[PATCH RFC v3 5/9] mm/slub: add opt-in percpu array cache of objects
Suren Baghdasaryan
surenb at google.com
Fri Dec 15 10:28:06 PST 2023
On Wed, Nov 29, 2023 at 1:53 AM Vlastimil Babka <vbabka at suse.cz> wrote:
>
> kmem_cache_setup_percpu_array() will allocate a per-cpu array for
> caching alloc/free objects of given size for the cache. The cache
> has to be created with SLAB_NO_MERGE flag.
>
> When empty, half of the array is filled by an internal bulk alloc
> operation. When full, half of the array is flushed by an internal bulk
> free operation.
>
> The array does not distinguish NUMA locality of the cached objects. If
> an allocation is requested with kmem_cache_alloc_node() with numa node
> not equal to NUMA_NO_NODE, the array is bypassed.
>
> The bulk operations exposed to slab users also try to utilize the array
> when possible, but leave the array empty or full and use the bulk
> alloc/free only to finish the operation itself. If kmemcg is enabled and
> active, bulk freeing skips the array completely as it would be less
> efficient to use it.
>
> The locking scheme is copied from the page allocator's pcplists, based
> on embedded spin locks. Interrupts are not disabled, only preemption
> (cpu migration on RT). Trylock is attempted to avoid deadlock due to an
> interrupt; trylock failure means the array is bypassed.
>
> Sysfs stat counters alloc_cpu_cache and free_cpu_cache count objects
> allocated or freed using the percpu array; counters cpu_cache_refill and
> cpu_cache_flush count objects refilled or flushed form the array.
>
> kmem_cache_prefill_percpu_array() can be called to ensure the array on
> the current cpu to at least the given number of objects. However this is
> only opportunistic as there's no cpu pinning between the prefill and
> usage, and trylocks may fail when the usage is in an irq handler.
> Therefore allocations cannot rely on the array for success even after
> the prefill. But misses should be rare enough that e.g. GFP_ATOMIC
> allocations should be acceptable after the refill.
>
> When slub_debug is enabled for a cache with percpu array, the objects in
> the array are considered as allocated from the slub_debug perspective,
> and the alloc/free debugging hooks occur when moving the objects between
> the array and slab pages. This means that e.g. an use-after-free that
> occurs for an object cached in the array is undetected. Collected
> alloc/free stacktraces might also be less useful. This limitation could
> be changed in the future.
>
> On the other hand, KASAN, kmemcg and other hooks are executed on actual
> allocations and frees by kmem_cache users even if those use the array,
> so their debugging or accounting accuracy should be unaffected.
>
> Signed-off-by: Vlastimil Babka <vbabka at suse.cz>
> ---
> include/linux/slab.h | 4 +
> include/linux/slub_def.h | 12 ++
> mm/Kconfig | 1 +
> mm/slub.c | 457 ++++++++++++++++++++++++++++++++++++++++++++++-
> 4 files changed, 468 insertions(+), 6 deletions(-)
>
> diff --git a/include/linux/slab.h b/include/linux/slab.h
> index d6d6ffeeb9a2..fe0c0981be59 100644
> --- a/include/linux/slab.h
> +++ b/include/linux/slab.h
> @@ -197,6 +197,8 @@ struct kmem_cache *kmem_cache_create_usercopy(const char *name,
> void kmem_cache_destroy(struct kmem_cache *s);
> int kmem_cache_shrink(struct kmem_cache *s);
>
> +int kmem_cache_setup_percpu_array(struct kmem_cache *s, unsigned int count);
> +
> /*
> * Please use this macro to create slab caches. Simply specify the
> * name of the structure and maybe some flags that are listed above.
