

Design Document

Unsorted Block Images Enhancement
For Linux 2.6

Primary Author(s): Brijesh Singh

Second Author(s): Rohit Dongre

Revision 1.01

First Updated: 02/3/2009 - 1:32 PM

Last Updated: 08/05/2010 - 11.40 PM

Put forth in the Open Publication License, v1.0.

Note: This document requires prior knowledge of UBI

mailto:brijesh.s.singh@gmail.com
mailto:rohitvdongre@gmail.com
http://www.opencontent.org/openpub/

Abstract

Current UBI design scatters metadata through-out the flash. Although this design suites

the flash property, it enforces a scalability issues. The initialization time of UBI increases

linearly with the size of Flash. This is due to metadata location of current UBI.

This paper presents design change in UBI: a UBI with logging. The design focuses on

reducing initialization time of UBI. The read-write performance of UBIL is similar to UBI.

UBI features like power consistency, bad block management are maintained in UBIL. A

more elaborate design description is outlined in the paper.

Table of Contents

Unsorted Block Images Enhancement .. 1

Abstract ... 2

1. Background ... 4

1.1. UBI Flash layout ... 4

1.2. UBI volume layout .. 5

1.3. Requirement for new design.. 5

1.4. Design Goals ... 5

2. UBI with Log ... 6

2.1. Flash Layout ... 6

2.2. Super Block (SB) ... 6

2.3. Commit (CMT) .. 6

2.4. EBA Log (EL) .. 7

2.5. PEB INFO ... 7

2.6. UBINISING ... 8

2.7. Initialization .. 8

3. On Flash Headers ... 8

4. UBIL Features .. 9

5. Suggestions ... 9

6. Glossary .. 9

7. Bibliography ... 9

1. Background

UBI1 stands for "Unsorted Block Images". UBI is volume management system for raw

flash devices; it manages multiple logical volumes on a single physical flash device. UBI

spreads the I/O load across the flash device to perform wear-levelling. Apart from wear-

levelling UBI jobs include bad block management, bit flip handling, out of place updates

(atomic update) and tolerance to power failures or unclean reboots.

1.1. UBI Flash layout

At any instance, a physical block is associated to maximum one logical block. This

association is called erase block association (EBA). EBA information of each physical

erase block is stored in the same physical erase block. This header is called Vid2 header.

UBI also stores EC3 header in the physical block; EC header is erase count information of

the current block. UBI scans the flash during initialization to create an in ram map of the

flash. This introduces a problem. UBI initialization time increases linearly with flash size;

as flash size increases, initialization time increases.

Volume

layout

EC

VID

Data

EC

VID

Free

EC

Data

EC

VID

Data

EC

VID

Data

EC

VID

Volume

layout

VID

EC

Figure 1 UBI flash layout

EBA association can change due to following reasons

 New block association

 Out of place updates (atomic update)

 Block movement done by Wear-levelling

 Bad block handling

 Bit-flip handling.

1
 http://www.linux-mtd.infradead.org/doc/ubi.html

2
 http://www.linux-mtd.infradead.org/doc/ubi.html#L_ubi_headers

3
 http://www.linux-mtd.infradead.org/doc/ubi.html#L_ubi_headers

1.2. UBI volume layout

Volume layout information is stored in two physical erase blocks. These blocks are

mirror copy of each other. The Vid information of these blocks point to the layout

volume. These blocks are located in Initial scan. UBI then creates user interfaces for

these volumes.

EC

VID

Volume 1

Volume 2

...

Volume N

EC

VID

Volume 1

Volume 2

...

Volume N
Figure 2 Volume layout of UBI

1.3. Requirement for new design

To reduce initialization time, it is ideal to modify or remove scanning process. This is

possible by introduction of commit blocks. All the erase block association information

can be kept in the commit blocks. These blocks can be read for faster initialization.

However, flash property avoids from over-writing block without erasing. It is imperative

that these blocks should be wear-levelled.

1.4. Design Goals

 To minimize the initialization time of UBI

 To maintain current functionalities

 To maintain tolerance to power cuts

 To keep all metadata together in one / multiple blocks

 To make UBI scalable in terms of mount time

 Minimal code change.

2. UBI with Log

2.1. Flash Layout

Figure 3 Flash layout of

UBIL

Volume

layout

Volume 1

EBA Log Logged SB

SB2

Logged Sb

SB1

EBA

Commit 1

EBA Log

Commit 2

Volume

layout

Volume 2 Log

New design consists of super block, commit and Log. Super block is the only metadata

information in UBI which is at fixed physical erase block. Super block locates commit and

Log. Commit is snapshot of valid UBI logs. UBI Log is difference between commit and

present state of UBI.

2.2. Super Block (SB)

Super block contains location information for EBA log and commit block. Two copies of

super block are maintained; first copy is present in first good erase block, second copy is

present in last good erase block. Super block occupies one page of flash. To update

super block, instead of erasing and writing the entire erase block, we log the super

block. It means, any update to super block will be written in same physical erase block

towards the tail. While reading, tail of this log is considered as the valid super block.

The two copy of super block are not mirror of each other. Instead only one of them will

contain valid super block. Super block is written alternatively to one of the two copies

(like ping-pong table). This gives advantage over mirroring as space is not wasted. Super

block may go bad during write; in this case the other copy contains the valid entry.

