[PATCH 2/5] drivers: mtd: nand: Add qpic_common API file

Kathiravan Thirumoorthy quic_kathirav at quicinc.com
Fri Feb 16 07:29:08 PST 2024



On 2/15/2024 7:18 PM, Md Sadre Alam wrote:
> Add qpic_common.c file which hold all the common
> qpic APIs which will be used by both qpic raw nand
> driver and qpic spi nand driver.
> 
> Co-developed-by: Sricharan Ramabadhran <quic_srichara at quicinc.com>
> Signed-off-by: Sricharan Ramabadhran <quic_srichara at quicinc.com>
> Co-developed-by: Varadarajan Narayanan <quic_varada at quicinc.com>
> Signed-off-by: Varadarajan Narayanan <quic_varada at quicinc.com>
> Signed-off-by: Md Sadre Alam <quic_mdalam at quicinc.com>
> ---
>   drivers/mtd/nand/Makefile            |    1 +
>   drivers/mtd/nand/qpic_common.c       |  786 +++++++++++++++++
>   drivers/mtd/nand/raw/qcom_nandc.c    | 1226 +-------------------------
>   include/linux/mtd/nand-qpic-common.h |  488 ++++++++++
>   4 files changed, 1291 insertions(+), 1210 deletions(-)
>   create mode 100644 drivers/mtd/nand/qpic_common.c
>   create mode 100644 include/linux/mtd/nand-qpic-common.h
> 
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 19e1291ac4d5..131707a41293 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
>   nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
>   nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
>   nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
> +obj-y += qpic_common.o
> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
> new file mode 100644
> index 000000000000..4d74ba888028
> --- /dev/null
> +++ b/drivers/mtd/nand/qpic_common.c
> @@ -0,0 +1,786 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * QPIC Controller common API file.
> + * Copyright (C) 2023  Qualcomm Inc.


Copyright should be repharsed?


> + * Authors:	Md sadre Alam           <quic_mdalam at quicinc.com>
> + *		Sricharan R             <quic_srichara at quicinc.com>
> + *		Varadarajan Narayanan	<quic_varada at quicinc.com>
> + *
> + */
> +
> +#include <linux/mtd/nand-qpic-common.h>
> +
> +struct qcom_nand_controller *
> +get_qcom_nand_controller(struct nand_chip *chip)
> +{
> +	return container_of(chip->controller, struct qcom_nand_controller,
> +			    controller);
> +}
> +EXPORT_SYMBOL(get_qcom_nand_controller);
> +
> +/*
> + * Helper to prepare DMA descriptors for configuring registers
> + * before reading a NAND page.
> + */
> +void config_nand_page_read(struct nand_chip *chip)
> +{
> +	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> +
> +	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> +	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> +	if (!nandc->props->qpic_v2)
> +		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> +	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> +	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> +		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> +}
> +EXPORT_SYMBOL(config_nand_page_read);
> +
> +/* Frees the BAM transaction memory */
> +void free_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> +	struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> +	devm_kfree(nandc->dev, bam_txn);
> +}
> +EXPORT_SYMBOL(free_bam_transaction);
> +
> +/* Callback for DMA descriptor completion */
> +void qpic_bam_dma_done(void *data)
> +{
> +	struct bam_transaction *bam_txn = data;
> +
> +	/*
> +	 * In case of data transfer with NAND, 2 callbacks will be generated.
> +	 * One for command channel and another one for data channel.
> +	 * If current transaction has data descriptors
> +	 * (i.e. wait_second_completion is true), then set this to false
> +	 * and wait for second DMA descriptor completion.
> +	 */
> +	if (bam_txn->wait_second_completion)
> +		bam_txn->wait_second_completion = false;
> +	else
> +		complete(&bam_txn->txn_done);
> +}
> +EXPORT_SYMBOL(qpic_bam_dma_done);
> +
> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
> +			    bool is_cpu)
> +{
> +	if (!nandc->props->is_bam)
> +		return;
> +
> +	if (is_cpu)
> +		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
> +					MAX_REG_RD *
> +					sizeof(*nandc->reg_read_buf),
> +					DMA_FROM_DEVICE);
> +	else
> +		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
> +					   MAX_REG_RD *
> +					   sizeof(*nandc->reg_read_buf),
> +					   DMA_FROM_DEVICE);
> +}
> +EXPORT_SYMBOL(nandc_read_buffer_sync);
> +
> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
> +{
> +	switch (offset) {
> +	case NAND_FLASH_CMD:
> +		return &regs->cmd;
> +	case NAND_ADDR0:
> +		return &regs->addr0;
> +	case NAND_ADDR1:
> +		return &regs->addr1;
> +	case NAND_FLASH_CHIP_SELECT:
> +		return &regs->chip_sel;
> +	case NAND_EXEC_CMD:
> +		return &regs->exec;
> +	case NAND_FLASH_STATUS:
> +		return &regs->clrflashstatus;
> +	case NAND_DEV0_CFG0:
> +		return &regs->cfg0;
> +	case NAND_DEV0_CFG1:
> +		return &regs->cfg1;
> +	case NAND_DEV0_ECC_CFG:
> +		return &regs->ecc_bch_cfg;
> +	case NAND_READ_STATUS:
> +		return &regs->clrreadstatus;
> +	case NAND_DEV_CMD1:
> +		return &regs->cmd1;
> +	case NAND_DEV_CMD1_RESTORE:
> +		return &regs->orig_cmd1;
> +	case NAND_DEV_CMD_VLD:
> +		return &regs->vld;
> +	case NAND_DEV_CMD_VLD_RESTORE:
> +		return &regs->orig_vld;
> +	case NAND_EBI2_ECC_BUF_CFG:
> +		return &regs->ecc_buf_cfg;
> +	case NAND_READ_LOCATION_0:
> +		return &regs->read_location0;
> +	case NAND_READ_LOCATION_1:
> +		return &regs->read_location1;
> +	case NAND_READ_LOCATION_2:
> +		return &regs->read_location2;
> +	case NAND_READ_LOCATION_3:
> +		return &regs->read_location3;
> +	case NAND_READ_LOCATION_LAST_CW_0:
> +		return &regs->read_location_last0;
> +	case NAND_READ_LOCATION_LAST_CW_1:
> +		return &regs->read_location_last1;
> +	case NAND_READ_LOCATION_LAST_CW_2:
> +		return &regs->read_location_last2;
> +	case NAND_READ_LOCATION_LAST_CW_3:
> +		return &regs->read_location_last3;
> +	default:
> +		return NULL;
> +	}
> +}
> +EXPORT_SYMBOL(offset_to_nandc_reg);
> +
> +/* reset the register read buffer for next NAND operation */
> +void clear_read_regs(struct qcom_nand_controller *nandc)
> +{
> +	nandc->reg_read_pos = 0;
> +	nandc_read_buffer_sync(nandc, false);
> +}
> +EXPORT_SYMBOL(clear_read_regs);
> +
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> +		      int reg_off, const void *vaddr, int size,
> +			     bool flow_control)
> +{
> +	struct desc_info *desc;
> +	struct dma_async_tx_descriptor *dma_desc;
> +	struct scatterlist *sgl;
> +	struct dma_slave_config slave_conf;
> +	struct qcom_adm_peripheral_config periph_conf = {};
> +	enum dma_transfer_direction dir_eng;
> +	int ret;
> +
> +	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> +	if (!desc)
> +		return -ENOMEM;
> +
> +	sgl = &desc->adm_sgl;
> +
> +	sg_init_one(sgl, vaddr, size);
> +
> +	if (read) {
> +		dir_eng = DMA_DEV_TO_MEM;
> +		desc->dir = DMA_FROM_DEVICE;
> +	} else {
> +		dir_eng = DMA_MEM_TO_DEV;
> +		desc->dir = DMA_TO_DEVICE;
> +	}
> +
> +	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> +	if (ret == 0) {
> +		ret = -ENOMEM;
> +		goto err;
> +	}
> +
> +	memset(&slave_conf, 0x00, sizeof(slave_conf));
> +
> +	slave_conf.device_fc = flow_control;
> +	if (read) {
> +		slave_conf.src_maxburst = 16;
> +		slave_conf.src_addr = nandc->base_dma + reg_off;
> +		if (nandc->data_crci) {
> +			periph_conf.crci = nandc->data_crci;
> +			slave_conf.peripheral_config = &periph_conf;
> +			slave_conf.peripheral_size = sizeof(periph_conf);
> +		}
> +	} else {
> +		slave_conf.dst_maxburst = 16;
> +		slave_conf.dst_addr = nandc->base_dma + reg_off;
> +		if (nandc->cmd_crci) {
> +			periph_conf.crci = nandc->cmd_crci;
> +			slave_conf.peripheral_config = &periph_conf;
> +			slave_conf.peripheral_size = sizeof(periph_conf);
> +		}
> +	}
> +
> +	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
> +	if (ret) {
> +		dev_err(nandc->dev, "failed to configure dma channel\n");
> +		goto err;
> +	}
> +
> +	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
> +	if (!dma_desc) {
> +		dev_err(nandc->dev, "failed to prepare desc\n");
> +		ret = -EINVAL;
> +		goto err;
> +	}
> +
> +	desc->dma_desc = dma_desc;
> +
> +	list_add_tail(&desc->node, &nandc->desc_list);
> +
> +	return 0;
> +err:
> +	kfree(desc);
> +
> +	return ret;
> +}
> +EXPORT_SYMBOL(prep_adm_dma_desc);
> +
> +/* helpers to submit/free our list of dma descriptors */
> +int submit_descs(struct qcom_nand_controller *nandc)
> +{
> +	struct desc_info *desc, *n;
> +	dma_cookie_t cookie = 0;
> +	struct bam_transaction *bam_txn = nandc->bam_txn;
> +	int ret = 0;
> +
> +	if (nandc->props->is_bam) {
> +		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
> +			ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
> +			if (ret)
> +				goto err_unmap_free_desc;
> +		}
> +
> +		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
> +			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> +						     DMA_PREP_INTERRUPT);
> +			if (ret)
> +				goto err_unmap_free_desc;
> +		}
> +
> +		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
> +			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> +						     DMA_PREP_CMD);
> +			if (ret)
> +				goto err_unmap_free_desc;
> +		}
> +	}
> +
> +	list_for_each_entry(desc, &nandc->desc_list, node)
> +		cookie = dmaengine_submit(desc->dma_desc);
> +
> +	if (nandc->props->is_bam) {
> +		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
> +		bam_txn->last_cmd_desc->callback_param = bam_txn;
> +		if (bam_txn->last_data_desc) {
> +			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
> +			bam_txn->last_data_desc->callback_param = bam_txn;
> +			bam_txn->wait_second_completion = true;
> +		}
> +
> +		dma_async_issue_pending(nandc->tx_chan);
> +		dma_async_issue_pending(nandc->rx_chan);
> +		dma_async_issue_pending(nandc->cmd_chan);
> +
> +		if (!wait_for_completion_timeout(&bam_txn->txn_done,
> +						 QPIC_NAND_COMPLETION_TIMEOUT))
> +			ret = -ETIMEDOUT;
> +	} else {
> +		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
> +			ret = -ETIMEDOUT;
> +	}
> +
> +err_unmap_free_desc:
> +	/*
> +	 * Unmap the dma sg_list and free the desc allocated by both
> +	 * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
> +	 */
> +	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
> +		list_del(&desc->node);
> +
> +		if (nandc->props->is_bam)
> +			dma_unmap_sg(nandc->dev, desc->bam_sgl,
> +				     desc->sgl_cnt, desc->dir);
> +		else
> +			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
> +				     desc->dir);
> +
> +		kfree(desc);
> +	}
> +
> +	return ret;
> +}
> +EXPORT_SYMBOL(submit_descs);
> +
> +/*
> + * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
> + * for BAM. This descriptor will be added in the NAND DMA descriptor queue
> + * which will be submitted to DMA engine.