> @@ -512,6 +514,8 @@ void kmem_cache_free(struct kmem_cache *s, void *objp);
> void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
> int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
>
> +int kmem_cache_prefill_percpu_array(struct kmem_cache *s, unsigned int count, gfp_t gfp);
> +
> static __always_inline void kfree_bulk(size_t size, void **p)
> {
> kmem_cache_free_bulk(NULL, size, p);
> diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
> index deb90cf4bffb..2083aa849766 100644
> --- a/include/linux/slub_def.h
> +++ b/include/linux/slub_def.h
> @@ -13,8 +13,10 @@
> #include <linux/local_lock.h>
>
> enum stat_item {
> + ALLOC_PCA, /* Allocation from percpu array cache */
> ALLOC_FASTPATH, /* Allocation from cpu slab */
> ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
> + FREE_PCA, /* Free to percpu array cache */
> FREE_FASTPATH, /* Free to cpu slab */
> FREE_SLOWPATH, /* Freeing not to cpu slab */
> FREE_FROZEN, /* Freeing to frozen slab */
> @@ -39,6 +41,8 @@ enum stat_item {
> CPU_PARTIAL_FREE, /* Refill cpu partial on free */
> CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
> CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
> + PCA_REFILL, /* Refilling empty percpu array cache */
> + PCA_FLUSH, /* Flushing full percpu array cache */
> NR_SLUB_STAT_ITEMS
> };
>
> @@ -66,6 +70,13 @@ struct kmem_cache_cpu {
> };
> #endif /* CONFIG_SLUB_TINY */
>
> +struct slub_percpu_array {
> + spinlock_t lock;
> + unsigned int count;
> + unsigned int used;
> + void * objects[];
> +};
> +
> #ifdef CONFIG_SLUB_CPU_PARTIAL
> #define slub_percpu_partial(c) ((c)->partial)
>
> @@ -99,6 +110,7 @@ struct kmem_cache {
> #ifndef CONFIG_SLUB_TINY
> struct kmem_cache_cpu __percpu *cpu_slab;
> #endif
> + struct slub_percpu_array __percpu *cpu_array;
> /* Used for retrieving partial slabs, etc. */
> slab_flags_t flags;
> unsigned long min_partial;
> diff --git a/mm/Kconfig b/mm/Kconfig
> index 89971a894b60..aa53c51bb4a6 100644
> --- a/mm/Kconfig
> +++ b/mm/Kconfig
> @@ -237,6 +237,7 @@ choice
> config SLAB_DEPRECATED
> bool "SLAB (DEPRECATED)"
> depends on !PREEMPT_RT
> + depends on BROKEN
> help
> Deprecated and scheduled for removal in a few cycles. Replaced by
> SLUB.
> diff --git a/mm/slub.c b/mm/slub.c
> index 59912a376c6d..f08bd71c244f 100644
> --- a/mm/slub.c
> +++ b/mm/slub.c
> @@ -188,6 +188,79 @@ do { \
> #define USE_LOCKLESS_FAST_PATH() (false)
> #endif
>
> +/* copy/pasted from mm/page_alloc.c */
> +
> +#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
> +/*
> + * On SMP, spin_trylock is sufficient protection.
> + * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
> + */
> +#define pcp_trylock_prepare(flags) do { } while (0)
> +#define pcp_trylock_finish(flag) do { } while (0)
> +#else
> +
> +/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
> +#define pcp_trylock_prepare(flags) local_irq_save(flags)
> +#define pcp_trylock_finish(flags) local_irq_restore(flags)
> +#endif
> +
> +/*
> + * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
> + * a migration causing the wrong PCP to be locked and remote memory being
> + * potentially allocated, pin the task to the CPU for the lookup+lock.
> + * preempt_disable is used on !RT because it is faster than migrate_disable.
> + * migrate_disable is used on RT because otherwise RT spinlock usage is
> + * interfered with and a high priority task cannot preempt the allocator.
> + */
> +#ifndef CONFIG_PREEMPT_RT
> +#define pcpu_task_pin() preempt_disable()
> +#define pcpu_task_unpin() preempt_enable()
> +#else
> +#define pcpu_task_pin() migrate_disable()
> +#define pcpu_task_unpin() migrate_enable()
> +#endif
> +
> +/*
> + * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
> + * Return value should be used with equivalent unlock helper.
