[PATCH v3 4/5] media: Documentation: Add Mali-C55 ISP Documentation

Dan Scally dan.scally at ideasonboard.com
Fri Mar 8 02:41:51 PST 2024


Hi Jacopo

On 08/03/2024 10:23, Jacopo Mondi wrote:
> Hi Dan
>
> On Wed, Mar 06, 2024 at 10:03:01AM +0000, Dan Scally wrote:
>> Hi Jacopo - thanks for the review
>>
>> On 05/03/2024 17:24, Jacopo Mondi wrote:
>>> Hi Dan
>>>
>>> On Tue, Mar 05, 2024 at 04:48:31PM +0000, Daniel Scally wrote:
>>>> Add a documentation page for the mali-c55 driver, which gives a brief
>>>> overview of the hardware and explains how to use the driver's capture
>>>> devices and the crop/scaler functions.
>>>>
>>>> Acked-by: Nayden Kanchev <nayden.kanchev at arm.com>
>>>> Signed-off-by: Daniel Scally <dan.scally at ideasonboard.com>
>>>> ---
>>>> Changes in v3:
>>>> 	- Documented the synchronised buffer sequence numbers (Sakari)
>>>> 	- Clarified that the downscale pipe cannot output raw data, the ISP'S
>>>> 	  resolution limits and choice of media bus format code (Kieran)
>>>>
>>>> Changes in v2:
>>>>
>>>> 	- none
>>>>
>>>>    .../admin-guide/media/mali-c55-graph.dot      |  19 +
>>>>    Documentation/admin-guide/media/mali-c55.rst  | 330 ++++++++++++++++++
>>>>    .../admin-guide/media/v4l-drivers.rst         |   1 +
>>>>    3 files changed, 350 insertions(+)
>>>>    create mode 100644 Documentation/admin-guide/media/mali-c55-graph.dot
>>>>    create mode 100644 Documentation/admin-guide/media/mali-c55.rst
>>>>
>>>> diff --git a/Documentation/admin-guide/media/mali-c55-graph.dot b/Documentation/admin-guide/media/mali-c55-graph.dot
>>>> new file mode 100644
>>>> index 000000000000..0775ba42bf4c
>>>> --- /dev/null
>>>> +++ b/Documentation/admin-guide/media/mali-c55-graph.dot
>>>> @@ -0,0 +1,19 @@
>>>> +digraph board {
>>>> +        rankdir=TB
>>>> +        n00000001 [label="{{} | mali-c55 tpg\n/dev/v4l-subdev0 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
>>>> +        n00000001:port0 -> n00000003:port0 [style=dashed]
>>>> +        n00000003 [label="{{<port0> 0} | mali-c55 isp\n/dev/v4l-subdev1 | {<port1> 1 | <port2> 2}}", shape=Mrecord, style=filled, fillcolor=green]
>>>> +        n00000003:port1 -> n00000007:port0 [style=bold]
>>>> +        n00000003:port2 -> n00000007:port2 [style=bold]
>>>> +        n00000003:port1 -> n0000000b:port0 [style=bold]
>>>> +        n00000007 [label="{{<port0> 0 | <port2> 2} | mali-c55 resizer fr\n/dev/v4l-subdev2 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
>>>> +        n00000007:port1 -> n0000000e [style=bold]
>>>> +        n0000000b [label="{{<port0> 0} | mali-c55 resizer ds\n/dev/v4l-subdev3 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
>>>> +        n0000000b:port1 -> n00000012 [style=bold]
>>>> +        n0000000e [label="mali-c55 fr\n/dev/video0", shape=box, style=filled, fillcolor=yellow]
>>>> +        n00000012 [label="mali-c55 ds\n/dev/video1", shape=box, style=filled, fillcolor=yellow]
>>>> +        n00000022 [label="{{<port0> 0} | csi2-rx\n/dev/v4l-subdev4 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
>>>> +        n00000022:port1 -> n00000003:port0
>>>> +        n00000027 [label="{{} | imx415 1-001a\n/dev/v4l-subdev5 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
>>>> +        n00000027:port0 -> n00000022:port0 [style=bold]
>>>> +}
>>>> \ No newline at end of file
>>>> diff --git a/Documentation/admin-guide/media/mali-c55.rst b/Documentation/admin-guide/media/mali-c55.rst
>>>> new file mode 100644
>>>> index 000000000000..33e63600ab2c
>>>> --- /dev/null
>>>> +++ b/Documentation/admin-guide/media/mali-c55.rst
>>>> @@ -0,0 +1,330 @@
>>>> +.. SPDX-License-Identifier: GPL-2.0
>>>> +
>>>> +==========================================
>>>> +ARM Mali-C55 Image Signal Processor driver
>>>> +==========================================
>>>> +
>>>> +Introduction
>>>> +============
>>>> +
>>>> +This file documents the driver for ARM's Mali-C55 Image Signal Processor. The
>>>> +driver is located under drivers/media/platform/arm/mali-c55.
