[PATCH 1/2] x86/lib: Optimize memchr()

David Laight David.Laight at ACULAB.COM
Wed Jun 1 01:25:47 PDT 2022


From: Yu-Jen Chang
> Sent: 01 June 2022 06:59
> 
> David Laight <David.Laight at aculab.com> 於 2022年5月30日 週一 下午4:10寫道:
> >
> > From: Yu-Jen Chang
> > > Sent: 28 May 2022 09:13
> > >
> > > The original assembly version of memchr() is implemented with
> > > the byte-wise comparing technique, which does not fully
> > > use 64-bits registers in x86_64 CPU. We use word-wide
> > > comparing so that 8 characters can be compared at the same time
> > > on x86_64 CPU. First we align the input and then use word-wise
> > > comparing to find the first 64-bit word that contain the target.
> > > Secondly, we compare every byte in the word and get the output.
> > >
> > > We create two files to measure the performance. The first file
> > > contains on average 10 characters ahead the target character.
> > > The second file contains at least 1000 characters ahead the
> > > target character. Our implementation of “memchr()” is slightly
> > > better in the first test and nearly 4x faster than the orginal
> > > implementation in the second test.
> > >
> > > Signed-off-by: Yu-Jen Chang <arthurchang09 at gmail.com>
> > > Signed-off-by: Ching-Chun (Jim) Huang <jserv at ccns.ncku.edu.tw>
> > > ---
> > >  arch/x86/include/asm/string_64.h |  3 ++
> > >  arch/x86/lib/Makefile            |  1 +
> > >  arch/x86/lib/string_64.c         | 78 ++++++++++++++++++++++++++++++++
> > >  3 files changed, 82 insertions(+)
> > >  create mode 100644 arch/x86/lib/string_64.c
> > >
> > ...
> > > diff --git a/arch/x86/lib/string_64.c b/arch/x86/lib/string_64.c
> > > new file mode 100644
> > > index 000000000..4e067d5be
> > > --- /dev/null
> > > +++ b/arch/x86/lib/string_64.c
> > > @@ -0,0 +1,78 @@
> > > +// SPDX-License-Identifier: GPL-2.0
> > > +#include <linux/string.h>
> > > +#include <linux/export.h>
> > > +#include <linux/align.h>
> > > +
> > > +/* How many bytes are loaded each iteration of the word copy loop */
> > > +#define LBLOCKSIZE (sizeof(long))
> > > +
> > > +#ifdef __HAVE_ARCH_MEMCHR
> > > +
> > > +void *memchr(const void *cs, int c, size_t length)
> > > +{
> > > +     const unsigned char *src = (const unsigned char *)cs, d = c;
> >
> > You don't need the cast.
> >
> > > +
> > > +     while (!IS_ALIGNED((long)src, sizeof(long))) {
> > > +             if (!length--)
> > > +                     return NULL;
> > > +             if (*src == d)
> > > +                     return (void *)src;
> > > +             src++;
> > > +     }
> >
> > There is no point aligning the address.
> > On tests I've done misaligned reads don't even take an extra
> > clock - even if you get the cpu doing two reads/clock.
> > Even if they did the code isn't memory limited.
> >
> > > +     if (length >= LBLOCKSIZE) {
> > > +             unsigned long mask = d << 8 | d;
> > > +             unsigned int i = 32;
> > > +             long xor, data;
> > > +             const long consta = 0xFEFEFEFEFEFEFEFF,
> > > +                        constb = 0x8080808080808080;
> > > +
> > > +             /*
> > > +              * Create a 8-bytes mask for word-wise comparing.
> > > +              * For example, a mask for 'a' is 0x6161616161616161.
> > > +              */
> > > +
> > > +             mask |= mask << 16;
> > > +             for (i = 32; i < LBLOCKSIZE * 8; i <<= 1)
> > > +                     mask |= mask << i;
> >
> > Given that consta/b only support 64 bit why the loop.
> > Just do mask |= mask << 32.
> > I'd also put all 3 calculations together - not hide one
> > in the initialiser.
> >
> > > +             /*
> > > +              * We perform word-wise comparing with following operation:
> > > +              *      1. Perform xor on the long word @src and @mask
> > > +              *         and put into @xor.
> > > +              *      2. Add @xor with @consta.
> > > +              *      3. ~@xor & @constb.
> > > +              *      4. Perform & with the result of step 2 and 3.
> > > +              *
> > > +              * Step 1 creates a byte which is 0 in the long word if
> > > +              * there is at least one target byte in it.
> > > +              *
> > > +              * Step 2 to Step 4 find if there is a byte with 0 in
> > > +              * the long word.
> > > +              */
> > > +             asm volatile("1:\n\t"
> > > +                          "movq (%0),%1\n\t"
> > > +                          "xorq %6,%1\n\t"
> > > +                          "lea (%1,%4), %2\n\t"
> > > +                          "notq %1\n\t"
> > > +                          "andq %5,%1\n\t"
> > > +                          "testq %1,%2\n\t"
> > > +                          "jne 2f\n\t"
> > > +                          "add $8,%0\n\t"
> > > +                          "sub $8,%3\n\t"
> > > +                          "cmp $7,%3\n\t"
> > > +                          "ja 1b\n\t"
> > > +                          "2:\n\t"
> > > +                          : "=D"(src), "=r"(xor), "=r"(data), "=r"(length)
> >
> > Why constrain src to %rdi?
> 
> At first I try to use some instructions related to %rdi, but I realize
> that I won't use these instructions. It is unnecessary to constrain
> src to %rdi.
> 
> >
> > > +                          : "r"(consta), "r"(constb), "r"(mask), "0"(src),
> > > +                            "1"(xor), "2"(data), "3"(length)
> >
> > Use "+r" in the outputs instead of respecifying the args.
> > I'd also suggest using named arguments - much easier to read.
> >
> > > +                          : "memory", "cc");
> >
> > Doesn't the compiler generate much the same code?
> > You should also be able to code without needing add, sub and cmp
> > at the end of the loop.
> > If you use negative offsets from the end of the buffer
> > the loop can be a single add and jnz.
> >
> >         David
> >
> > > +     }
> > > +
> > > +     while (length--) {
> > > +             if (*src == d)
> > > +                     return (void *)src;
> > > +             src++;
> > > +     }
> > > +     return NULL;
> > > +}
> > > +EXPORT_SYMBOL(memchr);
> > > +#endif
> > > --
> > > 2.25.1
> >
> > -
> > Registered Address Lakeside, Bramley Road, Mount Farm, Milton Keynes, MK1 1PT, UK
> > Registration No: 1397386 (Wales)
> 
> I remove the aligning address part. On my tests the performance are similar.
> Here I rewrite the assembly using named arguments and I reduce one instruction
> in the loop by adding two parameters, which are  'end' and 'dst'.
> 'end' stores the
> address of the end of the string. 'dst' stores the address of the end
> of word-wise
> comparison. As a result, when 'src' is equal to 'dst', the number of remaining
> characters is less than 8. The following while loop will find if the
> target character is
> in these remaining characters.
> 
> On my test the performance is similar with the my original implementation. Only
> a little bit fast when going through a very long string, which contains 128*1024
> characters and the target character is near the end of the string.
> 
> I also explain how consta and constb work clearly in the comments. Hope that it
> helps understanding.
> 
> The following code is what I change.
> 
> void *memchr(const void *cs, int c, size_t length)
> {
>      const unsigned char *src = (const unsigned char *)cs;
>      const unsigned char *end = src + length;
> 
>      if (length >= LBLOCKSIZE) {
>              unsigned long mask = c << 8 | c;

