[RFC v2 04/13] rust: sync: atomic: Add generic atomics
Boqun Feng
boqun.feng at gmail.com
Thu Oct 31 23:02:27 PDT 2024
To provide using LKMM atomics for Rust code, a generic `Atomic<T>` is
added, currently `T` needs to be Send + Copy because these are the
straightforward usages and all basic types support this. The trait
`AllowAtomic` should be only ipmlemented inside atomic mod until the
generic atomic framework is mature enough (unless the ipmlementer is a
`#[repr(transparent)]` new type).
`AtomicIpml` types are automatically `AllowAtomic`, and so far only
basic operations load() and store() are introduced.
Signed-off-by: Boqun Feng <boqun.feng at gmail.com>
---
rust/kernel/sync/atomic.rs | 2 +
rust/kernel/sync/atomic/generic.rs | 253 +++++++++++++++++++++++++++++
2 files changed, 255 insertions(+)
create mode 100644 rust/kernel/sync/atomic/generic.rs
diff --git a/rust/kernel/sync/atomic.rs b/rust/kernel/sync/atomic.rs
index be2e8583595f..b791abc59b61 100644
--- a/rust/kernel/sync/atomic.rs
+++ b/rust/kernel/sync/atomic.rs
@@ -16,7 +16,9 @@
//!
//! [`LKMM`]: srctree/tools/memory-mode/
+pub mod generic;
pub mod ops;
pub mod ordering;
+pub use generic::Atomic;
pub use ordering::{Acquire, Full, Relaxed, Release};
diff --git a/rust/kernel/sync/atomic/generic.rs b/rust/kernel/sync/atomic/generic.rs
new file mode 100644
index 000000000000..204da38e2691
--- /dev/null
+++ b/rust/kernel/sync/atomic/generic.rs
@@ -0,0 +1,253 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Generic atomic primitives.
+
+use super::ops::*;
+use super::ordering::*;
+use crate::types::Opaque;
+
+/// A generic atomic variable.
+///
+/// `T` must impl [`AllowAtomic`], that is, an [`AtomicImpl`] has to be chosen.
+///
+/// # Invariants
+///
+/// Doing an atomic operation while holding a reference of [`Self`] won't cause a data race, this
+/// is guaranteed by the safety requirement of [`Self::from_ptr`] and the extra safety requirement
+/// of the usage on pointers returned by [`Self::as_ptr`].
+#[repr(transparent)]
+pub struct Atomic<T: AllowAtomic>(Opaque<T>);
+
+// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
+unsafe impl<T: AllowAtomic> Sync for Atomic<T> {}
+
+/// Atomics that support basic atomic operations.
+///
+/// TODO: Unless the `impl` is a `#[repr(transparet)]` new type of an existing [`AllowAtomic`], the
+/// impl block should be only done in atomic mod. And currently only basic integer types can
+/// implement this trait in atomic mod.
+///
+/// # Safety
+///
+/// [`Self`] must have the same size and alignment as [`Self::Repr`].
+pub unsafe trait AllowAtomic: Sized + Send + Copy {
+ /// The backing atomic implementation type.
+ type Repr: AtomicImpl;
+
+ /// Converts into a [`Self::Repr`].
+ fn into_repr(self) -> Self::Repr;
+
+ /// Converts from a [`Self::Repr`].
+ fn from_repr(repr: Self::Repr) -> Self;
+}
+
+// SAFETY: `T::Repr` is `Self` (i.e. `T`), so they have the same size and alignment.
+unsafe impl<T: AtomicImpl> AllowAtomic for T {
+ type Repr = Self;
+
+ fn into_repr(self) -> Self::Repr {
+ self
+ }
+
+ fn from_repr(repr: Self::Repr) -> Self {
+ repr
+ }
+}
+
+impl<T: AllowAtomic> Atomic<T> {
+ /// Creates a new atomic.
+ pub const fn new(v: T) -> Self {
+ Self(Opaque::new(v))
+ }
+
+ /// Creates a reference to [`Self`] from a pointer.
+ ///
+ /// # Safety
+ ///
+ /// - `ptr` has to be a valid pointer.
+ /// - `ptr` has to be valid for both reads and writes for the whole lifetime `'a`.
+ /// - For the whole lifetime of '`a`, other accesses to the object cannot cause data races
+ /// (defined by [`LKMM`]) against atomic operations on the returned reference.
+ ///
+ /// [`LKMM`]: srctree/tools/memory-model
+ ///
+ /// # Examples
+ ///
+ /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
+ /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
+ /// `WRITE_ONCE()`/`smp_store_release()` in C side:
+ ///
+ /// ```rust
+ /// # use kernel::types::Opaque;
+ /// use kernel::sync::atomic::{Atomic, Relaxed, Release};
+ ///
+ /// // Assume there is a C struct `Foo`.
+ /// mod cbindings {
+ /// #[repr(C)]
+ /// pub(crate) struct foo { pub(crate) a: i32, pub(crate) b: i32 }
+ /// }
+ ///
+ /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2});
+ ///
+ /// // struct foo *foo_ptr = ..;
+ /// let foo_ptr = tmp.get();
+ ///
+ /// // SAFETY: `foo_ptr` is a valid pointer, and `.a` is inbound.