>>>> +
>>>> +The Mali-C55 ISP receives data in either raw Bayer format or RGB/YUV format from
>>>> +sensors through either a parallel interface or a memory bus before processing it
>>>> +and outputting it through an internal DMA engine. Two output pipelines are
>>>> +possible (though one may not be fitted, depending on the implementation). These
>>>> +are referred to as "Full resolution" and "Downscale", but the naming is historic
>>>> +and both pipes are capable of cropping/scaling operations. The full resolution
>>>> +pipe is also capable of outputting RAW data, bypassing much of the ISP's
>>>> +processing. The downscale pipe cannot output RAW data. An integrated test
>>>> +pattern generator can be used to drive the ISP and produce image data in the
>>>> +absence of a connected camera sensor. The driver module is named mali_c55, and
>>>> +is enabled through the CONFIG_VIDEO_MALI_C55 config option.
>>>> +
>>>> +The driver implements V4L2, Media Controller and V4L2 Subdevice interfaces and
>>>> +expects camera sensors connected to the ISP to have V4L2 subdevice interfaces.
>>>> +
>>>> +Mali-C55 ISP hardware
>>>> +=====================
>>>> +
>>>> +A high level functional view of the Mali-C55 ISP is presented below. The ISP
>>>> +takes input from either a live source or through a DMA engine for memory input,
>>>> +depending on the SoC integration.::
>>> This shows as
>>>           depending on the SoC integration.:
>>>
>>> in the generated output.
>>>
>>> Should you drop the '.' ?
>>
>> Yes, will do.
>>
>>>> +
>>>> +  +---------+    +----------+                                     +--------+
>>>> +  | Sensor  |--->| CSI-2 Rx |                "Full Resolution"    |  DMA   |
>>>> +  +---------+    +----------+   |\                 Output    +--->| Writer |
>>>> +                       |        | \                          |    +--------+
>>>> +                       |        |  \    +----------+  +------+---> Streaming I/O
>>>> +  +------------+       +------->|   |   |          |  |
>>>> +  |            |                |   |-->| Mali-C55 |--+
>>>> +  | DMA Reader |--------------->|   |   |    ISP   |  |
>>>> +  |            |                |  /    |          |  |      +---> Streaming I/O
>>>> +  +------------+                | /     +----------+  |      |
>>>> +                                |/                    +------+
>>>> +				                             |    +--------+
>>>> +                                                             +--->|  DMA   |
>>>> +                                               "Downscaled"       | Writer |
>>>> +					          Output          +--------+
>>>> +
>>>> +Media Controller Topology
>>>> +=========================
>>>> +
>>>> +An example of the ISP's topology (as implemented in a system with an IMX415
>>>> +camera sensor and generic CSI-2 receiver) is below:
>>>> +
>>>> +
>>>> +.. kernel-figure:: mali-c55-graph.dot
>>>> +    :alt:   mali-c55-graph.dot
>>>> +    :align: center
>>>> +
>>>> +The driver has 4 V4L2 subdevices:
>>>> +
>>>> +- `mali_c55 isp`: Responsible for configuring input crop and color space
>>>> +                  conversion
>>>> +- `mali_c55 tpg`: The test pattern generator, emulating a camera sensor.
>>>> +- `mali_c55 resizer fr`: The Full-Resolution pipe resizer
>>>> +- `mali_c55 resizer ds`: The Downscale pipe resizer
>>>> +
>>>> +The driver has 2 V4L2 video devices:
>>>> +
>>>> +- `mali-c55 fr`: The full-resolution pipe's capture device
>>>> +- `mali-c55 ds`: The downscale pipe's capture device
>>>> +
>>>> +Frame sequences are synchronised across to two capture devices, meaning if one
>>>> +pipe is started later than the other the sequence numbers returned in its
>>>> +buffers will match those of the other pipe rather than starting from zero.
>>>> +
>>>> +Idiosyncrasies
>>>> +--------------
>>>> +
>>>> +**mali-c55 isp**
>>> If the intention was to have a line break, this is not redendered in
>>> the generated documentation.