> + */
> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> +			   struct dma_chan *chan,
> +				  unsigned long flags)
> +{
> +	struct desc_info *desc;
> +	struct scatterlist *sgl;
> +	unsigned int sgl_cnt;
> +	int ret;
> +	struct bam_transaction *bam_txn = nandc->bam_txn;
> +	enum dma_transfer_direction dir_eng;
> +	struct dma_async_tx_descriptor *dma_desc;
> +
> +	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> +	if (!desc)
> +		return -ENOMEM;
> +
> +	if (chan == nandc->cmd_chan) {
> +		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
> +		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
> +		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
> +		dir_eng = DMA_MEM_TO_DEV;
> +		desc->dir = DMA_TO_DEVICE;
> +	} else if (chan == nandc->tx_chan) {
> +		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
> +		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
> +		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
> +		dir_eng = DMA_MEM_TO_DEV;
> +		desc->dir = DMA_TO_DEVICE;
> +	} else {
> +		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
> +		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
> +		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
> +		dir_eng = DMA_DEV_TO_MEM;
> +		desc->dir = DMA_FROM_DEVICE;
> +	}
> +
> +	sg_mark_end(sgl + sgl_cnt - 1);
> +	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> +	if (ret == 0) {
> +		dev_err(nandc->dev, "failure in mapping desc\n");
> +		kfree(desc);
> +		return -ENOMEM;
> +	}
> +
> +	desc->sgl_cnt = sgl_cnt;
> +	desc->bam_sgl = sgl;
> +
> +	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
> +					   flags);
> +
> +	if (!dma_desc) {
> +		dev_err(nandc->dev, "failure in prep desc\n");
> +		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> +		kfree(desc);
> +		return -EINVAL;
> +	}
> +
> +	desc->dma_desc = dma_desc;
> +
> +	/* update last data/command descriptor */
> +	if (chan == nandc->cmd_chan)
> +		bam_txn->last_cmd_desc = dma_desc;
> +	else
> +		bam_txn->last_data_desc = dma_desc;
> +
> +	list_add_tail(&desc->node, &nandc->desc_list);
> +
> +	return 0;
> +}
> +EXPORT_SYMBOL(prepare_bam_async_desc);
> +
> +/*
> + * Prepares the command descriptor for BAM DMA which will be used for NAND
> + * register reads and writes. The command descriptor requires the command
> + * to be formed in command element type so this function uses the command
> + * element from bam transaction ce array and fills the same with required
> + * data. A single SGL can contain multiple command elements so
> + * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
> + * after the current command element.
> + */
> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> +			  int reg_off, const void *vaddr,
> +				 int size, unsigned int flags)
> +{
> +	int bam_ce_size;
> +	int i, ret;
> +	struct bam_cmd_element *bam_ce_buffer;
> +	struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> +	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
> +
> +	/* fill the command desc */
> +	for (i = 0; i < size; i++) {
> +		if (read)
> +			bam_prep_ce(&bam_ce_buffer[i],
> +				    nandc_reg_phys(nandc, reg_off + 4 * i),
> +				    BAM_READ_COMMAND,
> +				    reg_buf_dma_addr(nandc,
> +						     (__le32 *)vaddr + i));
> +		else
> +			bam_prep_ce_le32(&bam_ce_buffer[i],
> +					 nandc_reg_phys(nandc, reg_off + 4 * i),
> +					 BAM_WRITE_COMMAND,
> +					 *((__le32 *)vaddr + i));
> +	}
> +
> +	bam_txn->bam_ce_pos += size;
> +
> +	/* use the separate sgl after this command */
> +	if (flags & NAND_BAM_NEXT_SGL) {
> +		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
> +		bam_ce_size = (bam_txn->bam_ce_pos -
> +				bam_txn->bam_ce_start) *
> +				sizeof(struct bam_cmd_element);
> +		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
> +			   bam_ce_buffer, bam_ce_size);
> +		bam_txn->cmd_sgl_pos++;
> +		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
> +
> +		if (flags & NAND_BAM_NWD) {
> +			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> +						     DMA_PREP_FENCE |
> +						     DMA_PREP_CMD);
> +			if (ret)
> +				return ret;
> +		}
> +	}
> +
> +	return 0;
> +}
> +EXPORT_SYMBOL(prep_bam_dma_desc_cmd);
> +
> +/*
> + * Prepares the data descriptor for BAM DMA which will be used for NAND
> + * data reads and writes.
> + */
> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> +			   const void *vaddr,
> +				  int size, unsigned int flags)
> +{
> +	int ret;
> +	struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> +	if (read) {
> +		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
> +			   vaddr, size);
> +		bam_txn->rx_sgl_pos++;
> +	} else {
> +		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
> +			   vaddr, size);
> +		bam_txn->tx_sgl_pos++;
> +
> +		/*
> +		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
> +		 * is not set, form the DMA descriptor
> +		 */
> +		if (!(flags & NAND_BAM_NO_EOT)) {
> +			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> +						     DMA_PREP_INTERRUPT);
> +			if (ret)
> +				return ret;
> +		}
> +	}
> +
> +	return 0;
> +}
> +EXPORT_SYMBOL(prep_bam_dma_desc_data);
> +
> +/*
> + * read_reg_dma:	prepares a descriptor to read a given number of
> + *			contiguous registers to the reg_read_buf pointer
> + *
> + * @first:		offset of the first register in the contiguous block
> + * @num_regs:		number of registers to read
> + * @flags:		flags to control DMA descriptor preparation
> + */
> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> +		 int num_regs, unsigned int flags)
> +{
> +	bool flow_control = false;
> +	void *vaddr;
> +
> +	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
> +	nandc->reg_read_pos += num_regs;
> +
> +	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
> +		first = dev_cmd_reg_addr(nandc, first);
> +
> +	if (nandc->props->is_bam)
> +		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
> +					     num_regs, flags);
> +
> +	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
> +		flow_control = true;
> +
> +	return prep_adm_dma_desc(nandc, true, first, vaddr,
> +				 num_regs * sizeof(u32), flow_control);
> +}
> +EXPORT_SYMBOL(read_reg_dma);
> +
> +/*
> + * write_reg_dma:	prepares a descriptor to write a given number of
> + *			contiguous registers
> + *
> + * @first:		offset of the first register in the contiguous block
> + * @num_regs:		number of registers to write
> + * @flags:		flags to control DMA descriptor preparation
> + */
> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> +		  int num_regs, unsigned int flags)
> +{
> +	bool flow_control = false;
> +	struct nandc_regs *regs = nandc->regs;
> +	void *vaddr;
> +
> +	vaddr = offset_to_nandc_reg(regs, first);
> +
> +	if (first == NAND_ERASED_CW_DETECT_CFG) {
> +		if (flags & NAND_ERASED_CW_SET)
> +			vaddr = &regs->erased_cw_detect_cfg_set;
> +		else
> +			vaddr = &regs->erased_cw_detect_cfg_clr;
> +	}
> +
> +	if (first == NAND_EXEC_CMD)
> +		flags |= NAND_BAM_NWD;
> +
> +	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
> +		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
> +
> +	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
> +		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
> +
> +	if (nandc->props->is_bam)
> +		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
> +					     num_regs, flags);
> +
> +	if (first == NAND_FLASH_CMD)
> +		flow_control = true;
> +
> +	return prep_adm_dma_desc(nandc, false, first, vaddr,
> +				 num_regs * sizeof(u32), flow_control);
> +}
> +EXPORT_SYMBOL(write_reg_dma);
> +
> +/*
> + * read_data_dma:	prepares a DMA descriptor to transfer data from the
> + *			controller's internal buffer to the buffer 'vaddr'
> + *
> + * @reg_off:		offset within the controller's data buffer
> + * @vaddr:		virtual address of the buffer we want to write to
> + * @size:		DMA transaction size in bytes
> + * @flags:		flags to control DMA descriptor preparation
> + */
> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> +		  const u8 *vaddr, int size, unsigned int flags)
> +{
> +	if (nandc->props->is_bam)
> +		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
> +
> +	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
> +}
> +EXPORT_SYMBOL(read_data_dma);
> +
> +/*
> + * write_data_dma:	prepares a DMA descriptor to transfer data from
> + *			'vaddr' to the controller's internal buffer
> + *
> + * @reg_off:		offset within the controller's data buffer
> + * @vaddr:		virtual address of the buffer we want to read from
> + * @size:		DMA transaction size in bytes
> + * @flags:		flags to control DMA descriptor preparation
> + */
> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> +		   const u8 *vaddr, int size, unsigned int flags)
> +{
> +	if (nandc->props->is_bam)
> +		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
> +
> +	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
> +}
> +EXPORT_SYMBOL(write_data_dma);
> +
> +/* Allocates and Initializes the BAM transaction */
> +struct bam_transaction *
> +alloc_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> +	struct bam_transaction *bam_txn;
> +	size_t bam_txn_size;
> +	unsigned int num_cw = nandc->max_cwperpage;
> +	void *bam_txn_buf;
> +
> +	bam_txn_size =
> +		sizeof(*bam_txn) + num_cw *
> +		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
> +		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
> +		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
> +
> +	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
> +	if (!bam_txn_buf)
> +		return NULL;
> +
> +	bam_txn = bam_txn_buf;
> +	bam_txn_buf += sizeof(*bam_txn);
> +
> +	bam_txn->bam_ce = bam_txn_buf;
> +	bam_txn_buf +=
> +		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
> +
> +	bam_txn->cmd_sgl = bam_txn_buf;
> +	bam_txn_buf +=
> +		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
> +
> +	bam_txn->data_sgl = bam_txn_buf;
> +
> +	init_completion(&bam_txn->txn_done);
> +
> +	return bam_txn;
> +}
> +EXPORT_SYMBOL(alloc_bam_transaction);
> +
> +/* Clears the BAM transaction indexes */
> +void clear_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> +	struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> +	if (!nandc->props->is_bam)
> +		return;
> +
> +	bam_txn->bam_ce_pos = 0;
> +	bam_txn->bam_ce_start = 0;
> +	bam_txn->cmd_sgl_pos = 0;
> +	bam_txn->cmd_sgl_start = 0;
> +	bam_txn->tx_sgl_pos = 0;
> +	bam_txn->tx_sgl_start = 0;
> +	bam_txn->rx_sgl_pos = 0;
> +	bam_txn->rx_sgl_start = 0;
> +	bam_txn->last_data_desc = NULL;
> +	bam_txn->wait_second_completion = false;
> +
> +	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
> +		      QPIC_PER_CW_CMD_SGL);
> +	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
> +		      QPIC_PER_CW_DATA_SGL);
> +
> +	reinit_completion(&bam_txn->txn_done);
> +}
> +EXPORT_SYMBOL(clear_bam_transaction);
> +
> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
> +{
> +	if (nandc->props->is_bam) {
> +		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
> +			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
> +					 MAX_REG_RD *
> +					 sizeof(*nandc->reg_read_buf),
> +					 DMA_FROM_DEVICE);
> +
> +		if (nandc->tx_chan)
> +			dma_release_channel(nandc->tx_chan);
> +
> +		if (nandc->rx_chan)
> +			dma_release_channel(nandc->rx_chan);
> +
> +		if (nandc->cmd_chan)
> +			dma_release_channel(nandc->cmd_chan);
> +	} else {
> +		if (nandc->chan)
> +			dma_release_channel(nandc->chan);
> +	}
> +}
> +EXPORT_SYMBOL(qcom_nandc_unalloc);
> +
> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
> +{
> +	int ret;
> +
> +	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
> +	if (ret) {
> +		dev_err(nandc->dev, "failed to set DMA mask\n");
> +		return ret;
> +	}
> +
> +	/*
> +	 * we use the internal buffer for reading ONFI params, reading small
> +	 * data like ID and status, and preforming read-copy-write operations
> +	 * when writing to a codeword partially. 532 is the maximum possible
> +	 * size of a codeword for our nand controller
> +	 */
> +	nandc->buf_size = 532;
> +
> +	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
> +	if (!nandc->data_buffer)
> +		return -ENOMEM;
> +
> +	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
> +	if (!nandc->regs)
> +		return -ENOMEM;
> +
> +	nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
> +					   sizeof(*nandc->reg_read_buf),
> +					   GFP_KERNEL);
> +	if (!nandc->reg_read_buf)
> +		return -ENOMEM;
> +
> +	if (nandc->props->is_bam) {
> +		nandc->reg_read_dma =
> +			dma_map_single(nandc->dev, nandc->reg_read_buf,
> +				       MAX_REG_RD *
> +				       sizeof(*nandc->reg_read_buf),
> +				       DMA_FROM_DEVICE);
> +		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
> +			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
> +			return -EIO;
> +		}
> +
> +		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
> +		if (IS_ERR(nandc->tx_chan)) {
> +			ret = PTR_ERR(nandc->tx_chan);
> +			nandc->tx_chan = NULL;
> +			dev_err_probe(nandc->dev, ret,
> +				      "tx DMA channel request failed\n");
> +			goto unalloc;
> +		}
> +
> +		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
> +		if (IS_ERR(nandc->rx_chan)) {
> +			ret = PTR_ERR(nandc->rx_chan);
> +			nandc->rx_chan = NULL;
> +			dev_err_probe(nandc->dev, ret,
> +				      "rx DMA channel request failed\n");
> +			goto unalloc;
> +		}
> +
> +		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
> +		if (IS_ERR(nandc->cmd_chan)) {
> +			ret = PTR_ERR(nandc->cmd_chan);
> +			nandc->cmd_chan = NULL;
> +			dev_err_probe(nandc->dev, ret,
> +				      "cmd DMA channel request failed\n");
> +			goto unalloc;
> +		}
> +
> +		/*
> +		 * Initially allocate BAM transaction to read ONFI param page.
