[PATCH v3 7/8] execmem: add support for cache of large ROX pages
Liam R. Howlett
Liam.Howlett at oracle.com
Thu Sep 19 04:18:10 PDT 2024
* Mike Rapoport <rppt at kernel.org> [240909 02:49]:
> From: "Mike Rapoport (Microsoft)" <rppt at kernel.org>
>
> Using large pages to map text areas reduces iTLB pressure and improves
> performance.
>
> Extend execmem_alloc() with an ability to use huge pages with ROX
> permissions as a cache for smaller allocations.
>
> To populate the cache, a writable large page is allocated from vmalloc with
> VM_ALLOW_HUGE_VMAP, filled with invalid instructions and then remapped as
> ROX.
>
> Portions of that large page are handed out to execmem_alloc() callers
> without any changes to the permissions.
>
> When the memory is freed with execmem_free() it is invalidated again so
> that it won't contain stale instructions.
>
> The cache is enabled when an architecture sets EXECMEM_ROX_CACHE flag in
> definition of an execmem_range.
I am not sure you need to convert to xa entries.
>
> Signed-off-by: Mike Rapoport (Microsoft) <rppt at kernel.org>
> ---
> include/linux/execmem.h | 2 +
> mm/execmem.c | 289 +++++++++++++++++++++++++++++++++++++++-
> 2 files changed, 286 insertions(+), 5 deletions(-)
>
> diff --git a/include/linux/execmem.h b/include/linux/execmem.h
> index dfdf19f8a5e8..7436aa547818 100644
> --- a/include/linux/execmem.h
> +++ b/include/linux/execmem.h
> @@ -77,12 +77,14 @@ struct execmem_range {
>
> /**
> * struct execmem_info - architecture parameters for code allocations
> + * @fill_trapping_insns: set memory to contain instructions that will trap
> * @ranges: array of parameter sets defining architecture specific
> * parameters for executable memory allocations. The ranges that are not
> * explicitly initialized by an architecture use parameters defined for
> * @EXECMEM_DEFAULT.
> */
> struct execmem_info {
> + void (*fill_trapping_insns)(void *ptr, size_t size, bool writable);
> struct execmem_range ranges[EXECMEM_TYPE_MAX];
> };
>
> diff --git a/mm/execmem.c b/mm/execmem.c
> index 0f6691e9ffe6..f547c1f3c93d 100644
> --- a/mm/execmem.c
> +++ b/mm/execmem.c
> @@ -7,28 +7,88 @@
> */
>
> #include <linux/mm.h>
> +#include <linux/mutex.h>
> #include <linux/vmalloc.h>
> #include <linux/execmem.h>
> +#include <linux/maple_tree.h>
> #include <linux/moduleloader.h>
> #include <linux/text-patching.h>
>
> +#include <asm/tlbflush.h>
> +
> +#include "internal.h"
> +
> static struct execmem_info *execmem_info __ro_after_init;
> static struct execmem_info default_execmem_info __ro_after_init;
>
> -static void *__execmem_alloc(struct execmem_range *range, size_t size)
> +#ifdef CONFIG_MMU
> +struct execmem_cache {
> + struct mutex mutex;
> + struct maple_tree busy_areas;
> + struct maple_tree free_areas;
> +};
> +
> +static struct execmem_cache execmem_cache = {
> + .mutex = __MUTEX_INITIALIZER(execmem_cache.mutex),
> + .busy_areas = MTREE_INIT_EXT(busy_areas, MT_FLAGS_LOCK_EXTERN,
> + execmem_cache.mutex),
> + .free_areas = MTREE_INIT_EXT(free_areas, MT_FLAGS_LOCK_EXTERN,
> + execmem_cache.mutex),
> +};
> +
> +static void execmem_cache_clean(struct work_struct *work)
> +{
> + struct maple_tree *free_areas = &execmem_cache.free_areas;
> + struct mutex *mutex = &execmem_cache.mutex;
> + MA_STATE(mas, free_areas, 0, ULONG_MAX);
> + void *area;
> +
> + mutex_lock(mutex);
> + mas_for_each(&mas, area, ULONG_MAX) {
> + size_t size;
> +
> + if (!xa_is_value(area))
> + continue;
> +
> + size = xa_to_value(area);
> +
> + if (IS_ALIGNED(size, PMD_SIZE) &&
> + IS_ALIGNED(mas.index, PMD_SIZE)) {
> + void *ptr = (void *)mas.index;
If you store this pointer then it would be much nicer.
> +
> + mas_erase(&mas);
mas_store_gfp() would probably be better here to store a null.