>>>
>>>> +The `mali-c55 isp` subdevice has a single sink pad to which all sources of data
>>>> +should be connected. The active source is selected by enabling the appropriate
>>>> +media link and disabling all others. The ISP has two source pads, reflecting the
>>>> +different paths through which it can internally route data. Tap points within
>>>> +the ISP allow users to divert data to avoid processing by some or all of the
>>>> +hardware's processing steps. The diagram below is intended only to highlight how
>>>> +the bypassing works and is not a true reflection of those processing steps; for
>>>> +a high-level functional block diagram see ARM's developer page for the
>>>> +ISP [3]_::
>>>> +
>>>> +  +--------------------------------------------------------------+
>>>> +  |                Possible Internal ISP Data Routes             |
>>>> +  |          +------------+  +----------+  +------------+        |
>>>> +  +---+      |            |  |          |  |  Colour    |    +---+
>>>> +  | 0 |--+-->| Processing |->| Demosaic |->|   Space    |--->| 1 |
>>>> +  +---+  |   |            |  |          |  | Conversion |    +---+
>>>> +  |      |   +------------+  +----------+  +------------+        |
>>>> +  |      |                                                   +---+
>>>> +  |      +---------------------------------------------------| 2 |
>>>> +  |                                                          +---+
>>>> +  |                                                              |
>>>> +  +--------------------------------------------------------------+
>>>> +
>>>> +
>>>> +.. flat-table::
>>>> +    :header-rows: 1
>>>> +
>>>> +    * - Pad
>>>> +      - Direction
>>>> +      - Purpose
>>>> +
>>>> +    * - 0
>>>> +      - sink
>>>> +      - Data input, connected to the TPG and camera sensors
>>>> +
>>>> +    * - 1
>>>> +      - source
>>>> +      - RGB/YUV data, connected to the FR and DS V4L2 subdevices
>>>> +
>>>> +    * - 2
>>>> +      - source
>>>> +      - RAW bayer data, connected to the FR V4L2 subdevices
>>>> +
>>>> +The ISP is limited to both input and output resolutions between 640x480 and
>>>> +8192x8192, and this is reflected in the ISP and resizer subdevice's .set_fmt()
>>>> +operations.
>>>> +
>>>> +**mali-c55 resizer fr**
>>>> +The `mali-c55 resizer fr` subdevice has two _sink_ pads to reflect the different
>>>> +insertion points in the hardware (either RAW or demosaiced data):
>>>> +
>>>> +.. flat-table::
>>>> +    :header-rows: 1
>>>> +
>>>> +    * - Pad
>>>> +      - Direction
>>>> +      - Purpose
>>>> +
>>>> +    * - 0
>>>> +      - sink
>>>> +      - Data input connected to the ISP's demosaiced stream.
>>>> +
>>>> +    * - 1
>>>> +      - source
>>>> +      - Data output connected to the capture video device
>>>> +
>>>> +    * - 2
>>>> +      - sink
>>>> +      - Data input connected to the ISP's raw data stream
>>>> +
>>>> +The data source in use is selected through the routing API; two routes each of a
>>>> +single stream are available:
>>>> +
>>>> +.. flat-table::
>>>> +    :header-rows: 1
>>>> +
>>>> +    * - Sink Pad
>>>> +      - Source Pad
>>>> +      - Purpose
>>>> +
>>>> +    * - 0
>>>> +      - 1
>>>> +      - Demosaiced data route
>>>> +
>>>> +    * - 2
>>>> +      - 1
>>>> +      - Raw data route
>>>> +
>>>> +
>>>> +If the demosaiced route is active then the FR pipe is only capable of output
>>>> +in RGB/YUV formats. If the raw route is active then the output reflects the
>>>> +input (which may be either Bayer or RGB/YUV data).
>>>> +
>>>> +Using the driver to capture video
>>>> +=================================
>>>> +
>>>> +Using the media controller APIs we can configure the input source and ISP to
>>>> +capture images in a variety of formats. In the examples below, configuring the
>>>> +media graph is done with the v4l-utils [1]_ package's media-ctl utility.
>>>> +Capturing the images is done with yavta [2]_.