That is wrong if 'c' is outside 0..255.
I suspect it is best to at least allow -128..-1.

>              long xor, data;
>              const long consta = 0xFEFEFEFEFEFEFEFF,
>                         constb = 0x8080808080808080;
>              const unsigned char *dst = (const unsigned char *)src +
>                                                (length & 0xFFFFFFFFFFFFFFF8);
> 
>              /*
>               * Create a 8-bytes mask for word-wise comparing.
>               * For example, a mask for 'a' is 0x6161616161616161.
>               */
> 
>              mask |= mask << 16;
>              mask |= mask << 32;
>              /*
>               * We perform word-wise comparing with following operation:
>               * 1. Perform xor on the long word @src and @mask
>               *    and put into @xor.
>               * 2. Add @xor with @consta.
>               * 3. ~@xor & @constb.
>               * 4. Perform & with the result of step 2 and 3.
>               *
>               * If there is a zero byte in @xor, step 2 turns it into
>               * 0xFF. Then step 3 and 4 turn it into 0x80.
>               *
>               * If there is a none-zero byte in @xor, let k
>               * (0 <= k <= 7) be the lowest 1 in this byte. The lowest
>               * k bits are 0. After step 2, the byte ends in a single
>               * bit of value 0. Step 3 and 4 turns this byte into k
>               * bits of 1, which is 2^k - 1, at first. Then & @constb
>               * makes it into 0.
>               *
>               * Step 2 to Step 4 find if there is a byte with 0 in
>               * the long word.
>               */
>               asm volatile("1:\n\t"
>                             "movq (%[src]),%[xor]\n\t"
>                             "xorq %[mask],%[xor]\n\t"
>                             "lea (%[xor],%[const_a]), %[tmp]\n\t"
>                             "notq %[xor]\n\t"
>                             "andq %[const_b],%[xor]\n\t"
>                             "testq %[xor],%[tmp]\n\t"
>                             "jnz 2f\n\t"
>                             "add $8,%[src]\n\t"
>                             "cmp %[src], %[dst]\n\t"
>                             "ja 1b\n\t"
>                             "2:\n\t"
>                             :
>                             [src] "+r"(src), [xor] "+r"(xor), [tmp] "+r"(data)
>                             : [const_a] "r"(consta), [const_b] "r"(constb),
>                               [mask] "r"(mask), [dst] "r"(dst)
>                             : "memory", "cc");
>         }
> 
>         while (src <= end) {
>              if (*src == d)

I think you mean 'c'.

>                      return (void *)src;
>              src++;
>         }
>         return NULL;
> }
> 
> Thanks,
> Yu-Jen Chang

Gcc compiles this C to the same loop and is easier to read.
Valid on all LE 64bit systems.

void *memchr(const void *p, int c, unsigned long length)
{
    unsigned long mask, val;
    const void *end = p + length;

    c &= 0xff;
    if (p <= end - 8) {
        mask = c | c << 8;
        mask |= mask << 16;
        mask |= mask << 32;

        for (; p <= end - 8; p += 8) {
            val = *(unsigned long *)p ^ mask;
            if ((val + 0xfefefefefefefeffu) & (~val & 0x8080808080808080u))
                break;
        }
    }

    for (; p < end; p++)
        if (*(unsigned char *)p == c)
            return p;

    return NULL;
}

See https://godbolt.org/z/6rqTqfEsx

	David

-
Registered Address Lakeside, Bramley Road, Mount Farm, Milton Keynes, MK1 1PT, UK
Registration No: 1397386 (Wales)


More information about the linux-um mailing list