> + vfree(ptr);
> + }
> + }
> + mutex_unlock(mutex);
> +}
> +
> +static DECLARE_WORK(execmem_cache_clean_work, execmem_cache_clean);
> +
> +static void execmem_fill_trapping_insns(void *ptr, size_t size, bool writable)
> +{
> + if (execmem_info->fill_trapping_insns)
> + execmem_info->fill_trapping_insns(ptr, size, writable);
> + else
> + memset(ptr, 0, size);
> +}
> +
> +static void *execmem_vmalloc(struct execmem_range *range, size_t size,
> + pgprot_t pgprot, unsigned long vm_flags)
> {
> bool kasan = range->flags & EXECMEM_KASAN_SHADOW;
> - unsigned long vm_flags = VM_FLUSH_RESET_PERMS;
> gfp_t gfp_flags = GFP_KERNEL | __GFP_NOWARN;
> + unsigned int align = range->alignment;
> unsigned long start = range->start;
> unsigned long end = range->end;
> - unsigned int align = range->alignment;
> - pgprot_t pgprot = range->pgprot;
> void *p;
>
> if (kasan)
> vm_flags |= VM_DEFER_KMEMLEAK;
>
> + if (vm_flags & VM_ALLOW_HUGE_VMAP)
> + align = PMD_SIZE;
> +
> p = __vmalloc_node_range(size, align, start, end, gfp_flags,
> pgprot, vm_flags, NUMA_NO_NODE,
> __builtin_return_address(0));
> @@ -50,8 +110,225 @@ static void *__execmem_alloc(struct execmem_range *range, size_t size)
> return NULL;
> }
>
> + return p;
> +}
> +
> +static int execmem_cache_add(void *ptr, size_t size)
> +{
> + struct maple_tree *free_areas = &execmem_cache.free_areas;
> + struct mutex *mutex = &execmem_cache.mutex;
> + unsigned long addr = (unsigned long)ptr;
> + MA_STATE(mas, free_areas, addr - 1, addr + 1);
> + unsigned long lower, lower_size = 0;
> + unsigned long upper, upper_size = 0;
> + unsigned long area_size;
> + void *area = NULL;
> + int err;
> +
> + lower = addr;
> + upper = addr + size - 1;
> +
> + mutex_lock(mutex);
> + area = mas_walk(&mas);
> + if (area && xa_is_value(area) && mas.last == addr - 1) {
> + lower = mas.index;
> + lower_size = xa_to_value(area);
> + }
> +
> + area = mas_next(&mas, ULONG_MAX);
> + if (area && xa_is_value(area) && mas.index == addr + size) {
> + upper = mas.last;
> + upper_size = xa_to_value(area);
> + }
> +
> + mas_set_range(&mas, lower, upper);
> + area_size = lower_size + upper_size + size;
> + err = mas_store_gfp(&mas, xa_mk_value(area_size), GFP_KERNEL);
> + mutex_unlock(mutex);
> + if (err)
> + return -ENOMEM;
> +
> + return 0;
> +}
> +
> +static bool within_range(struct execmem_range *range, struct ma_state *mas,
> + size_t size)
> +{
> + unsigned long addr = mas->index;
> +
> + if (addr >= range->start && addr + size < range->end)
> + return true;
> +
> + if (range->fallback_start &&
> + addr >= range->fallback_start && addr + size < range->fallback_end)
> + return true;
> +
> + return false;
> +}
> +
> +static void *__execmem_cache_alloc(struct execmem_range *range, size_t size)
> +{
> + struct maple_tree *free_areas = &execmem_cache.free_areas;
> + struct maple_tree *busy_areas = &execmem_cache.busy_areas;
> + MA_STATE(mas_free, free_areas, 0, ULONG_MAX);
> + MA_STATE(mas_busy, busy_areas, 0, ULONG_MAX);
> + struct mutex *mutex = &execmem_cache.mutex;
> + unsigned long addr, last, area_size = 0;
> + void *area, *ptr = NULL;
> + int err;
> +
> + mutex_lock(mutex);
> + mas_for_each(&mas_free, area, ULONG_MAX) {
> + area_size = xa_to_value(area);
> +
> + if (area_size >= size && within_range(range, &mas_free, size))
> + break;
> + }
> +
> + if (area_size < size)
> + goto out_unlock;
> +
> + addr = mas_free.index;
> + last = mas_free.last;
> +
> + /* insert allocated size to busy_areas at range [addr, addr + size) */
> + mas_set_range(&mas_busy, addr, addr + size - 1);
> + err = mas_store_gfp(&mas_busy, xa_mk_value(size), GFP_KERNEL);
> + if (err)
> + goto out_unlock;
> +
> + mas_erase(&mas_free);
> + if (area_size > size) {
> + /*
> + * re-insert remaining free size to free_areas at range
> + * [addr + size, last]
> + */
> + mas_set_range(&mas_free, addr + size, last);
> + size = area_size - size;
> + err = mas_store_gfp(&mas_free, xa_mk_value(size), GFP_KERNEL);
> + if (err) {
> + mas_erase(&mas_busy);
> + goto out_unlock;
> + }
> + }
It would be more efficient to replace the entry then erase the portion.