> + */
> +#define pcpu_spin_lock(type, member, ptr) \
> +({ \
> + type *_ret; \
> + pcpu_task_pin(); \
> + _ret = this_cpu_ptr(ptr); \
> + spin_lock(&_ret->member); \
> + _ret; \
> +})
> +
> +#define pcpu_spin_trylock(type, member, ptr) \
> +({ \
> + type *_ret; \
> + pcpu_task_pin(); \
> + _ret = this_cpu_ptr(ptr); \
> + if (!spin_trylock(&_ret->member)) { \
> + pcpu_task_unpin(); \
> + _ret = NULL; \
> + } \
> + _ret; \
> +})
> +
> +#define pcpu_spin_unlock(member, ptr) \
> +({ \
> + spin_unlock(&ptr->member); \
> + pcpu_task_unpin(); \
> +})
> +
> +/* struct slub_percpu_array specific helpers. */
> +#define pca_spin_lock(ptr) \
> + pcpu_spin_lock(struct slub_percpu_array, lock, ptr)
> +
> +#define pca_spin_trylock(ptr) \
> + pcpu_spin_trylock(struct slub_percpu_array, lock, ptr)
> +
> +#define pca_spin_unlock(ptr) \
> + pcpu_spin_unlock(lock, ptr)
> +
> #ifndef CONFIG_SLUB_TINY
> #define __fastpath_inline __always_inline
> #else
> @@ -3454,6 +3527,78 @@ static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
> 0, sizeof(void *));
> }
>
> +static bool refill_pca(struct kmem_cache *s, unsigned int count, gfp_t gfp);
> +
> +static __fastpath_inline
> +void *alloc_from_pca(struct kmem_cache *s, gfp_t gfp)
> +{
> + unsigned long __maybe_unused UP_flags;
> + struct slub_percpu_array *pca;
> + void *object;
> +
> +retry:
> + pcp_trylock_prepare(UP_flags);
> + pca = pca_spin_trylock(s->cpu_array);
> +
> + if (unlikely(!pca)) {
> + pcp_trylock_finish(UP_flags);
> + return NULL;
> + }
> +
> + if (unlikely(pca->used == 0)) {
> + unsigned int batch = pca->count / 2;
> +
> + pca_spin_unlock(pca);
> + pcp_trylock_finish(UP_flags);
> +
> + if (!gfpflags_allow_blocking(gfp) || in_irq())
> + return NULL;
> +
> + if (refill_pca(s, batch, gfp))
> + goto retry;
> +
> + return NULL;
> + }
> +
> + object = pca->objects[--pca->used];
> +
> + pca_spin_unlock(pca);
> + pcp_trylock_finish(UP_flags);
> +
> + stat(s, ALLOC_PCA);
> +
> + return object;
> +}
> +
> +static __fastpath_inline
> +int alloc_from_pca_bulk(struct kmem_cache *s, size_t size, void **p)
> +{
> + unsigned long __maybe_unused UP_flags;
> + struct slub_percpu_array *pca;
> +
> + pcp_trylock_prepare(UP_flags);
> + pca = pca_spin_trylock(s->cpu_array);
> +
> + if (unlikely(!pca)) {
> + size = 0;
> + goto failed;
> + }
> +
> + if (pca->used < size)
> + size = pca->used;
> +
> + for (int i = size; i > 0;) {
> + p[--i] = pca->objects[--pca->used];
> + }
> +
> + pca_spin_unlock(pca);
> + stat_add(s, ALLOC_PCA, size);
> +
> +failed:
> + pcp_trylock_finish(UP_flags);
> + return size;
> +}
> +
> /*
> * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
> * have the fastpath folded into their functions. So no function call
> @@ -3479,7 +3624,11 @@ static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list
> if (unlikely(object))
> goto out;
>
> - object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
> + if (s->cpu_array && (node == NUMA_NO_NODE))
> + object = alloc_from_pca(s, gfpflags);
> +
> + if (!object)
> + object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
>
> maybe_wipe_obj_freeptr(s, object);
> init = slab_want_init_on_alloc(gfpflags, s);
> @@ -3726,6 +3875,81 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab,
> discard_slab(s, slab);
> }
>
> +static bool flush_pca(struct kmem_cache *s, unsigned int count);
> +
> +static __fastpath_inline
> +bool free_to_pca(struct kmem_cache *s, void *object)
> +{
> + unsigned long __maybe_unused UP_flags;
> + struct slub_percpu_array *pca;
> +
> +retry:
> + pcp_trylock_prepare(UP_flags);
> + pca = pca_spin_trylock(s->cpu_array);
> +
> + if (!pca) {
> + pcp_trylock_finish(UP_flags);
> + return false;
> + }
> +
> + if (pca->used == pca->count) {
> + unsigned int batch = pca->count / 2;
> +
> + pca_spin_unlock(pca);
> + pcp_trylock_finish(UP_flags);
> +
> + if (in_irq())
> + return false;
> +
> + if (!flush_pca(s, batch))
> + return false;
> +
> + goto retry;
> + }
> +
> + pca->objects[pca->used++] = object;
> +
> + pca_spin_unlock(pca);
> + pcp_trylock_finish(UP_flags);