> +		 * After detecting all the devices, this BAM transaction will
> +		 * be freed and the next BAM transaction will be allocated with
> +		 * maximum codeword size
> +		 */
> +		nandc->max_cwperpage = 1;
> +		nandc->bam_txn = alloc_bam_transaction(nandc);
> +		if (!nandc->bam_txn) {
> +			dev_err(nandc->dev,
> +				"failed to allocate bam transaction\n");
> +			ret = -ENOMEM;
> +			goto unalloc;
> +		}
> +	} else {
> +		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
> +		if (IS_ERR(nandc->chan)) {
> +			ret = PTR_ERR(nandc->chan);
> +			nandc->chan = NULL;
> +			dev_err_probe(nandc->dev, ret,
> +				      "rxtx DMA channel request failed\n");
> +			return ret;
> +		}
> +	}
> +
> +	INIT_LIST_HEAD(&nandc->desc_list);
> +	INIT_LIST_HEAD(&nandc->host_list);
> +
> +	return 0;
> +unalloc:
> +	qcom_nandc_unalloc(nandc);
> +	return ret;
> +}
> +EXPORT_SYMBOL(qcom_nandc_alloc);
> diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
> index b079605c84d3..75c6ca698c85 100644
> --- a/drivers/mtd/nand/raw/qcom_nandc.c
> +++ b/drivers/mtd/nand/raw/qcom_nandc.c
> @@ -2,186 +2,7 @@
>   /*
>    * Copyright (c) 2016, The Linux Foundation. All rights reserved.
>    */
> -#include <linux/bitops.h>
> -#include <linux/clk.h>
> -#include <linux/delay.h>
> -#include <linux/dmaengine.h>
> -#include <linux/dma-mapping.h>
> -#include <linux/dma/qcom_adm.h>
> -#include <linux/dma/qcom_bam_dma.h>
> -#include <linux/module.h>
> -#include <linux/mtd/partitions.h>
> -#include <linux/mtd/rawnand.h>
> -#include <linux/of.h>
> -#include <linux/platform_device.h>
> -#include <linux/slab.h>
> -
> -/* NANDc reg offsets */
> -#define	NAND_FLASH_CMD			0x00
> -#define	NAND_ADDR0			0x04
> -#define	NAND_ADDR1			0x08
> -#define	NAND_FLASH_CHIP_SELECT		0x0c
> -#define	NAND_EXEC_CMD			0x10
> -#define	NAND_FLASH_STATUS		0x14
> -#define	NAND_BUFFER_STATUS		0x18
> -#define	NAND_DEV0_CFG0			0x20
> -#define	NAND_DEV0_CFG1			0x24
> -#define	NAND_DEV0_ECC_CFG		0x28
> -#define	NAND_AUTO_STATUS_EN		0x2c
> -#define	NAND_DEV1_CFG0			0x30
> -#define	NAND_DEV1_CFG1			0x34
> -#define	NAND_READ_ID			0x40
> -#define	NAND_READ_STATUS		0x44
> -#define	NAND_DEV_CMD0			0xa0
> -#define	NAND_DEV_CMD1			0xa4
> -#define	NAND_DEV_CMD2			0xa8
> -#define	NAND_DEV_CMD_VLD		0xac
> -#define	SFLASHC_BURST_CFG		0xe0
> -#define	NAND_ERASED_CW_DETECT_CFG	0xe8
> -#define	NAND_ERASED_CW_DETECT_STATUS	0xec
> -#define	NAND_EBI2_ECC_BUF_CFG		0xf0
> -#define	FLASH_BUF_ACC			0x100
> -
> -#define	NAND_CTRL			0xf00
> -#define	NAND_VERSION			0xf08
> -#define	NAND_READ_LOCATION_0		0xf20
> -#define	NAND_READ_LOCATION_1		0xf24
> -#define	NAND_READ_LOCATION_2		0xf28
> -#define	NAND_READ_LOCATION_3		0xf2c
> -#define	NAND_READ_LOCATION_LAST_CW_0	0xf40
> -#define	NAND_READ_LOCATION_LAST_CW_1	0xf44
> -#define	NAND_READ_LOCATION_LAST_CW_2	0xf48
> -#define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
> -
> -/* dummy register offsets, used by write_reg_dma */
> -#define	NAND_DEV_CMD1_RESTORE		0xdead
> -#define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
> -
> -/* NAND_FLASH_CMD bits */
> -#define	PAGE_ACC			BIT(4)
> -#define	LAST_PAGE			BIT(5)
> -
> -/* NAND_FLASH_CHIP_SELECT bits */
> -#define	NAND_DEV_SEL			0
> -#define	DM_EN				BIT(2)
> -
> -/* NAND_FLASH_STATUS bits */
> -#define	FS_OP_ERR			BIT(4)
> -#define	FS_READY_BSY_N			BIT(5)
> -#define	FS_MPU_ERR			BIT(8)
> -#define	FS_DEVICE_STS_ERR		BIT(16)
> -#define	FS_DEVICE_WP			BIT(23)
> -
> -/* NAND_BUFFER_STATUS bits */
> -#define	BS_UNCORRECTABLE_BIT		BIT(8)
> -#define	BS_CORRECTABLE_ERR_MSK		0x1f
> -
> -/* NAND_DEVn_CFG0 bits */
> -#define	DISABLE_STATUS_AFTER_WRITE	4
> -#define	CW_PER_PAGE			6
> -#define	UD_SIZE_BYTES			9
> -#define	UD_SIZE_BYTES_MASK		GENMASK(18, 9)
> -#define	ECC_PARITY_SIZE_BYTES_RS	19
> -#define	SPARE_SIZE_BYTES		23
> -#define	SPARE_SIZE_BYTES_MASK		GENMASK(26, 23)
> -#define	NUM_ADDR_CYCLES			27
> -#define	STATUS_BFR_READ			30
> -#define	SET_RD_MODE_AFTER_STATUS	31
> -
> -/* NAND_DEVn_CFG0 bits */
> -#define	DEV0_CFG1_ECC_DISABLE		0
> -#define	WIDE_FLASH			1
> -#define	NAND_RECOVERY_CYCLES		2
> -#define	CS_ACTIVE_BSY			5
> -#define	BAD_BLOCK_BYTE_NUM		6
> -#define	BAD_BLOCK_IN_SPARE_AREA		16
> -#define	WR_RD_BSY_GAP			17
> -#define	ENABLE_BCH_ECC			27
> -
> -/* NAND_DEV0_ECC_CFG bits */
> -#define	ECC_CFG_ECC_DISABLE		0
> -#define	ECC_SW_RESET			1
> -#define	ECC_MODE			4
> -#define	ECC_PARITY_SIZE_BYTES_BCH	8
> -#define	ECC_NUM_DATA_BYTES		16
> -#define	ECC_NUM_DATA_BYTES_MASK		GENMASK(25, 16)
> -#define	ECC_FORCE_CLK_OPEN		30
> -
> -/* NAND_DEV_CMD1 bits */
> -#define	READ_ADDR			0
> -
> -/* NAND_DEV_CMD_VLD bits */
> -#define	READ_START_VLD			BIT(0)
> -#define	READ_STOP_VLD			BIT(1)
> -#define	WRITE_START_VLD			BIT(2)
> -#define	ERASE_START_VLD			BIT(3)
> -#define	SEQ_READ_START_VLD		BIT(4)
> -
> -/* NAND_EBI2_ECC_BUF_CFG bits */
> -#define	NUM_STEPS			0
> -
> -/* NAND_ERASED_CW_DETECT_CFG bits */
> -#define	ERASED_CW_ECC_MASK		1
> -#define	AUTO_DETECT_RES			0
> -#define	MASK_ECC			BIT(ERASED_CW_ECC_MASK)
> -#define	RESET_ERASED_DET		BIT(AUTO_DETECT_RES)
> -#define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
> -#define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
> -#define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
> -
> -/* NAND_ERASED_CW_DETECT_STATUS bits */
> -#define	PAGE_ALL_ERASED			BIT(7)
> -#define	CODEWORD_ALL_ERASED		BIT(6)
> -#define	PAGE_ERASED			BIT(5)
> -#define	CODEWORD_ERASED			BIT(4)
> -#define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
> -#define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> -
> -/* NAND_READ_LOCATION_n bits */
> -#define READ_LOCATION_OFFSET		0
> -#define READ_LOCATION_SIZE		16
> -#define READ_LOCATION_LAST		31
> -
> -/* Version Mask */
> -#define	NAND_VERSION_MAJOR_MASK		0xf0000000
> -#define	NAND_VERSION_MAJOR_SHIFT	28
> -#define	NAND_VERSION_MINOR_MASK		0x0fff0000
> -#define	NAND_VERSION_MINOR_SHIFT	16
> -
> -/* NAND OP_CMDs */
> -#define	OP_PAGE_READ			0x2
> -#define	OP_PAGE_READ_WITH_ECC		0x3
> -#define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
> -#define	OP_PAGE_READ_ONFI_READ		0x5
> -#define	OP_PROGRAM_PAGE			0x6
> -#define	OP_PAGE_PROGRAM_WITH_ECC	0x7
> -#define	OP_PROGRAM_PAGE_SPARE		0x9
> -#define	OP_BLOCK_ERASE			0xa
> -#define	OP_CHECK_STATUS			0xc
> -#define	OP_FETCH_ID			0xb
> -#define	OP_RESET_DEVICE			0xd
> -
> -/* Default Value for NAND_DEV_CMD_VLD */
> -#define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
> -					 ERASE_START_VLD | SEQ_READ_START_VLD)
> -
> -/* NAND_CTRL bits */
> -#define	BAM_MODE_EN			BIT(0)
> -
> -/*
> - * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> - * the driver calls the chunks 'step' or 'codeword' interchangeably
> - */
> -#define	NANDC_STEP_SIZE			512
> -
> -/*
> - * the largest page size we support is 8K, this will have 16 steps/codewords
> - * of 512 bytes each
> - */
> -#define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
> -
> -/* we read at most 3 registers per codeword scan */
> -#define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
> +#include <linux/mtd/nand-qpic-common.h>
>   
>   /* ECC modes supported by the controller */
>   #define	ECC_NONE	BIT(0)
> @@ -200,247 +21,6 @@ nandc_set_reg(chip, reg,			\
>   	      ((cw_offset) << READ_LOCATION_OFFSET) |		\
>   	      ((read_size) << READ_LOCATION_SIZE) |			\
>   	      ((is_last_read_loc) << READ_LOCATION_LAST))
