address returned by negative sbrk call */
> -
> -  unsigned long pagesz = malloc_getpagesize;
> -
> -  top_size = chunksize(top);
> -  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
> -
> -  if (extra < (long)pagesz)  /* Not enough memory to release */
> -    return 0;
> -
> -  else
> -  {
> -    /* Test to make sure no one else called sbrk */
> -    current_brk = (char*)(MORECORE (0));
> -    if (current_brk != (char*)(top) + top_size)
> -      return 0;     /* Apparently we don't own memory; must fail */
> -
> -    else
> -    {
> -      new_brk = (char*)(MORECORE (-extra));
> -
> -      if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
> -      {
> -	/* Try to figure out what we have */
> -	current_brk = (char*)(MORECORE (0));
> -	top_size = current_brk - (char*)top;
> -	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
> -	{
> -	  sbrked_mem = current_brk - sbrk_base;
> -	  set_head(top, top_size | PREV_INUSE);
> -	}
> -	check_chunk(top);
> -	return 0;
> -      }
> -
> -      else
> -      {
> -	/* Success. Adjust top accordingly. */
> -	set_head(top, (top_size - extra) | PREV_INUSE);
> -	sbrked_mem -= extra;
> -	check_chunk(top);
> -	return 1;
> -      }
> -    }
> -  }
> -}
> -
> -
> -
> -/*
> -  malloc_usable_size:
> -
> -    This routine tells you how many bytes you can actually use in an
> -    allocated chunk, which may be more than you requested (although
> -    often not). You can use this many bytes without worrying about
> -    overwriting other allocated objects. Not a particularly great
> -    programming practice, but still sometimes useful.
> -
> -*/
> -
> -#if __STD_C
> -size_t malloc_usable_size(Void_t* mem)
> -#else
> -size_t malloc_usable_size(mem) Void_t* mem;
> -#endif
> -{
> -  mchunkptr p;
> -  if (mem == 0)
> -    return 0;
> -  else
> -  {
> -    p = mem2chunk(mem);
> -    if(!chunk_is_mmapped(p))
> -    {
> -      if (!inuse(p)) return 0;
> -      check_inuse_chunk(p);
> -      return chunksize(p) - SIZE_SZ;
> -    }
> -    return chunksize(p) - 2*SIZE_SZ;
> -  }
> -}
> -
> -
> -
> -
> -/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
> -
> -static void malloc_update_mallinfo()
> -{
> -  int i;
> -  mbinptr b;
> -  mchunkptr p;
> -#if DEBUG
> -  mchunkptr q;
> -#endif
> -
> -  INTERNAL_SIZE_T avail = chunksize(top);
> -  int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
> -
> -  for (i = 1; i < NAV; ++i)
> -  {
> -    b = bin_at(i);
> -    for (p = last(b); p != b; p = p->bk)
> -    {
> -#if DEBUG
> -      check_free_chunk(p);
> -      for (q = next_chunk(p);
> -	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
> -	   q = next_chunk(q))
> -	check_inuse_chunk(q);
> -#endif
> -      avail += chunksize(p);
> -      navail++;
> -    }
> -  }
> -
> -  current_mallinfo.ordblks = navail;
> -  current_mallinfo.uordblks = sbrked_mem - avail;
> -  current_mallinfo.fordblks = avail;
> -  current_mallinfo.hblks = n_mmaps;
> -  current_mallinfo.hblkhd = mmapped_mem;
> -  current_mallinfo.keepcost = chunksize(top);
> -
> -}
> -
> -
> -
> -/*
> -
> -  malloc_stats:
> -
> -    Prints on stderr the amount of space obtain from the system (both
> -    via sbrk and mmap), the maximum amount (which may be more than
> -    current if malloc_trim and/or munmap got called), the maximum
> -    number of simultaneous mmap regions used, and the current number
> -    of bytes allocated via malloc (or realloc, etc) but not yet
> -    freed. (Note that this is the number of bytes allocated, not the
> -    number requested. It will be larger than the number requested
> -    because of alignment and bookkeeping overhead.)
> -
> -*/
> -
> -void malloc_stats()
> -{
> -  malloc_update_mallinfo();
> -  fprintf(stderr, "max system bytes = %10u\n",
> -	  (unsigned int)(max_total_mem));
> -  fprintf(stderr, "system bytes     = %10u\n",
> -	  (unsigned int)(sbrked_mem + mmapped_mem));
> -  fprintf(stderr, "in use bytes     = %10u\n",
> -	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
> -#if HAVE_MMAP
> -  fprintf(stderr, "max mmap regions = %10u\n",
> -	  (unsigned int)max_n_mmaps);
> -#endif
> -}
> -
> -/*
> -  mallinfo returns a copy of updated current mallinfo.
> -*/
> -
> -struct mallinfo mALLINFo()
> -{
> -  malloc_update_mallinfo();
> -  return current_mallinfo;
> -}
> -
> -
> -
> -
> -/*
> -  mallopt:
> -
> -    mallopt is the general SVID/XPG interface to tunable parameters.
> -    The format is to provide a (parameter-number, parameter-value) pair.
> -    mallopt then sets the corresponding parameter to the argument
> -    value if it can (i.e., so long as the value is meaningful),
> -    and returns 1 if successful else 0.
> -
> -    See descriptions of tunable parameters above.