>>>> +
>>>> +Configuring the input source
>>>> +----------------------------
>>>> +
>>>> +The first step is to set the input source that we wish by enabling the correct
>>>> +media link. Using the example topology above, we can select the TPG as follows:
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    media-ctl -l "'lte-csi2-rx':1->'mali-c55 isp':0[0]"
>>>> +    media-ctl -l "'mali-c55 tpg':0->'mali-c55 isp':0[1]"
>>>> +
>>>> +Capturing bayer data from the source and processing to RGB/YUV
>>>> +--------------------------------------------------------------
>>>> +To capture 1920x1080 bayer data from the source and push it through the ISP's
>>>> +full processing pipeline, we configure the data formats appropriately on the
>>>> +source, ISP and resizer subdevices and set the FR resizer's routing to select
>>>> +processed data. The media bus format on the resizer's source pad will be either
>>>> +RGB121212_1X36 or YUV10_1X30, depending on whether you want to capture RGB or
>>>> +YUV. The ISP's debayering block outputs RGB data natively, setting the source
>>>> +pad format to YUV10_1X30 enables the colour space conversion block.
>>>> +
>>>> +In this example we target RGB565 output, so select RGB121212_1X36 as the resizer
>>>> +source pad's format:
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    # Set formats on the TPG and ISP
>>>> +    media-ctl -V "'mali-c55 tpg':0[fmt:SRGGB16_1X16/1920x1080]"
>>>> +    media-ctl -V "'mali-c55 isp':0[fmt:SRGGB16_1X16/1920x1080]"
>>>> +    media-ctl -V "'mali-c55 isp':1[fmt:SRGGB16_1X16/1920x1080]"
>>> Shouldn't this be RGB121212_1X36 ?
>>
>> Oops, yes, obscured in testing by that being the sole supported format anyway. I'll fix it, thank you.
>>
>>>> +
>>>> +    # Set routing on the FR resizer
>>>> +    media-ctl -R "'mali-c55 resizer fr'[0/0->1/0[1],2/0->1/0[0]]"
>>>> +
>>>> +    # Set format on the resizer, must be done AFTER the routing.
>>>> +    media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB121212_1X36/1920x1080]"
>>>> +
>>>> +The downscale output can also be used to stream data at the same time. In this
>>>> +case since only processed data can be captured through the downscale output no
>>>> +routing need be set:
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    # Set format on the resizer
>>>> +    media-ctl -V "'mali-c55 resizer ds':1[fmt:RGB121212_1X36/1920x1080]"
>>>> +
>>>> +Following which images can be captured from both the FR and DS output's video
>>>> +devices (simultaneously, if desired):
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    yavta -f RGB565 -s 1920x1080 -c10 /dev/video0
>>>> +    yavta -f RGB565 -s 1920x1080 -c10 /dev/video1
>>>> +
>>>> +Cropping the image
>>>> +~~~~~~~~~~~~~~~~~~
>>>> +
>>>> +Both the full resolution and downscale pipes can crop to a minimum resolution of
>>>> +640x480. To crop the image simply configure the resizer's sink pad's crop and
>>>> +compose rectangles and set the format on the video device:
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    media-ctl -V "'mali-c55 resizer fr':0[fmt:RGB121212_1X36/1920x1080 crop:(480,270)/640x480 compose:(0,0)/640x480]"
>>>> +    media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB121212_1X36/640x480]"
>>>> +    yavta -f RGB565 -s 640x480 -c10 /dev/video0
>>>> +
>>>> +Downscaling the image
>>>> +~~~~~~~~~~~~~~~~~~~~~
>>>> +
>>>> +Both the full resolution and downscale pipes can downscale the image by up to 8x
>>>> +provided the minimum 640x480 resolution is adhered to. For the best image result
>>>> +the scaling ratio for each dimension should be the same. To configure scaling we
>>>> +use the compose rectangle on the resizer's sink pad:
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    media-ctl -V "'mali-c55 resizer fr':0[fmt:RGB121212_1X36/1920x1080 crop:(0,0)/1920x1080 compose:(0,0)/640x480]"
>>>> +    media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB121212_1X36/640x480]"
>>>> +    yavta -f RGB565 -s 640x480 -c10 /dev/video0
>>>> +
>>>> +Capturing images in YUV formats
>>>> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>>>> +
>>>> +If we need to output YUV data rather than RGB the color space conversion block
>>>> +needs to be active, which is achieved by setting MEDIA_BUS_FMT_YUV10_1X30 on the
>>>> +resizer's source pad (the reduced bitdepth reflecting internal truncation after
>>>> +color space conversion). We can then configure a capture format like NV12 (here
>>>> +in its multi-planar variant)
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    media-ctl -V "'mali-c55 resizer fr':1[fmt:YUV10_1X30/1920x1080]"
>>>> +    yavta -f NV12M -s 1920x1080 -c10 /dev/video0
>>>> +
>>>> +Capturing RGB data from the source and processing it with the resizers
>>>> +----------------------------------------------------------------------
>>>> +
>>>> +The Mali-C55 ISP can work with sensors capable of outputting RGB data. In this
>>>> +case although none of the image quality blocks would be used it can still
>>>> +crop/scale the data in the usual way.