> -/*
> - * Returns the actual register address for all NAND_DEV_ registers
> - * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
> - */
> -#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
> -
> -/* Returns the NAND register physical address */
> -#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
> -
> -/* Returns the dma address for reg read buffer */
> -#define reg_buf_dma_addr(chip, vaddr) \
> -	((chip)->reg_read_dma + \
> -	((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
> -
> -#define QPIC_PER_CW_CMD_ELEMENTS	32
> -#define QPIC_PER_CW_CMD_SGL		32
> -#define QPIC_PER_CW_DATA_SGL		8
> -
> -#define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
> -
> -/*
> - * Flags used in DMA descriptor preparation helper functions
> - * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
> - */
> -/* Don't set the EOT in current tx BAM sgl */
> -#define NAND_BAM_NO_EOT			BIT(0)
> -/* Set the NWD flag in current BAM sgl */
> -#define NAND_BAM_NWD			BIT(1)
> -/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
> -#define NAND_BAM_NEXT_SGL		BIT(2)
> -/*
> - * Erased codeword status is being used two times in single transfer so this
> - * flag will determine the current value of erased codeword status register
> - */
> -#define NAND_ERASED_CW_SET		BIT(4)
> -
> -#define MAX_ADDRESS_CYCLE		5
> -
> -/*
> - * This data type corresponds to the BAM transaction which will be used for all
> - * NAND transfers.
> - * @bam_ce - the array of BAM command elements
> - * @cmd_sgl - sgl for NAND BAM command pipe
> - * @data_sgl - sgl for NAND BAM consumer/producer pipe
> - * @last_data_desc - last DMA desc in data channel (tx/rx).
> - * @last_cmd_desc - last DMA desc in command channel.
> - * @txn_done - completion for NAND transfer.
> - * @bam_ce_pos - the index in bam_ce which is available for next sgl
> - * @bam_ce_start - the index in bam_ce which marks the start position ce
> - *		   for current sgl. It will be used for size calculation
> - *		   for current sgl
> - * @cmd_sgl_pos - current index in command sgl.
> - * @cmd_sgl_start - start index in command sgl.
> - * @tx_sgl_pos - current index in data sgl for tx.
> - * @tx_sgl_start - start index in data sgl for tx.
> - * @rx_sgl_pos - current index in data sgl for rx.
> - * @rx_sgl_start - start index in data sgl for rx.
> - * @wait_second_completion - wait for second DMA desc completion before making
> - *			     the NAND transfer completion.
> - */
> -struct bam_transaction {
> -	struct bam_cmd_element *bam_ce;
> -	struct scatterlist *cmd_sgl;
> -	struct scatterlist *data_sgl;
> -	struct dma_async_tx_descriptor *last_data_desc;
> -	struct dma_async_tx_descriptor *last_cmd_desc;
> -	struct completion txn_done;
> -	u32 bam_ce_pos;
> -	u32 bam_ce_start;
> -	u32 cmd_sgl_pos;
> -	u32 cmd_sgl_start;
> -	u32 tx_sgl_pos;
> -	u32 tx_sgl_start;
> -	u32 rx_sgl_pos;
> -	u32 rx_sgl_start;
> -	bool wait_second_completion;
> -};
> -
> -/*
> - * This data type corresponds to the nand dma descriptor
> - * @dma_desc - low level DMA engine descriptor
> - * @list - list for desc_info
> - *
> - * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
> - *	      ADM
> - * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
> - * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
> - * @dir - DMA transfer direction
> - */
> -struct desc_info {
> -	struct dma_async_tx_descriptor *dma_desc;
> -	struct list_head node;
> -
> -	union {
> -		struct scatterlist adm_sgl;
> -		struct {
> -			struct scatterlist *bam_sgl;
> -			int sgl_cnt;
> -		};
> -	};
> -	enum dma_data_direction dir;
> -};
> -
> -/*
> - * holds the current register values that we want to write. acts as a contiguous
> - * chunk of memory which we use to write the controller registers through DMA.
> - */
> -struct nandc_regs {
> -	__le32 cmd;
> -	__le32 addr0;
> -	__le32 addr1;
> -	__le32 chip_sel;
> -	__le32 exec;
> -
> -	__le32 cfg0;
> -	__le32 cfg1;
> -	__le32 ecc_bch_cfg;
> -
> -	__le32 clrflashstatus;
> -	__le32 clrreadstatus;
> -
> -	__le32 cmd1;
> -	__le32 vld;
> -
> -	__le32 orig_cmd1;
> -	__le32 orig_vld;
> -
> -	__le32 ecc_buf_cfg;
> -	__le32 read_location0;
> -	__le32 read_location1;
> -	__le32 read_location2;
> -	__le32 read_location3;
> -	__le32 read_location_last0;
> -	__le32 read_location_last1;
> -	__le32 read_location_last2;
> -	__le32 read_location_last3;
> -
> -	__le32 erased_cw_detect_cfg_clr;
> -	__le32 erased_cw_detect_cfg_set;
> -};
> -
> -/*
> - * NAND controller data struct
> - *
> - * @dev:			parent device
> - *
> - * @base:			MMIO base
> - *
> - * @core_clk:			controller clock
> - * @aon_clk:			another controller clock
> - *
> - * @regs:			a contiguous chunk of memory for DMA register
> - *				writes. contains the register values to be
> - *				written to controller
> - *
> - * @props:			properties of current NAND controller,
> - *				initialized via DT match data
> - *
> - * @controller:			base controller structure
> - * @host_list:			list containing all the chips attached to the
> - *				controller
> - *
> - * @chan:			dma channel
> - * @cmd_crci:			ADM DMA CRCI for command flow control
> - * @data_crci:			ADM DMA CRCI for data flow control
> - *
> - * @desc_list:			DMA descriptor list (list of desc_infos)
> - *
> - * @data_buffer:		our local DMA buffer for page read/writes,
> - *				used when we can't use the buffer provided
> - *				by upper layers directly
> - * @reg_read_buf:		local buffer for reading back registers via DMA
> - *
> - * @base_phys:			physical base address of controller registers
> - * @base_dma:			dma base address of controller registers
> - * @reg_read_dma:		contains dma address for register read buffer
> - *
> - * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
> - *				functions
> - * @max_cwperpage:		maximum QPIC codewords required. calculated
> - *				from all connected NAND devices pagesize
> - *
> - * @reg_read_pos:		marker for data read in reg_read_buf
> - *
> - * @cmd1/vld:			some fixed controller register values
> - *
> - * @exec_opwrite:		flag to select correct number of code word
> - *				while reading status
> - */
> -struct qcom_nand_controller {
> -	struct device *dev;
> -
> -	void __iomem *base;
> -
> -	struct clk *core_clk;
> -	struct clk *aon_clk;
> -
> -	struct nandc_regs *regs;
> -	struct bam_transaction *bam_txn;
> -
> -	const struct qcom_nandc_props *props;
> -
> -	struct nand_controller controller;
> -	struct list_head host_list;
> -
> -	union {
> -		/* will be used only by QPIC for BAM DMA */
> -		struct {
> -			struct dma_chan *tx_chan;
> -			struct dma_chan *rx_chan;
> -			struct dma_chan *cmd_chan;
> -		};
> -
> -		/* will be used only by EBI2 for ADM DMA */
> -		struct {
> -			struct dma_chan *chan;
> -			unsigned int cmd_crci;
> -			unsigned int data_crci;
> -		};
> -	};
> -
> -	struct list_head desc_list;
> -
> -	u8		*data_buffer;
> -	__le32		*reg_read_buf;
> -
> -	phys_addr_t base_phys;
> -	dma_addr_t base_dma;
> -	dma_addr_t reg_read_dma;
> -
> -	int		buf_size;
> -	int		buf_count;
> -	int		buf_start;
> -	unsigned int	max_cwperpage;
> -
> -	int reg_read_pos;
> -
> -	u32 cmd1, vld;
> -	bool exec_opwrite;
> -};
> -
>   /*
>    * NAND special boot partitions
>    *
> @@ -544,113 +124,17 @@ struct qcom_nand_host {
>   	bool bch_enabled;
>   };
>   
> -/*
> - * This data type corresponds to the NAND controller properties which varies
> - * among different NAND controllers.