> -
> -*/
> -
> -#if __STD_C
> -int mALLOPt(int param_number, int value)
> -#else
> -int mALLOPt(param_number, value) int param_number; int value;
> -#endif
> -{
> -  switch(param_number)
> -  {
> -    case M_TRIM_THRESHOLD:
> -      trim_threshold = value; return 1;
> -    case M_TOP_PAD:
> -      top_pad = value; return 1;
> -    case M_MMAP_THRESHOLD:
> -      mmap_threshold = value; return 1;
> -    case M_MMAP_MAX:
> -#if HAVE_MMAP
> -      n_mmaps_max = value; return 1;
> -#else
> -      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
> -#endif
> -
> -    default:
> -      return 0;
> -  }
> -}
> -
> -/*
> -
> -History:
> -
> -    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
> -      * return null for negative arguments
> -      * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
> -	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
> -	  (e.g. WIN32 platforms)
> -	 * Cleanup up header file inclusion for WIN32 platforms
> -	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
> -	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
> -	   memory allocation routines
> -	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
> -	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
> -	   usage of 'assert' in non-WIN32 code
> -	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
> -	   avoid infinite loop
> -      * Always call 'fREe()' rather than 'free()'
> -
> -    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
> -      * Fixed ordering problem with boundary-stamping
> -
> -    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
> -      * Added pvalloc, as recommended by H.J. Liu
> -      * Added 64bit pointer support mainly from Wolfram Gloger
> -      * Added anonymously donated WIN32 sbrk emulation
> -      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
> -      * malloc_extend_top: fix mask error that caused wastage after
> -	foreign sbrks
> -      * Add linux mremap support code from HJ Liu
> -
> -    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
> -      * Integrated most documentation with the code.
> -      * Add support for mmap, with help from
> -	Wolfram Gloger (Gloger at lrz.uni-muenchen.de).
> -      * Use last_remainder in more cases.
> -      * Pack bins using idea from  colin at nyx10.cs.du.edu
> -      * Use ordered bins instead of best-fit threshhold
> -      * Eliminate block-local decls to simplify tracing and debugging.
> -      * Support another case of realloc via move into top
> -      * Fix error occuring when initial sbrk_base not word-aligned.
> -      * Rely on page size for units instead of SBRK_UNIT to
> -	avoid surprises about sbrk alignment conventions.
> -      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
> -	(raymond at es.ele.tue.nl) for the suggestion.
> -      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
> -      * More precautions for cases where other routines call sbrk,
> -	courtesy of Wolfram Gloger (Gloger at lrz.uni-muenchen.de).
> -      * Added macros etc., allowing use in linux libc from
> -	H.J. Lu (hjl at gnu.ai.mit.edu)
> -      * Inverted this history list
> -
> -    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
> -      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
> -      * Removed all preallocation code since under current scheme
> -	the work required to undo bad preallocations exceeds
> -	the work saved in good cases for most test programs.
> -      * No longer use return list or unconsolidated bins since
> -	no scheme using them consistently outperforms those that don't
> -	given above changes.
> -      * Use best fit for very large chunks to prevent some worst-cases.
> -      * Added some support for debugging
> -
> -    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
> -      * Removed footers when chunks are in use. Thanks to
> -	Paul Wilson (wilson at cs.texas.edu) for the suggestion.
> -
> -    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
> -      * Added malloc_trim, with help from Wolfram Gloger
> -	(wmglo at Dent.MED.Uni-Muenchen.DE).
> -
> -    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
> -
> -    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
> -      * realloc: try to expand in both directions
> -      * malloc: swap order of clean-bin strategy;
> -      * realloc: only conditionally expand backwards
> -      * Try not to scavenge used bins
> -      * Use bin counts as a guide to preallocation
> -      * Occasionally bin return list chunks in first scan
> -      * Add a few optimizations from colin at nyx10.cs.du.edu
> -
> -    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
> -      * faster bin computation & slightly different binning
> -      * merged all consolidations to one part of malloc proper
> -	 (eliminating old malloc_find_space & malloc_clean_bin)
> -      * Scan 2 returns chunks (not just 1)
> -      * Propagate failure in realloc if malloc returns 0
> -      * Add stuff to allow compilation on non-ANSI compilers
> -	  from kpv at research.att.com
> -
> -    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
> -      * removed potential for odd address access in prev_chunk
> -      * removed dependency on getpagesize.h
> -      * misc cosmetics and a bit more internal documentation
> -      * anticosmetics: mangled names in macros to evade debugger strangeness
> -      * tested on sparc, hp-700, dec-mips, rs6000
> -	  with gcc & native cc (hp, dec only) allowing
> -	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
> -
> -    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
> -      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
> -	 structure of old version,  but most details differ.)
> -
> -*/
> 
> _______________________________________________
> barebox mailing list
> barebox at lists.infradead.org
> http://lists.infradead.org/mailman/listinfo/barebox

-- 
Pengutronix e.K.                           |                             |
Industrial Linux Solutions                 | http://www.pengutronix.de/  |
Peiner Str. 6-8, 31137 Hildesheim, Germany | Phone: +49-5121-206917-0    |
Amtsgericht Hildesheim, HRA 2686           | Fax:   +49-5121-206917-5555 |



More information about the barebox mailing list