[RFC PATCH 2/5] char: rpmb: provide a user space interface

Arnd Bergmann arnd at linaro.org
Thu Mar 4 21:43:30 GMT 2021


On Thu, Mar 4, 2021 at 8:54 PM Winkler, Tomas <tomas.winkler at intel.com> wrote:
> > Winkler, Tomas <tomas.winkler at intel.com> writes:
> > >> "Winkler, Tomas" <tomas.winkler at intel.com> writes:
> > >>
> > >> >> The user space API is achieved via a number of synchronous IOCTLs.
> > >> >>
> > >> >>   * RPMB_IOC_VER_CMD - simple versioning API
> > >> >>   * RPMB_IOC_CAP_CMD - query of underlying capabilities
> > >> >>   * RPMB_IOC_PKEY_CMD - one time programming of access key
> > >> >>   * RPMB_IOC_COUNTER_CMD - query the write counter
> > >> >>   * RPMB_IOC_WBLOCKS_CMD - write blocks to device
> > >> >>   * RPMB_IOC_RBLOCKS_CMD - read blocks from device
> > >> >>
> > >> >> The keys used for programming and writing blocks to the device are
> > >> >> key_serial_t handles as provided by the keyctl() interface.
> > >> >>
> > >> >> [AJB: here there are two key differences between this and the
> > >> >> original proposal. The first is the dropping of the sequence of
> > >> >> preformated frames in favour of explicit actions. The second is
> > >> >> the introduction of key_serial_t and the keyring API for
> > >> >> referencing the key to use]
> > >> >
> > >> > Putting it gently I'm not sure this is good idea, from the security
> > >> > point of
> > >> view.
> > >> > The key has to be possession of the one that signs the frames as
> > >> > they are,
> > >> it doesn't mean it is linux kernel keyring, it can be other party on
> > >> different system.
> > >> > With this approach you will make the other usecases not applicable.
> > >> > It is less then trivial to move key securely from one system to another.
> > >>
> > >> OK I can understand the desire for such a use-case but it does
> > >> constrain the interface on the kernel with access to the hardware to
> > >> purely providing a pipe to the raw hardware while also having to
> > >> expose the details of the HW to userspace.
> > > This is the use case in Android. The key is in the "trusty" which
> > > different os running in a virtual environment. The file storage
> > > abstraction is implemented there. I'm not sure the point of
> > > constraining the kernel, can you please elaborate on that.
> >
> > Well the kernel is all about abstracting differences not baking in assumptions.
> > However can I ask a bit more about this security model?
> > Is the secure enclave just a separate userspace process or is it in a separate
> > virtual machine? Is it accessible at all by the kernel running the driver?
>
> It's not an assumption this is working for few years already (https://source.android.com/security/trusty#application_services)
> The model is that you have a trusted environment (TEE)  in which can be in any of the form you described above.
> And there is established agreement via the RPMB key that TEE is only entity that can produce content to be stored on RPBM,
> The RPMB hardware also ensure that nobody can catch it in the middle and replay that storage event.
>
> My point is that interface you are suggesting is not covering all possible usages of RPMB, actually usages that are already in place.

It turned out that the application that we (Linaro) need does have the
same requirements and needs to store the key in a TEE, transferring
the message with the MAC into the kernel, rather than keeping the
key stored in user space or kernel.

However, after I had a look at the nvme-rpmb user space implementation,
I found that this is different, and always expects the key to be stored
in a local file:
https://github.com/linux-nvme/nvme-cli/blob/master/nvme-rpmb.c#L878

This both works with the same kernel interface though, as the kernel
would still get the data along with the HMAC, rather than having the key
stored in the kernel, but it does mean that the frame gets passed to
the kernel in a device specific layout, with at least nvme using an incompatible
layout from everything else.

        Arnd



More information about the Linux-nvme mailing list