Something like
if (area_size > size) {
err = mas_store_gfp(&mas_free, xa_mk_value(size), GFP_KERNEL);
if (err)
...
/* range mismatches stored size here */
}
mas_set_range(&mas_busy, addr, addr + size - 1);
mas_store_gfp(&mas_free, NULL, GFP_KERNEL);
> + ptr = (void *)addr;
> +
> +out_unlock:
> + mutex_unlock(mutex);
> + return ptr;
> +}
> +
> +static int execmem_cache_populate(struct execmem_range *range, size_t size)
> +{
> + unsigned long vm_flags = VM_FLUSH_RESET_PERMS | VM_ALLOW_HUGE_VMAP;
> + unsigned long start, end;
> + struct vm_struct *vm;
> + size_t alloc_size;
> + int err = -ENOMEM;
> + void *p;
> +
> + alloc_size = round_up(size, PMD_SIZE);
> + p = execmem_vmalloc(range, alloc_size, PAGE_KERNEL, vm_flags);
> + if (!p)
> + return err;
> +
> + vm = find_vm_area(p);
> + if (!vm)
> + goto err_free_mem;
> +
> + /* fill memory with instructions that will trap */
> + execmem_fill_trapping_insns(p, alloc_size, /* writable = */ true);
> +
> + start = (unsigned long)p;
> + end = start + alloc_size;
> +
> + vunmap_range(start, end);
> +
> + err = vmap_pages_range_noflush(start, end, range->pgprot, vm->pages,
> + PMD_SHIFT);
> + if (err)
> + goto err_free_mem;
> +
> + err = execmem_cache_add(p, alloc_size);
> + if (err)
> + goto err_free_mem;
> +
> + return 0;
> +
> +err_free_mem:
> + vfree(p);
> + return err;
> +}
> +
> +static void *execmem_cache_alloc(struct execmem_range *range, size_t size)
> +{
> + void *p;
> + int err;
> +
> + p = __execmem_cache_alloc(range, size);
> + if (p)
> + return p;
> +
> + err = execmem_cache_populate(range, size);
> + if (err)
> + return NULL;
> +
> + return __execmem_cache_alloc(range, size);
> +}
> +
> +static bool execmem_cache_free(void *ptr)
> +{
> + struct maple_tree *busy_areas = &execmem_cache.busy_areas;
> + struct mutex *mutex = &execmem_cache.mutex;
> + unsigned long addr = (unsigned long)ptr;
> + MA_STATE(mas, busy_areas, addr, addr);
> + size_t size;
> + void *area;
> +
> + mutex_lock(mutex);
> + area = mas_walk(&mas);
> + if (!area) {
> + mutex_unlock(mutex);
> + return false;
> + }
> + size = xa_to_value(area);
> + mas_erase(&mas);
Again, it is probably better to store null. erase is more of if you are
unsure on where the index range ends, and since the maple state is
already set up to erase, it's best to just store NULL.
> + mutex_unlock(mutex);
> +
> + execmem_fill_trapping_insns(ptr, size, /* writable = */ false);
> +
> + execmem_cache_add(ptr, size);
> +
> + schedule_work(&execmem_cache_clean_work);
> +
> + return true;
> +}
> +
> +static void *__execmem_alloc(struct execmem_range *range, size_t size)
> +{
> + bool use_cache = range->flags & EXECMEM_ROX_CACHE;
> + unsigned long vm_flags = VM_FLUSH_RESET_PERMS;
> + pgprot_t pgprot = range->pgprot;
> + void *p;
> +
> + if (use_cache)
> + p = execmem_cache_alloc(range, size);
> + else
> + p = execmem_vmalloc(range, size, pgprot, vm_flags);
> +
> return kasan_reset_tag(p);
> }
> +#else
> +static void *__execmem_alloc(struct execmem_range *range, size_t size)
> +{
> + return vmalloc(size);
> +}
> +
> +static bool execmem_cache_free(void *ptr)
> +{
> + return false;
> +}
> +#endif
>
> void *execmem_alloc(enum execmem_type type, size_t size)
> {
> @@ -67,7 +344,9 @@ void execmem_free(void *ptr)
> * supported by vmalloc.
> */
> WARN_ON(in_interrupt());
> - vfree(ptr);
> +
> + if (!execmem_cache_free(ptr))
> + vfree(ptr);
> }
>
> void *execmem_update_copy(void *dst, const void *src, size_t size)
> --
> 2.43.0
>
More information about the linux-snps-arc
mailing list