> +
> + stat(s, FREE_PCA);
> +
> + return true;
> +}
> +
> +static __fastpath_inline
> +size_t free_to_pca_bulk(struct kmem_cache *s, size_t size, void **p)
> +{
> + unsigned long __maybe_unused UP_flags;
> + struct slub_percpu_array *pca;
> + bool init;
> +
> + pcp_trylock_prepare(UP_flags);
> + pca = pca_spin_trylock(s->cpu_array);
> +
> + if (unlikely(!pca)) {
> + size = 0;
> + goto failed;
> + }
> +
> + if (pca->count - pca->used < size)
> + size = pca->count - pca->used;
> +
> + init = slab_want_init_on_free(s);
> +
> + for (size_t i = 0; i < size; i++) {
> + if (likely(slab_free_hook(s, p[i], init)))
> + pca->objects[pca->used++] = p[i];
> + }
> +
> + pca_spin_unlock(pca);
> + stat_add(s, FREE_PCA, size);
> +
> +failed:
> + pcp_trylock_finish(UP_flags);
> + return size;
> +}
> +
> #ifndef CONFIG_SLUB_TINY
> /*
> * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
> @@ -3811,7 +4035,12 @@ void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
> {
> memcg_slab_free_hook(s, slab, &object, 1);
>
> - if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
> + if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s))))
> + return;
> +
> + if (s->cpu_array)
> + free_to_pca(s, object);
free_to_pca() can return false and leave the object alive. I think you
need to handle the failure case here to avoid leaks.
> + else
> do_slab_free(s, slab, object, object, 1, addr);
> }
>
> @@ -3956,6 +4185,26 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
> if (!size)
> return;
>
> + /*
> + * In case the objects might need memcg_slab_free_hook(), skip the array
> + * because the hook is not effective with single objects and benefits
> + * from groups of objects from a single slab that the detached freelist
> + * builds. But once we build the detached freelist, it's wasteful to
> + * throw it away and put the objects into the array.
> + *
> + * XXX: This test could be cache-specific if it was not possible to use
> + * __GFP_ACCOUNT with caches that are not SLAB_ACCOUNT
> + */
> + if (s && s->cpu_array && !memcg_kmem_online()) {
> + size_t pca_freed = free_to_pca_bulk(s, size, p);
> +
> + if (pca_freed == size)
> + return;
> +
> + p += pca_freed;
> + size -= pca_freed;
> + }
> +
> do {
> struct detached_freelist df;
>
> @@ -4073,7 +4322,8 @@ static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
> int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
> void **p)
> {
> - int i;
> + int from_pca = 0;
> + int allocated = 0;
> struct obj_cgroup *objcg = NULL;
>
> if (!size)
> @@ -4084,19 +4334,147 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
> if (unlikely(!s))
> return 0;
>
> - i = __kmem_cache_alloc_bulk(s, flags, size, p);
> + if (s->cpu_array)
> + from_pca = alloc_from_pca_bulk(s, size, p);
> +
> + if (from_pca < size) {
> + allocated = __kmem_cache_alloc_bulk(s, flags, size-from_pca,
> + p+from_pca);
> + if (allocated == 0 && from_pca > 0) {
> + __kmem_cache_free_bulk(s, from_pca, p);
> + }
> + }
> +
> + allocated += from_pca;
>
> /*
> * memcg and kmem_cache debug support and memory initialization.
> * Done outside of the IRQ disabled fastpath loop.
> */
> - if (i != 0)
> + if (allocated != 0)
> slab_post_alloc_hook(s, objcg, flags, size, p,
> slab_want_init_on_alloc(flags, s), s->object_size);
> - return i;
> + return allocated;
> }
> EXPORT_SYMBOL(kmem_cache_alloc_bulk);
>
> +static bool refill_pca(struct kmem_cache *s, unsigned int count, gfp_t gfp)
> +{
> + void *objects[32];
> + unsigned int batch, allocated;
> + unsigned long __maybe_unused UP_flags;
> + struct slub_percpu_array *pca;
> +
> +bulk_alloc:
> + batch = min(count, 32U);
Do you cap each batch at 32 to avoid overshooting too much (same in
flush_pca())? If so, it would be good to have a comment here. Also,
maybe this hardcoded 32 should be a function of pca->count instead? If
we set up a pca array with pca->count larger than 64 then the refill
count of pca->count/2 will always end up higher than 32, so at the end
we will have to loop back (goto bulk_alloc) to allocate more objects.