+ /// let foo_a_ptr = unsafe { core::ptr::addr_of_mut!((*foo_ptr).a) };
+ ///
+ /// // a = READ_ONCE(foo_ptr->a);
+ /// //
+ /// // SAFETY: `foo_a_ptr` is a valid pointer for read, and all accesses on it is atomic, so no
+ /// // data race.
+ /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
+ /// # assert_eq!(a, 1);
+ ///
+ /// // smp_store_release(&foo_ptr->a, 2);
+ /// //
+ /// // SAFETY: `foo_a_ptr` is a valid pointer for write, and all accesses on it is atomic, so no
+ /// // data race.
+ /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
+ /// ```
+ ///
+ /// However, this should be only used when communicating with C side or manipulating a C struct.
+ pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
+ where
+ T: Sync,
+ {
+ // CAST: `T` is transparent to `Atomic<T>`.
+ // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
+ // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
+ // guarantees other accesses won't cause data races.
+ unsafe { &*ptr.cast::<Self>() }
+ }
+
+ /// Returns a pointer to the underlying atomic variable.
+ ///
+ /// Extra safety requirement on using the return pointer: the operations done via the pointer
+ /// cannot cause data races defined by [`LKMM`].
+ ///
+ /// [`LKMM`]: srctree/tools/memory-model
+ pub const fn as_ptr(&self) -> *mut T {
+ self.0.get()
+ }
+
+ /// Returns a mutable reference to the underlying atomic variable.
+ ///
+ /// This is safe because the mutable reference of the atomic variable guarantees the exclusive
+ /// access.
+ pub fn get_mut(&mut self) -> &mut T {
+ // SAFETY: `self.as_ptr()` is a valid pointer to `T`, and the object has already been
+ // initialized. `&mut self` guarantees the exclusive access, so it's safe to reborrow
+ // mutably.
+ unsafe { &mut *self.as_ptr() }
+ }
+}
+
+impl<T: AllowAtomic> Atomic<T>
+where
+ T::Repr: AtomicHasBasicOps,
+{
+ /// Loads the value from the atomic variable.
+ ///
+ /// # Examples
+ ///
+ /// Simple usages:
+ ///
+ /// ```rust
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42i32);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// let x = Atomic::new(42i64);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ /// ```
+ ///
+ /// Customized new types in [`Atomic`]:
+ ///
+ /// ```rust
+ /// use kernel::sync::atomic::{generic::AllowAtomic, Atomic, Relaxed};
+ ///
+ /// #[derive(Clone, Copy)]
+ /// #[repr(transparent)]
+ /// struct NewType(u32);
+ ///
+ /// // SAFETY: `NewType` is transparent to `u32`, which has the same size and alignment as
+ /// // `i32`.
+ /// unsafe impl AllowAtomic for NewType {
+ /// type Repr = i32;
+ ///
+ /// fn into_repr(self) -> Self::Repr {
+ /// self.0 as i32
+ /// }
+ ///
+ /// fn from_repr(repr: Self::Repr) -> Self {
+ /// NewType(repr as u32)
+ /// }
+ /// }
+ ///
+ /// let n = Atomic::new(NewType(0));
+ ///
+ /// assert_eq!(0, n.load(Relaxed).0);
+ /// ```
+ #[inline(always)]
+ pub fn load<Ordering: AcquireOrRelaxed>(&self, _: Ordering) -> T {
+ let a = self.as_ptr().cast::<T::Repr>();
+
+ // SAFETY:
+ // - For calling the atomic_read*() function:
+ // - `self.as_ptr()` is a valid pointer, and per the safety requirement of `AllocAtomic`,
+ // a `*mut T` is a valid `*mut T::Repr`. Therefore `a` is a valid pointer,
+ // - per the type invariants, the following atomic operation won't cause data races.
+ // - For extra safety requirement of usage on pointers returned by `self.as_ptr():
+ // - atomic operations are used here.
+ let v = unsafe {
+ if Ordering::IS_RELAXED {
+ T::Repr::atomic_read(a)
+ } else {
+ T::Repr::atomic_read_acquire(a)
+ }
+ };
+
+ T::from_repr(v)
+ }
+
+ /// Stores a value to the atomic variable.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42i32);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// x.store(43, Relaxed);
+ ///
+ /// assert_eq!(43, x.load(Relaxed));
+ /// ```
+ ///
+ #[inline(always)]
+ pub fn store<Ordering: ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
+ let v = T::into_repr(v);
+ let a = self.as_ptr().cast::<T::Repr>();
+
+ // SAFETY:
+ // - For calling the atomic_set*() function:
+ // - `self.as_ptr()` is a valid pointer, and per the safety requirement of `AllocAtomic`,
+ // a `*mut T` is a valid `*mut T::Repr`. Therefore `a` is a valid pointer,
+ // - per the type invariants, the following atomic operation won't cause data races.
+ // - For extra safety requirement of usage on pointers returned by `self.as_ptr():
+ // - atomic operations are used here.
+ unsafe {
+ if Ordering::IS_RELAXED {
+ T::Repr::atomic_set(a, v)
+ } else {
+ T::Repr::atomic_set_release(a, v)
+ }
+ };
+ }
+}
--
2.45.2
More information about the linux-riscv
mailing list