2.3. Commit (CMT)

Commit contains PEB mapping information. Size of commit is decided at the time of

Ubinize. Depending on partition size, commit may span up to multiple PEBs. Commit

information is crucial. Hence two mirror copies of commit are maintained. Even if one of

the copies is correct, it is possible to recover the commit. For clean detach, UBI uses

commit information during subsequent attach. In case of failure replay of EL is done to

restore latest state.

Super block or anchor block contains two map information of commit; present commit

and future commit. During commit process, future commit blocks in super block are

updated first. Then commit is written to these blocks. On successful completion, super

block is updated replacing present commit by new commit. Hence commit operation is

atomic and tolerant to power failure. If commit is incomplete during detach, all the

failed commit blocks are recovered and given for garbage collection.

EL log becomes invalid after commit. New empty log is initialized during commit.

2.4. EBA Log (EL)

EBA log(EL) contains mapping information of each physical erase block updated after

last commit. Hence EL is difference between last commit and present UBI state.

Each EL entry contains “ec and vid header” of a physical erase block. EL may contain

valid and invalid entries. When EL gets full, only valid entries are written to the commit.

After successful commit, old EL is invalid and fresh log is created. This operation is done

by reserving new PEBs for EL and handing over old PEBs to gc.

Note: It is possible to configure number of blocks allocated to EL at compile time.

2.5. PEB INFO

PEB info header stores information of a physical erase block. PEB info is present in CMT

and optionally in EL.

The PEB INFO structure is described as follows.

struct peb_info {

__u8 status;

struct ubi_vid_hdr v;

__be32 ec;

} __attribute__((packed));

The one byte status of PEB tells which list this peb belongs. The status can also be used

for marking a PEB bad. In future, status can be used to avoid bad block scanning by mtd

drivers. Mtd drivers can form bbt table on demand4. UBIL shares the same Vid header

as that of UBI. It is possible to reduce un-necessary information from Vid header. EC is

erase count of current block.

4
 BBT management in NAND is usually done by scanning oob status information.

2.6. UBINISING

Ubinising is the process of formatting flash with UBI image. This process follows

following steps.

1. Check for sufficient space in flash

2. Find first and last good block for super block

3. Erase the flash

4. Build in ram PEB info table.

5. Write default volume layout

6. Write commit block

1. Write super block
Step 3 is deliberately done; this gives clean in ram PEB INFO map. If all erase blocks are not

erased in this process, gc will erase them on demand. Each erase causes one Log entry to be

written.

2.7. Initialization

 Locate erase blocks containing super block

 Find latest super block by finding tail of super block PEBs
o If the tail is bad (power cut happened while writing super block) the other

super block PEB contains latest super block

 Locate CMT, EL blocks from super block

 If CMT has failed, recover last state

 Else read CMT

 Generate latest snapshot of UBI
o CMT is the read into peb_lookup buffer
o Log is applied to this buffer

 Create EBA information

 Initialize Volumes

3. On Flash Headers

struct ubi_sb {
 struct node_t lh;

__be32 version;
__be32 cmt_status;
__be32 el_resrvd_buds;
__be32 cmt_resrvd_buds;
__be32 cmt_next_buds;
__be32 vtbl_peb [2];
__be32 buds [0];

} __attribute__ ((packed));

Note: vtbl peb is location of volume table layout. This is not used in current code. In future, this
can be used to locate volume table without EBA table being present.

struct el_node {

struct node_t lh;

struct peb_info recs [0];

} __attribute__((packed));

El node is group of peb information. PEB’s are grouped according to their offset.5

4. UBIL Features

 Faster initialization.6

 Power cut tolerance similar to UBI; this is because frequency of writing Log is
same as updating EC or VID header.

 No change in Atomic update.

 Read/ Write speed almost same as UBI

5. Suggestions

 Instead of writing valid log entries to commit, it is possible to write in ram EBA
map in commit. This will give optimum results in terms of initialization time.

 Multithreaded log, with GC support. This may be used to exploit parallel writes in
flash.

6. Glossary

 UBI : Unsorted Block Images

 PEB : Physical Erase Block

 LEB : Logical erase Block

 EC header : Erase Counter Header(UBI 1.0)

 VID header : Volume Identification Header(UBI 1.0)

 EL: EBA Log

 CMT: Commit

 SB: super block or anchor block

7. Bibliography
1. This site has all the information for anything related to Memory technology

devices,
 http://www.linux-mtd.infradead.org/

2. UBI design.
 http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

3. Similar problem: JFFS3 Design
 http://www.linux-mtd.infradead.org/doc/JFFS3design.pdf

4. JFFS2 Documentation.
 http://sources.redhat.com/jffs2/jffs2.pdf

5. Performance Log for NAND:
 http://git.infradead.org/users/brijesh/ubil_results/blob/HEAD:/nand_

mount_time.pdf

5 http://lists.infradead.org/pipermail/linux-mtd/2009-February/024483.html

6 http://git.infradead.org/users/brijesh/ubil_results/blob/HEAD:/nand_mount_time.pdf

http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf
http://www.linux-mtd.infradead.org/doc/JFFS3design.pdf
http://sources.redhat.com/jffs2/jffs2.pdf
http://git.infradead.org/users/brijesh/ubil_results/blob/HEAD:/nand_mount_time.pdf
http://git.infradead.org/users/brijesh/ubil_results/blob/HEAD:/nand_mount_time.pdf
http://lists.infradead.org/pipermail/linux-mtd/2009-February/024483.html
http://git.infradead.org/users/brijesh/ubil_results/blob/HEAD:/nand_mount_time.pdf