> +
> + allocated = __kmem_cache_alloc_bulk(s, gfp, batch, &objects[0]);
> + if (!allocated)
> + return false;
> +
> + pcp_trylock_prepare(UP_flags);
> + pca = pca_spin_trylock(s->cpu_array);
> + if (!pca) {
> + pcp_trylock_finish(UP_flags);
> + return false;
> + }
> +
> + batch = min(allocated, pca->count - pca->used);
> +
> + for (unsigned int i = 0; i < batch; i++) {
> + pca->objects[pca->used++] = objects[i];
> + }
> +
> + pca_spin_unlock(pca);
> + pcp_trylock_finish(UP_flags);
> +
> + stat_add(s, PCA_REFILL, batch);
> +
> + /*
> + * We could have migrated to a different cpu or somebody else freed to the
> + * pca while we were bulk allocating, and now we have too many objects
> + */
> + if (batch < allocated) {
> + __kmem_cache_free_bulk(s, allocated - batch, &objects[batch]);
> + } else {
> + count -= batch;
> + if (count > 0)
> + goto bulk_alloc;
> + }
> +
> + return true;
> +}
> +
> +static bool flush_pca(struct kmem_cache *s, unsigned int count)
> +{
> + void *objects[32];
> + unsigned int batch, remaining;
> + unsigned long __maybe_unused UP_flags;
> + struct slub_percpu_array *pca;
> +
> +next_batch:
> + batch = min(count, 32);
> +
> + pcp_trylock_prepare(UP_flags);
> + pca = pca_spin_trylock(s->cpu_array);
> + if (!pca) {
> + pcp_trylock_finish(UP_flags);
> + return false;
> + }
> +
> + batch = min(batch, pca->used);
> +
> + for (unsigned int i = 0; i < batch; i++) {
> + objects[i] = pca->objects[--pca->used];
> + }
> +
> + remaining = pca->used;
> +
> + pca_spin_unlock(pca);
> + pcp_trylock_finish(UP_flags);
> +
> + __kmem_cache_free_bulk(s, batch, &objects[0]);
> +
> + stat_add(s, PCA_FLUSH, batch);
> +
> + if (batch < count && remaining > 0) {
> + count -= batch;
> + goto next_batch;
> + }
> +
> + return true;
> +}
> +
> +/* Do not call from irq handler nor with irqs disabled */
> +int kmem_cache_prefill_percpu_array(struct kmem_cache *s, unsigned int count,
> + gfp_t gfp)
> +{
> + struct slub_percpu_array *pca;
> + unsigned int used;
> +
> + lockdep_assert_no_hardirq();
> +
> + if (!s->cpu_array)
> + return -EINVAL;
> +
> + /* racy but we don't care */
> + pca = raw_cpu_ptr(s->cpu_array);
> +
> + used = READ_ONCE(pca->used);
> +
> + if (used >= count)
> + return 0;
> +
> + if (pca->count < count)
> + return -EINVAL;
> +
> + count -= used;
> +
> + if (!refill_pca(s, count, gfp))
> + return -ENOMEM;
> +
> + return 0;
> +}
>
> /*
> * Object placement in a slab is made very easy because we always start at
> @@ -5167,6 +5545,65 @@ int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
> return 0;
> }
>
> +/**
> + * kmem_cache_setup_percpu_array - Create a per-cpu array cache for the cache
> + * @s: The cache to add per-cpu array. Must be created with SLAB_NO_MERGE flag.
> + * @count: Size of the per-cpu array.
> + *
> + * After this call, allocations from the cache go through a percpu array. When
> + * it becomes empty, half is refilled with a bulk allocation. When it becomes
> + * full, half is flushed with a bulk free operation.