> - * @ecc_modes - ecc mode for NAND
> - * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
> - * @is_bam - whether NAND controller is using BAM
> - * @is_qpic - whether NAND CTRL is part of qpic IP
> - * @qpic_v2 - flag to indicate QPIC IP version 2
> - * @use_codeword_fixup - whether NAND has different layout for boot partitions
> - */
> -struct qcom_nandc_props {
> -	u32 ecc_modes;
> -	u32 dev_cmd_reg_start;
> -	bool is_bam;
> -	bool is_qpic;
> -	bool qpic_v2;
> -	bool use_codeword_fixup;
> -};
> -
> -/* Frees the BAM transaction memory */
> -static void free_bam_transaction(struct qcom_nand_controller *nandc)
> -{
> -	struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> -	devm_kfree(nandc->dev, bam_txn);
> -}
> -
> -/* Allocates and Initializes the BAM transaction */
> -static struct bam_transaction *
> -alloc_bam_transaction(struct qcom_nand_controller *nandc)
> -{
> -	struct bam_transaction *bam_txn;
> -	size_t bam_txn_size;
> -	unsigned int num_cw = nandc->max_cwperpage;
> -	void *bam_txn_buf;
> -
> -	bam_txn_size =
> -		sizeof(*bam_txn) + num_cw *
> -		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
> -		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
> -		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
> -
> -	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
> -	if (!bam_txn_buf)
> -		return NULL;
> -
> -	bam_txn = bam_txn_buf;
> -	bam_txn_buf += sizeof(*bam_txn);
> -
> -	bam_txn->bam_ce = bam_txn_buf;
> -	bam_txn_buf +=
> -		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
> -
> -	bam_txn->cmd_sgl = bam_txn_buf;
> -	bam_txn_buf +=
> -		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
> -
> -	bam_txn->data_sgl = bam_txn_buf;
> -
> -	init_completion(&bam_txn->txn_done);
> -
> -	return bam_txn;
> -}
> -
> -/* Clears the BAM transaction indexes */
> -static void clear_bam_transaction(struct qcom_nand_controller *nandc)
> +static void nandc_set_reg(struct nand_chip *chip, int offset,
> +			  u32 val)
>   {
> -	struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> -	if (!nandc->props->is_bam)
> -		return;
> -
> -	bam_txn->bam_ce_pos = 0;
> -	bam_txn->bam_ce_start = 0;
> -	bam_txn->cmd_sgl_pos = 0;
> -	bam_txn->cmd_sgl_start = 0;
> -	bam_txn->tx_sgl_pos = 0;
> -	bam_txn->tx_sgl_start = 0;
> -	bam_txn->rx_sgl_pos = 0;
> -	bam_txn->rx_sgl_start = 0;
> -	bam_txn->last_data_desc = NULL;
> -	bam_txn->wait_second_completion = false;
> -
> -	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
> -		      QPIC_PER_CW_CMD_SGL);
> -	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
> -		      QPIC_PER_CW_DATA_SGL);
> -
> -	reinit_completion(&bam_txn->txn_done);
> -}
> +	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> +	struct nandc_regs *regs = nandc->regs;
> +	__le32 *reg;
>   
> -/* Callback for DMA descriptor completion */
> -static void qpic_bam_dma_done(void *data)
> -{
> -	struct bam_transaction *bam_txn = data;
> +	reg = offset_to_nandc_reg(regs, offset);
>   
> -	/*
> -	 * In case of data transfer with NAND, 2 callbacks will be generated.
> -	 * One for command channel and another one for data channel.
> -	 * If current transaction has data descriptors
> -	 * (i.e. wait_second_completion is true), then set this to false
> -	 * and wait for second DMA descriptor completion.
> -	 */
> -	if (bam_txn->wait_second_completion)
> -		bam_txn->wait_second_completion = false;
> -	else
> -		complete(&bam_txn->txn_done);
> +	if (reg)
> +		*reg = cpu_to_le32(val);
>   }
>   
>   static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
> @@ -658,13 +142,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
>   	return container_of(chip, struct qcom_nand_host, chip);
>   }
>   
> -static inline struct qcom_nand_controller *
> -get_qcom_nand_controller(struct nand_chip *chip)
> -{
> -	return container_of(chip->controller, struct qcom_nand_controller,
> -			    controller);
> -}
> -
>   static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
>   {
>   	return ioread32(nandc->base + offset);
> @@ -676,91 +153,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
>   	iowrite32(val, nandc->base + offset);
>   }
>   
> -static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
> -					  bool is_cpu)
> -{
> -	if (!nandc->props->is_bam)
> -		return;
> -
> -	if (is_cpu)
> -		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
> -					MAX_REG_RD *
> -					sizeof(*nandc->reg_read_buf),
> -					DMA_FROM_DEVICE);
> -	else
> -		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
> -					   MAX_REG_RD *
> -					   sizeof(*nandc->reg_read_buf),
> -					   DMA_FROM_DEVICE);
> -}
> -
> -static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
> -{
> -	switch (offset) {
> -	case NAND_FLASH_CMD:
> -		return &regs->cmd;
> -	case NAND_ADDR0:
> -		return &regs->addr0;
> -	case NAND_ADDR1:
> -		return &regs->addr1;
> -	case NAND_FLASH_CHIP_SELECT:
> -		return &regs->chip_sel;
> -	case NAND_EXEC_CMD:
> -		return &regs->exec;
> -	case NAND_FLASH_STATUS:
> -		return &regs->clrflashstatus;
> -	case NAND_DEV0_CFG0:
> -		return &regs->cfg0;
> -	case NAND_DEV0_CFG1:
> -		return &regs->cfg1;
> -	case NAND_DEV0_ECC_CFG:
> -		return &regs->ecc_bch_cfg;
> -	case NAND_READ_STATUS:
> -		return &regs->clrreadstatus;
> -	case NAND_DEV_CMD1:
> -		return &regs->cmd1;
> -	case NAND_DEV_CMD1_RESTORE:
> -		return &regs->orig_cmd1;
> -	case NAND_DEV_CMD_VLD:
> -		return &regs->vld;
> -	case NAND_DEV_CMD_VLD_RESTORE:
> -		return &regs->orig_vld;
> -	case NAND_EBI2_ECC_BUF_CFG:
> -		return &regs->ecc_buf_cfg;
> -	case NAND_READ_LOCATION_0:
> -		return &regs->read_location0;
> -	case NAND_READ_LOCATION_1:
> -		return &regs->read_location1;
> -	case NAND_READ_LOCATION_2:
> -		return &regs->read_location2;
> -	case NAND_READ_LOCATION_3:
> -		return &regs->read_location3;
> -	case NAND_READ_LOCATION_LAST_CW_0:
> -		return &regs->read_location_last0;
> -	case NAND_READ_LOCATION_LAST_CW_1:
> -		return &regs->read_location_last1;
> -	case NAND_READ_LOCATION_LAST_CW_2:
> -		return &regs->read_location_last2;
> -	case NAND_READ_LOCATION_LAST_CW_3:
> -		return &regs->read_location_last3;
> -	default:
> -		return NULL;
> -	}
> -}
> -
> -static void nandc_set_reg(struct nand_chip *chip, int offset,
> -			  u32 val)
> -{
> -	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> -	struct nandc_regs *regs = nandc->regs;
> -	__le32 *reg;
> -
> -	reg = offset_to_nandc_reg(regs, offset);
> -
> -	if (reg)
> -		*reg = cpu_to_le32(val);
> -}
> -
>   /* Helper to check the code word, whether it is last cw or not */
>   static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
>   {
> @@ -852,383 +244,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i
>   				   host->cw_data : host->cw_size, 1);
>   }
>   
> -/*
> - * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
> - * for BAM. This descriptor will be added in the NAND DMA descriptor queue
> - * which will be submitted to DMA engine.
> - */
> -static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> -				  struct dma_chan *chan,
> -				  unsigned long flags)
> -{
> -	struct desc_info *desc;
> -	struct scatterlist *sgl;
> -	unsigned int sgl_cnt;
> -	int ret;
> -	struct bam_transaction *bam_txn = nandc->bam_txn;
> -	enum dma_transfer_direction dir_eng;
> -	struct dma_async_tx_descriptor *dma_desc;
> -
> -	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> -	if (!desc)
> -		return -ENOMEM;
> -
> -	if (chan == nandc->cmd_chan) {
> -		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
> -		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
> -		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
> -		dir_eng = DMA_MEM_TO_DEV;
> -		desc->dir = DMA_TO_DEVICE;
> -	} else if (chan == nandc->tx_chan) {
> -		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
> -		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
> -		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
> -		dir_eng = DMA_MEM_TO_DEV;
> -		desc->dir = DMA_TO_DEVICE;
> -	} else {
> -		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
> -		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
> -		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
> -		dir_eng = DMA_DEV_TO_MEM;
> -		desc->dir = DMA_FROM_DEVICE;
> -	}
> -
> -	sg_mark_end(sgl + sgl_cnt - 1);
> -	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> -	if (ret == 0) {
> -		dev_err(nandc->dev, "failure in mapping desc\n");
> -		kfree(desc);
> -		return -ENOMEM;
> -	}
> -
> -	desc->sgl_cnt = sgl_cnt;
> -	desc->bam_sgl = sgl;
> -
> -	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
> -					   flags);
> -
> -	if (!dma_desc) {
> -		dev_err(nandc->dev, "failure in prep desc\n");
> -		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> -		kfree(desc);
> -		return -EINVAL;
> -	}
> -
> -	desc->dma_desc = dma_desc;
> -
> -	/* update last data/command descriptor */
> -	if (chan == nandc->cmd_chan)
> -		bam_txn->last_cmd_desc = dma_desc;
> -	else
> -		bam_txn->last_data_desc = dma_desc;
> -
> -	list_add_tail(&desc->node, &nandc->desc_list);
> -
> -	return 0;
> -}
> -
> -/*
> - * Prepares the command descriptor for BAM DMA which will be used for NAND
> - * register reads and writes. The command descriptor requires the command
> - * to be formed in command element type so this function uses the command
> - * element from bam transaction ce array and fills the same with required
> - * data. A single SGL can contain multiple command elements so
> - * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
> - * after the current command element.
> - */
> -static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> -				 int reg_off, const void *vaddr,
> -				 int size, unsigned int flags)
> -{
> -	int bam_ce_size;
> -	int i, ret;
> -	struct bam_cmd_element *bam_ce_buffer;
> -	struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> -	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
> -
> -	/* fill the command desc */
> -	for (i = 0; i < size; i++) {
> -		if (read)
> -			bam_prep_ce(&bam_ce_buffer[i],
> -				    nandc_reg_phys(nandc, reg_off + 4 * i),
> -				    BAM_READ_COMMAND,
> -				    reg_buf_dma_addr(nandc,
> -						     (__le32 *)vaddr + i));
> -		else
> -			bam_prep_ce_le32(&bam_ce_buffer[i],
> -					 nandc_reg_phys(nandc, reg_off + 4 * i),
> -					 BAM_WRITE_COMMAND,
> -					 *((__le32 *)vaddr + i));
> -	}
> -
> -	bam_txn->bam_ce_pos += size;
> -
> -	/* use the separate sgl after this command */
> -	if (flags & NAND_BAM_NEXT_SGL) {
> -		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
> -		bam_ce_size = (bam_txn->bam_ce_pos -
> -				bam_txn->bam_ce_start) *
> -				sizeof(struct bam_cmd_element);
> -		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
> -			   bam_ce_buffer, bam_ce_size);
> -		bam_txn->cmd_sgl_pos++;
> -		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
> -
> -		if (flags & NAND_BAM_NWD) {
> -			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> -						     DMA_PREP_FENCE |
> -						     DMA_PREP_CMD);
> -			if (ret)
> -				return ret;
> -		}
> -	}
> -
> -	return 0;
> -}
> -
> -/*
> - * Prepares the data descriptor for BAM DMA which will be used for NAND
> - * data reads and writes.