>>>> +
>>>> +To achieve this, the ISP's sink pad's format is set to
>>>> +MEDIA_BUS_FMT_RGB202020_1X60 - this reflects the format that data must be in to
>>>> +work with the ISP. Converting the camera sensor's output to that format is the
>>>> +responsibility of external hardware.
>>>> +
>>>> +In this example we ask the test pattern generator to give us RGB data instead of
>>>> +bayer.
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    media-ctl -V "'mali-c55 tpg':0[fmt:RGB202020_1X60/1920x1080]"
>>>> +    media-ctl -V "'mali-c55 isp':0[fmt:RGB202020_1X60/1920x1080]"
>>>> +
>>>> +Cropping or scaling the data can be done in exactly the same way as outlined
>>>> +earlier.
>>>> +
>>>> +Capturing raw data from the source and outputting it unmodified
>>>> +-----------------------------------------------------------------
>>>> +
>>>> +The ISP can additionally capture raw data from the source and output it on the
>>>> +full resolution pipe only, completely unmodified. In this case the downscale
>>>> +pipe can still process the data normally and be used at the same time.
>>>> +
>>>> +To configure raw bypass the FR resizer's subdevice's routing table needs to be
>>>> +configured, followed by formats in the appropriate places:
>>>> +
>>>> +.. code-block:: none
>>>> +
>>>> +    # We need to configure the routing table for the resizer to use the bypass
>>>> +    # path along with set formats on the resizer's bypass sink pad. Doing this
>>>> +    # necessitates a single media-ctl command, as multiple calls to the program
>>>> +    # reset the routing table.
>>>> +    media-ctl -R "'mali-c55 resizer fr'[0/0->1/0[0],2/0->1/0[1]]"\
>>>> +    -V "'mali-c55 isp':0[fmt:RGB202020_1X60/1920x1080],"\
>>>> +       "'mali-c55 resizer fr':2[fmt:RGB202020_1X60/1920x1080],"\
>>>> +       "'mali-c55 resizer fr':1[fmt:RGB202020_1X60/1920x1080]"
>>>> +
>>>> +    # Set format on the video device and stream
>>>> +    yavta -f RGB565 -s 1920x1080 -c10 /dev/video0
>>> The example doesn't seem to show RAW formats though.
>>
>> A problem of terminology perhaps; I'm using the phrase to mean "unmodified
>> source data" rather than "bayer formatted data". I can switch the example to
>> use bayer data so its clearer?
>>
> I see.. Even if the paragraph mentions "raw data" and not "raw Bayer
> data" I think showing how to capture Raw Bayer has the most value.
> Then you can also specify it is possible to capture "unmodified source
> data" and re-propose the above example.
Sure - I'll re-work this bit to demonstrate Raw Bayer capture instead.
>
>>> I think it's also
>>> relevant saying that the capture RAW data are expanded to 16 bits per
>>> component with padding bits, regardless of the sensor's output
>>> bitdepth.
>>
>> Yes good point - I'll add that in.
>>
>>> Overall this is a very nice documentation with a lot of use cases
>>> demonstrated.
>> Thanks!
>>> Can we also say the ISP will be supported by libcamera :) ?
>>
>> Fine by me; though perhaps not until we get it merged there?
>>
> Well, it's a bit of a chicked&egg problem. I would add it right away.
Righto - I'll add it in.
> Thanks
>     j
>
>>> Thanks
>>>      j
>>>
>>>> +
>>>> +References
>>>> +==========
>>>> +.. [1] https://git.linuxtv.org/v4l-utils.git/
>>>> +.. [2] https://git.ideasonboard.org/yavta.git
>>>> +.. [3] https://developer.arm.com/Processors/Mali-C55
>>>> diff --git a/Documentation/admin-guide/media/v4l-drivers.rst b/Documentation/admin-guide/media/v4l-drivers.rst
>>>> index f4bb2605f07e..af033c892808 100644
>>>> --- a/Documentation/admin-guide/media/v4l-drivers.rst
>>>> +++ b/Documentation/admin-guide/media/v4l-drivers.rst
>>>> @@ -17,6 +17,7 @@ Video4Linux (V4L) driver-specific documentation
>>>>    	imx7
>>>>    	ipu3
>>>>    	ivtv
>>>> +	mali-c55
>>>>    	mgb4
>>>>    	omap3isp
>>>>    	omap4_camera
>>>> --
>>>> 2.34.1
>>>>



More information about the linux-arm-kernel mailing list