[PATCH V3] lib/group_cpus.c: avoid to acquire cpu hotplug lock in group_cpus_evenly

Ming Lei ming.lei at redhat.com
Fri Aug 18 07:01:45 PDT 2023


group_cpus_evenly() could be part of storage driver's error handler,
such as nvme driver, when may happen during CPU hotplug, in which
storage queue has to drain its pending IOs because all CPUs associated
with the queue are offline and the queue is becoming inactive. And
handling IO needs error handler to provide forward progress.

Then dead lock is caused:

1) inside CPU hotplug handler, CPU hotplug lock is held, and blk-mq's
handler is waiting for inflight IO

2) error handler is waiting for CPU hotplug lock

3) inflight IO can't be completed in blk-mq's CPU hotplug handler because
error handling can't provide forward progress.

Solve the deadlock by not holding CPU hotplug lock in group_cpus_evenly(),
in which two stage spreads are taken: 1) the 1st stage is over all present
CPUs; 2) the end stage is over all other CPUs.

Turns out the two stage spread just needs consistent 'cpu_present_mask', and
remove the CPU hotplug lock by storing it into one local cache. This way
doesn't change correctness, because all CPUs are still covered.

Cc: Keith Busch <kbusch at kernel.org>
Cc: linux-nvme at lists.infradead.org
Cc: linux-block at vger.kernel.org
Reported-by: Yi Zhang <yi.zhang at redhat.com>
Reported-by: Guangwu Zhang <guazhang at redhat.com>
Tested-by: Guangwu Zhang <guazhang at redhat.com>
Reviewed-by: Chengming Zhou <zhouchengming at bytedance.com>
Signed-off-by: Ming Lei <ming.lei at redhat.com>
---
V3:
	- reuse `npresmsk`, and avoid to allocate new variable, suggested by
	Chengming Zhou

V2:
	- fix "Cc: block list"
	- add tested-by tag

 lib/group_cpus.c | 15 +++++++++------
 1 file changed, 9 insertions(+), 6 deletions(-)

diff --git a/lib/group_cpus.c b/lib/group_cpus.c
index aa3f6815bb12..fffe8a893597 100644
--- a/lib/group_cpus.c
+++ b/lib/group_cpus.c
@@ -366,13 +366,18 @@ struct cpumask *group_cpus_evenly(unsigned int numgrps)
 	if (!masks)
 		goto fail_node_to_cpumask;
 
-	/* Stabilize the cpumasks */
-	cpus_read_lock();
 	build_node_to_cpumask(node_to_cpumask);
 
+	/*
+	 * Make a local cache of 'cpu_present_mask', so the two stages
+	 * spread can observe consistent 'cpu_present_mask' without holding
+	 * cpu hotplug lock.
+	 */
+	cpumask_copy(npresmsk, cpu_present_mask);
+
 	/* grouping present CPUs first */
 	ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
-				  cpu_present_mask, nmsk, masks);
+				  npresmsk, nmsk, masks);
 	if (ret < 0)
 		goto fail_build_affinity;
 	nr_present = ret;
@@ -387,15 +392,13 @@ struct cpumask *group_cpus_evenly(unsigned int numgrps)
 		curgrp = 0;
 	else
 		curgrp = nr_present;
-	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
+	cpumask_andnot(npresmsk, cpu_possible_mask, npresmsk);
 	ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
 				  npresmsk, nmsk, masks);
 	if (ret >= 0)
 		nr_others = ret;
 
  fail_build_affinity:
-	cpus_read_unlock();
-
 	if (ret >= 0)
 		WARN_ON(nr_present + nr_others < numgrps);
 
-- 
2.40.1




More information about the Linux-nvme mailing list