> - */
> -static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> -				  const void *vaddr,
> -				  int size, unsigned int flags)
> -{
> -	int ret;
> -	struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> -	if (read) {
> -		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
> -			   vaddr, size);
> -		bam_txn->rx_sgl_pos++;
> -	} else {
> -		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
> -			   vaddr, size);
> -		bam_txn->tx_sgl_pos++;
> -
> -		/*
> -		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
> -		 * is not set, form the DMA descriptor
> -		 */
> -		if (!(flags & NAND_BAM_NO_EOT)) {
> -			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> -						     DMA_PREP_INTERRUPT);
> -			if (ret)
> -				return ret;
> -		}
> -	}
> -
> -	return 0;
> -}
> -
> -static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> -			     int reg_off, const void *vaddr, int size,
> -			     bool flow_control)
> -{
> -	struct desc_info *desc;
> -	struct dma_async_tx_descriptor *dma_desc;
> -	struct scatterlist *sgl;
> -	struct dma_slave_config slave_conf;
> -	struct qcom_adm_peripheral_config periph_conf = {};
> -	enum dma_transfer_direction dir_eng;
> -	int ret;
> -
> -	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> -	if (!desc)
> -		return -ENOMEM;
> -
> -	sgl = &desc->adm_sgl;
> -
> -	sg_init_one(sgl, vaddr, size);
> -
> -	if (read) {
> -		dir_eng = DMA_DEV_TO_MEM;
> -		desc->dir = DMA_FROM_DEVICE;
> -	} else {
> -		dir_eng = DMA_MEM_TO_DEV;
> -		desc->dir = DMA_TO_DEVICE;
> -	}
> -
> -	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> -	if (ret == 0) {
> -		ret = -ENOMEM;
> -		goto err;
> -	}
> -
> -	memset(&slave_conf, 0x00, sizeof(slave_conf));
> -
> -	slave_conf.device_fc = flow_control;
> -	if (read) {
> -		slave_conf.src_maxburst = 16;
> -		slave_conf.src_addr = nandc->base_dma + reg_off;
> -		if (nandc->data_crci) {
> -			periph_conf.crci = nandc->data_crci;
> -			slave_conf.peripheral_config = &periph_conf;
> -			slave_conf.peripheral_size = sizeof(periph_conf);
> -		}
> -	} else {
> -		slave_conf.dst_maxburst = 16;
> -		slave_conf.dst_addr = nandc->base_dma + reg_off;
> -		if (nandc->cmd_crci) {
> -			periph_conf.crci = nandc->cmd_crci;
> -			slave_conf.peripheral_config = &periph_conf;
> -			slave_conf.peripheral_size = sizeof(periph_conf);
> -		}
> -	}
> -
> -	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
> -	if (ret) {
> -		dev_err(nandc->dev, "failed to configure dma channel\n");
> -		goto err;
> -	}
> -
> -	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
> -	if (!dma_desc) {
> -		dev_err(nandc->dev, "failed to prepare desc\n");
> -		ret = -EINVAL;
> -		goto err;
> -	}
> -
> -	desc->dma_desc = dma_desc;
> -
> -	list_add_tail(&desc->node, &nandc->desc_list);
> -
> -	return 0;
> -err:
> -	kfree(desc);
> -
> -	return ret;
> -}
> -
> -/*
> - * read_reg_dma:	prepares a descriptor to read a given number of
> - *			contiguous registers to the reg_read_buf pointer
> - *
> - * @first:		offset of the first register in the contiguous block
> - * @num_regs:		number of registers to read
> - * @flags:		flags to control DMA descriptor preparation
> - */
> -static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> -			int num_regs, unsigned int flags)
> -{
> -	bool flow_control = false;
> -	void *vaddr;
> -
> -	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
> -	nandc->reg_read_pos += num_regs;
> -
> -	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
> -		first = dev_cmd_reg_addr(nandc, first);
> -
> -	if (nandc->props->is_bam)
> -		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
> -					     num_regs, flags);
> -
> -	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
> -		flow_control = true;
> -
> -	return prep_adm_dma_desc(nandc, true, first, vaddr,
> -				 num_regs * sizeof(u32), flow_control);
> -}
> -
> -/*
> - * write_reg_dma:	prepares a descriptor to write a given number of
> - *			contiguous registers
> - *
> - * @first:		offset of the first register in the contiguous block
> - * @num_regs:		number of registers to write
> - * @flags:		flags to control DMA descriptor preparation
> - */
> -static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> -			 int num_regs, unsigned int flags)
> -{
> -	bool flow_control = false;
> -	struct nandc_regs *regs = nandc->regs;
> -	void *vaddr;
> -
> -	vaddr = offset_to_nandc_reg(regs, first);
> -
> -	if (first == NAND_ERASED_CW_DETECT_CFG) {
> -		if (flags & NAND_ERASED_CW_SET)
> -			vaddr = &regs->erased_cw_detect_cfg_set;
> -		else
> -			vaddr = &regs->erased_cw_detect_cfg_clr;
> -	}
> -
> -	if (first == NAND_EXEC_CMD)
> -		flags |= NAND_BAM_NWD;
> -
> -	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
> -		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
> -
> -	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
> -		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
> -
> -	if (nandc->props->is_bam)
> -		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
> -					     num_regs, flags);
> -
> -	if (first == NAND_FLASH_CMD)
> -		flow_control = true;
> -
> -	return prep_adm_dma_desc(nandc, false, first, vaddr,
> -				 num_regs * sizeof(u32), flow_control);
> -}
> -
> -/*
> - * read_data_dma:	prepares a DMA descriptor to transfer data from the
> - *			controller's internal buffer to the buffer 'vaddr'
> - *
> - * @reg_off:		offset within the controller's data buffer
> - * @vaddr:		virtual address of the buffer we want to write to
> - * @size:		DMA transaction size in bytes
> - * @flags:		flags to control DMA descriptor preparation
> - */
> -static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> -			 const u8 *vaddr, int size, unsigned int flags)
> -{
> -	if (nandc->props->is_bam)
> -		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
> -
> -	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
> -}
> -
> -/*
> - * write_data_dma:	prepares a DMA descriptor to transfer data from
> - *			'vaddr' to the controller's internal buffer
> - *
> - * @reg_off:		offset within the controller's data buffer
> - * @vaddr:		virtual address of the buffer we want to read from
> - * @size:		DMA transaction size in bytes
> - * @flags:		flags to control DMA descriptor preparation
> - */
> -static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> -			  const u8 *vaddr, int size, unsigned int flags)
> -{
> -	if (nandc->props->is_bam)
> -		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
> -
> -	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
> -}
> -
> -/*
> - * Helper to prepare DMA descriptors for configuring registers
> - * before reading a NAND page.
> - */
> -static void config_nand_page_read(struct nand_chip *chip)
> -{
> -	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> -
> -	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> -	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> -	if (!nandc->props->qpic_v2)
> -		write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> -	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> -	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> -		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> -}
> -
>   /*
>    * Helper to prepare DMA descriptors for configuring registers
>    * before reading each codeword in NAND page.
> @@ -1303,88 +318,6 @@ static void config_nand_cw_write(struct nand_chip *chip)
>   	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
>   }
>   
> -/* helpers to submit/free our list of dma descriptors */
> -static int submit_descs(struct qcom_nand_controller *nandc)
> -{
> -	struct desc_info *desc, *n;
> -	dma_cookie_t cookie = 0;
> -	struct bam_transaction *bam_txn = nandc->bam_txn;
> -	int ret = 0;
> -
> -	if (nandc->props->is_bam) {
> -		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
> -			ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
> -			if (ret)
> -				goto err_unmap_free_desc;
> -		}
> -
> -		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
> -			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> -						   DMA_PREP_INTERRUPT);
> -			if (ret)
> -				goto err_unmap_free_desc;
> -		}
> -
> -		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
> -			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> -						   DMA_PREP_CMD);
> -			if (ret)
> -				goto err_unmap_free_desc;
> -		}
> -	}
> -
> -	list_for_each_entry(desc, &nandc->desc_list, node)
> -		cookie = dmaengine_submit(desc->dma_desc);
> -
> -	if (nandc->props->is_bam) {
> -		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
> -		bam_txn->last_cmd_desc->callback_param = bam_txn;
> -		if (bam_txn->last_data_desc) {
> -			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
> -			bam_txn->last_data_desc->callback_param = bam_txn;
> -			bam_txn->wait_second_completion = true;
> -		}
> -
> -		dma_async_issue_pending(nandc->tx_chan);
> -		dma_async_issue_pending(nandc->rx_chan);
> -		dma_async_issue_pending(nandc->cmd_chan);
> -
> -		if (!wait_for_completion_timeout(&bam_txn->txn_done,
> -						 QPIC_NAND_COMPLETION_TIMEOUT))
> -			ret = -ETIMEDOUT;
> -	} else {
> -		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
> -			ret = -ETIMEDOUT;
> -	}
> -
> -err_unmap_free_desc:
> -	/*
> -	 * Unmap the dma sg_list and free the desc allocated by both
> -	 * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
> -	 */
> -	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
> -		list_del(&desc->node);
> -
> -		if (nandc->props->is_bam)
> -			dma_unmap_sg(nandc->dev, desc->bam_sgl,
> -				     desc->sgl_cnt, desc->dir);
> -		else
> -			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
> -				     desc->dir);
> -
> -		kfree(desc);
> -	}
> -
> -	return ret;
> -}
> -
> -/* reset the register read buffer for next NAND operation */
> -static void clear_read_regs(struct qcom_nand_controller *nandc)
> -{
> -	nandc->reg_read_pos = 0;
> -	nandc_read_buffer_sync(nandc, false);
> -}
> -
>   /*
>    * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
>    * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
> @@ -3016,136 +1949,6 @@ static const struct nand_controller_ops qcom_nandc_ops = {
>   	.exec_op = qcom_nand_exec_op,
>   };
>   
> -static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
> -{
> -	if (nandc->props->is_bam) {
> -		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
> -			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
> -					 MAX_REG_RD *
> -					 sizeof(*nandc->reg_read_buf),
> -					 DMA_FROM_DEVICE);
> -
> -		if (nandc->tx_chan)
> -			dma_release_channel(nandc->tx_chan);
> -
> -		if (nandc->rx_chan)
> -			dma_release_channel(nandc->rx_chan);
> -
> -		if (nandc->cmd_chan)
> -			dma_release_channel(nandc->cmd_chan);
> -	} else {
> -		if (nandc->chan)
> -			dma_release_channel(nandc->chan);
> -	}
> -}
> -
> -static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
> -{
> -	int ret;
> -
> -	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
> -	if (ret) {
> -		dev_err(nandc->dev, "failed to set DMA mask\n");
> -		return ret;
> -	}
> -
> -	/*
> -	 * we use the internal buffer for reading ONFI params, reading small
> -	 * data like ID and status, and preforming read-copy-write operations
> -	 * when writing to a codeword partially. 532 is the maximum possible
> -	 * size of a codeword for our nand controller
> -	 */
> -	nandc->buf_size = 532;
> -
> -	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
> -	if (!nandc->data_buffer)
> -		return -ENOMEM;
> -
> -	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
> -	if (!nandc->regs)
> -		return -ENOMEM;
> -
> -	nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
> -					   sizeof(*nandc->reg_read_buf),
> -					   GFP_KERNEL);
> -	if (!nandc->reg_read_buf)
> -		return -ENOMEM;
> -
> -	if (nandc->props->is_bam) {
> -		nandc->reg_read_dma =
> -			dma_map_single(nandc->dev, nandc->reg_read_buf,
> -				       MAX_REG_RD *
> -				       sizeof(*nandc->reg_read_buf),
> -				       DMA_FROM_DEVICE);
> -		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
> -			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
> -			return -EIO;
> -		}
> -
> -		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
> -		if (IS_ERR(nandc->tx_chan)) {
> -			ret = PTR_ERR(nandc->tx_chan);
> -			nandc->tx_chan = NULL;
> -			dev_err_probe(nandc->dev, ret,
> -				      "tx DMA channel request failed\n");
> -			goto unalloc;
> -		}
> -
> -		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
> -		if (IS_ERR(nandc->rx_chan)) {
> -			ret = PTR_ERR(nandc->rx_chan);
> -			nandc->rx_chan = NULL;
> -			dev_err_probe(nandc->dev, ret,
> -				      "rx DMA channel request failed\n");
> -			goto unalloc;
> -		}
> -
> -		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
> -		if (IS_ERR(nandc->cmd_chan)) {
> -			ret = PTR_ERR(nandc->cmd_chan);
> -			nandc->cmd_chan = NULL;
> -			dev_err_probe(nandc->dev, ret,
> -				      "cmd DMA channel request failed\n");
> -			goto unalloc;
> -		}
> -
> -		/*
> -		 * Initially allocate BAM transaction to read ONFI param page.