> + *
> + * Using the array cache is not guaranteed, i.e. it can be bypassed if its lock
> + * cannot be obtained. The array cache also does not distinguish NUMA nodes, so
> + * allocations via kmem_cache_alloc_node() with a node specified other than
> + * NUMA_NO_NODE will bypass the cache.
> + *
> + * Bulk allocation and free operations also try to use the array.
> + *
> + * kmem_cache_prefill_percpu_array() can be used to pre-fill the array cache
> + * before e.g. entering a restricted context. It is however not guaranteed that
> + * the caller will be able to subsequently consume the prefilled cache. Such
> + * failures should be however sufficiently rare so after the prefill,
> + * allocations using GFP_ATOMIC | __GFP_NOFAIL are acceptable for objects up to
> + * the prefilled amount.
> + *
> + * Limitations: when slub_debug is enabled for the cache, all relevant actions
> + * (i.e. poisoning, obtaining stacktraces) and checks happen when objects move
> + * between the array cache and slab pages, which may result in e.g. not
> + * detecting a use-after-free while the object is in the array cache, and the
> + * stacktraces may be less useful.
> + *
> + * Return: 0 if OK, -EINVAL on caches without SLAB_NO_MERGE or with the array
> + * already created, -ENOMEM when the per-cpu array creation fails.
> + */
> +int kmem_cache_setup_percpu_array(struct kmem_cache *s, unsigned int count)
> +{
> + int cpu;
> +
> + if (WARN_ON_ONCE(!(s->flags & SLAB_NO_MERGE)))
> + return -EINVAL;
> +
> + if (s->cpu_array)
> + return -EINVAL;
> +
> + s->cpu_array = __alloc_percpu(struct_size(s->cpu_array, objects, count),
> + sizeof(void *));
Maybe I missed it, but where do you free s->cpu_array? I see
__kmem_cache_release() freeing s->cpu_slab but s->cpu_array seems to
be left alive...
> +
> + if (!s->cpu_array)
> + return -ENOMEM;
> +
> + for_each_possible_cpu(cpu) {
> + struct slub_percpu_array *pca = per_cpu_ptr(s->cpu_array, cpu);
> +
> + spin_lock_init(&pca->lock);
> + pca->count = count;
> + pca->used = 0;
> + }
> +
> + return 0;
> +}
> +
> #ifdef SLAB_SUPPORTS_SYSFS
> static int count_inuse(struct slab *slab)
> {
> @@ -5944,8 +6381,10 @@ static ssize_t text##_store(struct kmem_cache *s, \
> } \
> SLAB_ATTR(text); \
>
> +STAT_ATTR(ALLOC_PCA, alloc_cpu_cache);
> STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
> STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
> +STAT_ATTR(FREE_PCA, free_cpu_cache);
> STAT_ATTR(FREE_FASTPATH, free_fastpath);
> STAT_ATTR(FREE_SLOWPATH, free_slowpath);
> STAT_ATTR(FREE_FROZEN, free_frozen);
> @@ -5970,6 +6409,8 @@ STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
> STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
> STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
> STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
> +STAT_ATTR(PCA_REFILL, cpu_cache_refill);
> +STAT_ATTR(PCA_FLUSH, cpu_cache_flush);
> #endif /* CONFIG_SLUB_STATS */
>
> #ifdef CONFIG_KFENCE
> @@ -6031,8 +6472,10 @@ static struct attribute *slab_attrs[] = {
> &remote_node_defrag_ratio_attr.attr,
> #endif
> #ifdef CONFIG_SLUB_STATS
> + &alloc_cpu_cache_attr.attr,
> &alloc_fastpath_attr.attr,
> &alloc_slowpath_attr.attr,
> + &free_cpu_cache_attr.attr,
> &free_fastpath_attr.attr,
> &free_slowpath_attr.attr,
> &free_frozen_attr.attr,
> @@ -6057,6 +6500,8 @@ static struct attribute *slab_attrs[] = {
> &cpu_partial_free_attr.attr,
> &cpu_partial_node_attr.attr,
> &cpu_partial_drain_attr.attr,
> + &cpu_cache_refill_attr.attr,
> + &cpu_cache_flush_attr.attr,
> #endif
> #ifdef CONFIG_FAILSLAB
> &failslab_attr.attr,
>
> --
> 2.43.0
>
>
More information about the maple-tree
mailing list