> -		 * After detecting all the devices, this BAM transaction will
> -		 * be freed and the next BAM transaction will be allocated with
> -		 * maximum codeword size
> -		 */
> -		nandc->max_cwperpage = 1;
> -		nandc->bam_txn = alloc_bam_transaction(nandc);
> -		if (!nandc->bam_txn) {
> -			dev_err(nandc->dev,
> -				"failed to allocate bam transaction\n");
> -			ret = -ENOMEM;
> -			goto unalloc;
> -		}
> -	} else {
> -		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
> -		if (IS_ERR(nandc->chan)) {
> -			ret = PTR_ERR(nandc->chan);
> -			nandc->chan = NULL;
> -			dev_err_probe(nandc->dev, ret,
> -				      "rxtx DMA channel request failed\n");
> -			return ret;
> -		}
> -	}
> -
> -	INIT_LIST_HEAD(&nandc->desc_list);
> -	INIT_LIST_HEAD(&nandc->host_list);
> -
> -	nand_controller_init(&nandc->controller);
> -	nandc->controller.ops = &qcom_nandc_ops;
> -
> -	return 0;
> -unalloc:
> -	qcom_nandc_unalloc(nandc);
> -	return ret;
> -}
> -
>   /* one time setup of a few nand controller registers */
>   static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
>   {
> @@ -3427,6 +2230,9 @@ static int qcom_nandc_probe(struct platform_device *pdev)
>   	if (ret)
>   		goto err_nandc_alloc;
>   
> +	nand_controller_init(&nandc->controller);
> +	nandc->controller.ops = &qcom_nandc_ops;
> +
>   	ret = qcom_nandc_setup(nandc);
>   	if (ret)
>   		goto err_setup;
> @@ -3473,28 +2279,28 @@ static void qcom_nandc_remove(struct platform_device *pdev)
>   			   DMA_BIDIRECTIONAL, 0);
>   }
>   
> -static const struct qcom_nandc_props ipq806x_nandc_props = {
> +static struct qcom_nandc_props ipq806x_nandc_props = {
>   	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
>   	.is_bam = false,
>   	.use_codeword_fixup = true,
>   	.dev_cmd_reg_start = 0x0,
>   };
>   
> -static const struct qcom_nandc_props ipq4019_nandc_props = {
> +static struct qcom_nandc_props ipq4019_nandc_props = {
>   	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
>   	.is_bam = true,
>   	.is_qpic = true,
>   	.dev_cmd_reg_start = 0x0,
>   };
>   
> -static const struct qcom_nandc_props ipq8074_nandc_props = {
> +static struct qcom_nandc_props ipq8074_nandc_props = {
>   	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
>   	.is_bam = true,
>   	.is_qpic = true,
>   	.dev_cmd_reg_start = 0x7000,
>   };
>   
> -static const struct qcom_nandc_props sdx55_nandc_props = {
> +static struct qcom_nandc_props sdx55_nandc_props = {
>   	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
>   	.is_bam = true,
>   	.is_qpic = true,
> diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h
> new file mode 100644
> index 000000000000..891f975ca173
> --- /dev/null
> +++ b/include/linux/mtd/nand-qpic-common.h
> @@ -0,0 +1,488 @@
> +/* SPDX-License-Identifier: GPL-2.0 */
> +/*
> + * QCOM QPIC common APIs header file
> + *
> + * Copyright (c) 2023 Qualcomm Inc.
> + * Authors:     Md sadre Alam           <quic_mdalam at quicinc.com>
> + *		Sricharan R             <quic_srichara at quicinc.com>
> + *		Varadarajan Narayanan   <quic_varada at quicinc.com>
> + *
> + */
> +#ifndef __MTD_NAND_QPIC_COMMON_H__
> +#define __MTD_NAND_QPIC_COMMON_H__
> +
> +#include <linux/bitops.h>
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dmaengine.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dma/qcom_adm.h>
> +#include <linux/dma/qcom_bam_dma.h>
> +#include <linux/module.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +/* NANDc reg offsets */
> +#define	NAND_FLASH_CMD			0x00
> +#define	NAND_ADDR0			0x04
> +#define	NAND_ADDR1			0x08
> +#define	NAND_FLASH_CHIP_SELECT		0x0c
> +#define	NAND_EXEC_CMD			0x10
> +#define	NAND_FLASH_STATUS		0x14
> +#define	NAND_BUFFER_STATUS		0x18
> +#define	NAND_DEV0_CFG0			0x20
> +#define	NAND_DEV0_CFG1			0x24
> +#define	NAND_DEV0_ECC_CFG		0x28
> +#define	NAND_AUTO_STATUS_EN		0x2c
> +#define	NAND_DEV1_CFG0			0x30
> +#define	NAND_DEV1_CFG1			0x34
> +#define	NAND_READ_ID			0x40
> +#define	NAND_READ_STATUS		0x44
> +#define	NAND_DEV_CMD0			0xa0
> +#define	NAND_DEV_CMD1			0xa4
> +#define	NAND_DEV_CMD2			0xa8
> +#define	NAND_DEV_CMD_VLD		0xac
> +#define	SFLASHC_BURST_CFG		0xe0
> +#define	NAND_ERASED_CW_DETECT_CFG	0xe8
> +#define	NAND_ERASED_CW_DETECT_STATUS	0xec
> +#define	NAND_EBI2_ECC_BUF_CFG		0xf0
> +#define	FLASH_BUF_ACC			0x100
> +
> +#define	NAND_CTRL			0xf00
> +#define	NAND_VERSION			0xf08
> +#define	NAND_READ_LOCATION_0		0xf20
> +#define	NAND_READ_LOCATION_1		0xf24
> +#define	NAND_READ_LOCATION_2		0xf28
> +#define	NAND_READ_LOCATION_3		0xf2c
> +#define	NAND_READ_LOCATION_LAST_CW_0	0xf40
> +#define	NAND_READ_LOCATION_LAST_CW_1	0xf44
> +#define	NAND_READ_LOCATION_LAST_CW_2	0xf48
> +#define	NAND_READ_LOCATION_LAST_CW_3	0xf4c
> +
> +/* dummy register offsets, used by write_reg_dma */
> +#define	NAND_DEV_CMD1_RESTORE		0xdead
> +#define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
> +
> +/* NAND_FLASH_CMD bits */
> +#define	PAGE_ACC			BIT(4)
> +#define	LAST_PAGE			BIT(5)
> +
> +/* NAND_FLASH_CHIP_SELECT bits */
> +#define	NAND_DEV_SEL			0
> +#define	DM_EN				BIT(2)
> +
> +/* NAND_FLASH_STATUS bits */
> +#define	FS_OP_ERR			BIT(4)
> +#define	FS_READY_BSY_N			BIT(5)
> +#define	FS_MPU_ERR			BIT(8)
> +#define	FS_DEVICE_STS_ERR		BIT(16)
> +#define	FS_DEVICE_WP			BIT(23)
> +
> +/* NAND_BUFFER_STATUS bits */
> +#define	BS_UNCORRECTABLE_BIT		BIT(8)
> +#define	BS_CORRECTABLE_ERR_MSK		0x1f
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define	DISABLE_STATUS_AFTER_WRITE	4
> +#define	CW_PER_PAGE			6
> +#define	UD_SIZE_BYTES			9
> +#define	UD_SIZE_BYTES_MASK		GENMASK(18, 9)
> +#define	ECC_PARITY_SIZE_BYTES_RS	19
> +#define	SPARE_SIZE_BYTES		23
> +#define	SPARE_SIZE_BYTES_MASK		GENMASK(26, 23)
> +#define	NUM_ADDR_CYCLES			27
> +#define	STATUS_BFR_READ			30
> +#define	SET_RD_MODE_AFTER_STATUS	31
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define	DEV0_CFG1_ECC_DISABLE		0
> +#define	WIDE_FLASH			1
> +#define	NAND_RECOVERY_CYCLES		2
> +#define	CS_ACTIVE_BSY			5
> +#define	BAD_BLOCK_BYTE_NUM		6
> +#define	BAD_BLOCK_IN_SPARE_AREA		16
> +#define	WR_RD_BSY_GAP			17
> +#define	ENABLE_BCH_ECC			27
> +
> +/* NAND_DEV0_ECC_CFG bits */
> +#define	ECC_CFG_ECC_DISABLE		0
> +#define	ECC_SW_RESET			1
> +#define	ECC_MODE			4
> +#define	ECC_PARITY_SIZE_BYTES_BCH	8
> +#define	ECC_NUM_DATA_BYTES		16
> +#define	ECC_NUM_DATA_BYTES_MASK		GENMASK(25, 16)
> +#define	ECC_FORCE_CLK_OPEN		30
> +
> +/* NAND_DEV_CMD1 bits */
> +#define	READ_ADDR			0
> +
> +/* NAND_DEV_CMD_VLD bits */
> +#define	READ_START_VLD			BIT(0)
> +#define	READ_STOP_VLD			BIT(1)
> +#define	WRITE_START_VLD			BIT(2)
> +#define	ERASE_START_VLD			BIT(3)
> +#define	SEQ_READ_START_VLD		BIT(4)
> +
> +/* NAND_EBI2_ECC_BUF_CFG bits */
> +#define	NUM_STEPS			0
> +
> +/* NAND_ERASED_CW_DETECT_CFG bits */
> +#define	ERASED_CW_ECC_MASK		1
> +#define	AUTO_DETECT_RES			0
> +#define	MASK_ECC			BIT(ERASED_CW_ECC_MASK)
> +#define	RESET_ERASED_DET		BIT(AUTO_DETECT_RES)
> +#define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
> +#define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
> +#define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
> +
> +/* NAND_ERASED_CW_DETECT_STATUS bits */
> +#define	PAGE_ALL_ERASED			BIT(7)
> +#define	CODEWORD_ALL_ERASED		BIT(6)
> +#define	PAGE_ERASED			BIT(5)
> +#define	CODEWORD_ERASED			BIT(4)
> +#define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
> +#define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> +
> +/* NAND_READ_LOCATION_n bits */
> +#define READ_LOCATION_OFFSET		0
> +#define READ_LOCATION_SIZE		16
> +#define READ_LOCATION_LAST		31
> +
> +/* Version Mask */
> +#define	NAND_VERSION_MAJOR_MASK		0xf0000000
> +#define	NAND_VERSION_MAJOR_SHIFT	28
> +#define	NAND_VERSION_MINOR_MASK		0x0fff0000
> +#define	NAND_VERSION_MINOR_SHIFT	16
> +
> +/* NAND OP_CMDs */
> +#define	OP_PAGE_READ			0x2
> +#define	OP_PAGE_READ_WITH_ECC		0x3
> +#define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
> +#define	OP_PAGE_READ_ONFI_READ		0x5
> +#define	OP_PROGRAM_PAGE			0x6
> +#define	OP_PAGE_PROGRAM_WITH_ECC	0x7
> +#define	OP_PROGRAM_PAGE_SPARE		0x9
> +#define	OP_BLOCK_ERASE			0xa
> +#define	OP_CHECK_STATUS			0xc
> +#define	OP_FETCH_ID			0xb
> +#define	OP_RESET_DEVICE			0xd
> +
> +/* Default Value for NAND_DEV_CMD_VLD */
> +#define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
> +					 ERASE_START_VLD | SEQ_READ_START_VLD)
> +
> +/* NAND_CTRL bits */
> +#define	BAM_MODE_EN			BIT(0)
> +
> +/*
> + * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> + * the driver calls the chunks 'step' or 'codeword' interchangeably
> + */
> +#define	NANDC_STEP_SIZE			512
> +
> +/*
> + * the largest page size we support is 8K, this will have 16 steps/codewords
> + * of 512 bytes each
> + */
> +#define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
> +
> +/* we read at most 3 registers per codeword scan */
> +#define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
> +
> +#define QPIC_PER_CW_CMD_ELEMENTS	32
> +#define QPIC_PER_CW_CMD_SGL		32
> +#define QPIC_PER_CW_DATA_SGL		8
> +
> +#define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
> +
> +/*
> + * Flags used in DMA descriptor preparation helper functions
> + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
> + */
> +/* Don't set the EOT in current tx BAM sgl */
> +#define NAND_BAM_NO_EOT			BIT(0)
> +/* Set the NWD flag in current BAM sgl */
> +#define NAND_BAM_NWD			BIT(1)
> +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
> +#define NAND_BAM_NEXT_SGL		BIT(2)
> +
> +/*
> + * Returns the actual register address for all NAND_DEV_ registers
> + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
> + */
> +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
> +
> +/* Returns the NAND register physical address */
> +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
> +
> +/* Returns the dma address for reg read buffer */
> +#define reg_buf_dma_addr(chip, vaddr) \
> +	((chip)->reg_read_dma + \
> +	((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
> +
> +/*
> + * Erased codeword status is being used two times in single transfer so this
> + * flag will determine the current value of erased codeword status register
> + */
> +#define NAND_ERASED_CW_SET		BIT(4)
> +
> +#define MAX_ADDRESS_CYCLE		5
> +
> +/*
> + * This data type corresponds to the BAM transaction which will be used for all
> + * NAND transfers.
> + * @bam_ce - the array of BAM command elements
> + * @cmd_sgl - sgl for NAND BAM command pipe
> + * @data_sgl - sgl for NAND BAM consumer/producer pipe
> + * @last_data_desc - last DMA desc in data channel (tx/rx).
> + * @last_cmd_desc - last DMA desc in command channel.
> + * @txn_done - completion for NAND transfer.
> + * @bam_ce_pos - the index in bam_ce which is available for next sgl
> + * @bam_ce_start - the index in bam_ce which marks the start position ce
> + *		   for current sgl. It will be used for size calculation
> + *		   for current sgl
> + * @cmd_sgl_pos - current index in command sgl.
> + * @cmd_sgl_start - start index in command sgl.
> + * @tx_sgl_pos - current index in data sgl for tx.
> + * @tx_sgl_start - start index in data sgl for tx.
> + * @rx_sgl_pos - current index in data sgl for rx.
> + * @rx_sgl_start - start index in data sgl for rx.
> + * @wait_second_completion - wait for second DMA desc completion before making
> + *			     the NAND transfer completion.
> + */
> +struct bam_transaction {
> +	struct bam_cmd_element *bam_ce;
> +	struct scatterlist *cmd_sgl;
> +	struct scatterlist *data_sgl;
> +	struct dma_async_tx_descriptor *last_data_desc;
> +	struct dma_async_tx_descriptor *last_cmd_desc;
> +	struct completion txn_done;
> +	u32 bam_ce_pos;
> +	u32 bam_ce_start;
> +	u32 cmd_sgl_pos;
> +	u32 cmd_sgl_start;
> +	u32 tx_sgl_pos;
> +	u32 tx_sgl_start;
> +	u32 rx_sgl_pos;
> +	u32 rx_sgl_start;
> +	bool wait_second_completion;
> +};
> +
> +/*
> + * This data type corresponds to the nand dma descriptor
> + * @dma_desc - low level DMA engine descriptor
> + * @list - list for desc_info
> + *
> + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
> + *	      ADM
> + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
> + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
> + * @dir - DMA transfer direction
> + */
> +struct desc_info {
> +	struct dma_async_tx_descriptor *dma_desc;
> +	struct list_head node;
> +
> +	union {
> +		struct scatterlist adm_sgl;
> +		struct {
> +			struct scatterlist *bam_sgl;
> +			int sgl_cnt;
> +		};
> +	};
> +	enum dma_data_direction dir;
> +};
> +
> +/*
> + * holds the current register values that we want to write. acts as a contiguous
> + * chunk of memory which we use to write the controller registers through DMA.
> + */
> +struct nandc_regs {
> +	__le32 cmd;
> +	__le32 addr0;
> +	__le32 addr1;
> +	__le32 chip_sel;
> +	__le32 exec;
> +
> +	__le32 cfg0;
> +	__le32 cfg1;
> +	__le32 ecc_bch_cfg;
> +
> +	__le32 clrflashstatus;
> +	__le32 clrreadstatus;
> +
> +	__le32 cmd1;
> +	__le32 vld;
> +
> +	__le32 orig_cmd1;
> +	__le32 orig_vld;
> +
> +	__le32 ecc_buf_cfg;
> +	__le32 read_location0;
> +	__le32 read_location1;
> +	__le32 read_location2;
> +	__le32 read_location3;
> +	__le32 read_location_last0;
> +	__le32 read_location_last1;
> +	__le32 read_location_last2;
> +	__le32 read_location_last3;
> +
> +	__le32 erased_cw_detect_cfg_clr;
> +	__le32 erased_cw_detect_cfg_set;
> +};
> +
> +/*
> + * NAND controller data struct
> + *
> + * @dev:			parent device
> + *
> + * @base:			MMIO base
> + *
> + * @core_clk:			controller clock
> + * @aon_clk:			another controller clock
> + *
> + * @regs:			a contiguous chunk of memory for DMA register
> + *				writes. contains the register values to be
> + *				written to controller
> + *
> + * @props:			properties of current NAND controller,
> + *				initialized via DT match data
> + *
> + * @controller:			base controller structure
> + * @host_list:			list containing all the chips attached to the
> + *				controller
> + *
> + * @chan:			dma channel
> + * @cmd_crci:			ADM DMA CRCI for command flow control
> + * @data_crci:			ADM DMA CRCI for data flow control
> + *
> + * @desc_list:			DMA descriptor list (list of desc_infos)
> + *
> + * @data_buffer:		our local DMA buffer for page read/writes,
> + *				used when we can't use the buffer provided
> + *				by upper layers directly
> + * @reg_read_buf:		local buffer for reading back registers via DMA
> + *
> + * @base_phys:			physical base address of controller registers
> + * @base_dma:			dma base address of controller registers
> + * @reg_read_dma:		contains dma address for register read buffer
> + *
> + * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
> + *				functions
> + * @max_cwperpage:		maximum QPIC codewords required. calculated
> + *				from all connected NAND devices pagesize
> + *
> + * @reg_read_pos:		marker for data read in reg_read_buf
> + *
> + * @cmd1/vld:			some fixed controller register values
> + *
> + * @exec_opwrite:		flag to select correct number of code word
> + *				while reading status
> + */
> +struct qcom_nand_controller {
> +	struct device *dev;
> +
> +	void __iomem *base;
> +
> +	struct clk *core_clk;
> +	struct clk *aon_clk;
> +
> +	struct nandc_regs *regs;
> +	struct bam_transaction *bam_txn;
> +
> +	const struct qcom_nandc_props *props;
> +
> +	struct nand_controller controller;
> +	struct list_head host_list;
> +
> +	union {
> +		/* will be used only by QPIC for BAM DMA */
> +		struct {
> +			struct dma_chan *tx_chan;
> +			struct dma_chan *rx_chan;
> +			struct dma_chan *cmd_chan;
> +		};
> +
> +		/* will be used only by EBI2 for ADM DMA */
> +		struct {
> +			struct dma_chan *chan;
> +			unsigned int cmd_crci;
> +			unsigned int data_crci;
> +		};
> +	};
> +
> +	struct list_head desc_list;
> +
> +	u8		*data_buffer;
> +	__le32		*reg_read_buf;
> +
> +	phys_addr_t base_phys;
> +	dma_addr_t base_dma;
> +	dma_addr_t reg_read_dma;
> +
> +	int		buf_size;
> +	int		buf_count;
> +	int		buf_start;
> +	unsigned int	max_cwperpage;
> +
> +	int reg_read_pos;
> +
> +	u32 cmd1, vld;
> +	bool exec_opwrite;
> +};
> +
> +/*
> + * This data type corresponds to the NAND controller properties which varies
> + * among different NAND controllers.
> + * @ecc_modes - ecc mode for NAND
> + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
> + * @is_bam - whether NAND controller is using BAM
> + * @is_qpic - whether NAND CTRL is part of qpic IP
> + * @qpic_v2 - flag to indicate QPIC IP version 2
> + * @use_codeword_fixup - whether NAND has different layout for boot partitions
> + */
> +struct qcom_nandc_props {
> +	u32 ecc_modes;
> +	u32 dev_cmd_reg_start;
> +	bool is_bam;
> +	bool is_qpic;
> +	bool qpic_v2;
> +	bool use_codeword_fixup;
> +};
> +
> +void config_nand_page_read(struct nand_chip *chip);
> +void free_bam_transaction(struct qcom_nand_controller *nandc);
> +void qpic_bam_dma_done(void *data);
> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu);
> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset);
> +void clear_read_regs(struct qcom_nand_controller *nandc);
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> +		      int reg_off, const void *vaddr, int size,
> +			bool flow_control);
> +int submit_descs(struct qcom_nand_controller *nandc);
> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> +			   struct dma_chan *chan, unsigned long flags);
> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> +			  int reg_off, const void *vaddr,
> +			int size, unsigned int flags);
> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> +			   const void *vaddr,
> +			int size, unsigned int flags);
> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> +		 int num_regs, unsigned int flags);
> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> +		  int num_regs, unsigned int flags);
> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> +		  const u8 *vaddr, int size, unsigned int flags);
> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> +		   const u8 *vaddr, int size, unsigned int flags);
> +struct bam_transaction *alloc_bam_transaction(struct qcom_nand_controller *nandc);
> +void clear_bam_transaction(struct qcom_nand_controller *nandc);
> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc);
> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc);
> +struct qcom_nand_controller *get_qcom_nand_controller(struct nand_chip *chip);
> +
> +#endif



More information about the linux-mtd mailing list