[PATCH 2/3] mtd: rawnand: rzn1: Add new NAND controller driver
Geert Uytterhoeven
geert at linux-m68k.org
Fri Nov 19 00:55:53 PST 2021
Hi Miquel,
CC Gareth
On Thu, Nov 18, 2021 at 12:19 PM Miquel Raynal
<miquel.raynal at bootlin.com> wrote:
> Introduce Renesas RZ/N1x NAND controller driver which supports:
> - All ONFI timing modes
> - Different configurations of its internal ECC controller
> - On-die (not tested) and software ECC support
> - Several chips (not tested)
> - Subpage accesses
> - DMA and PIO
>
> Signed-off-by: Miquel Raynal <miquel.raynal at bootlin.com>
Thanks for your patch!
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -467,6 +467,12 @@ config MTD_NAND_PL35X
> Enables support for PrimeCell SMC PL351 and PL353 NAND
> controller found on Zynq7000.
>
> +config MTD_NAND_RZN1
> + tristate "Renesas RZ/N1D, RZ/N1S, RZ/N1L NAND controller"
> + depends on OF || COMPILE_TEST
depends on ARCH_RENESAS || COMPILE_TEST
> + help
> + Enables support for Renesas RZ/N1x SoC family NAND controller.
> +
> comment "Misc"
>
> config MTD_SM_COMMON
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/rzn1-nand-controller.c
> +static int rzn1_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset,
> + u32 req_len, u8 *bufpoi, int page)
> +{
> + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip);
> + unsigned int cs = to_nfc_cs(rzn1_nand);
> + unsigned int page_off = round_down(req_offset, chip->ecc.size);
> + unsigned int real_len = round_up(req_offset + req_len - page_off,
> + chip->ecc.size);
> + unsigned int start_chunk = page_off / chip->ecc.size;
> + unsigned int nchunks = real_len / chip->ecc.size;
> + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes);
> + struct rzn1_op rop = {
> + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) |
> + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL |
> + COMMAND_SEQ_READ_PAGE,
> + .addr0_row = page,
> + .addr0_col = page_off,
> + .len = real_len,
> + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off),
> + };
> + unsigned int max_bitflips = 0;
> + u32 ecc_stat;
> + int bf, ret, i;
unsigned int i
> +
> + /* Prepare controller */
> + rzn1_nfc_select_target(chip, chip->cur_cs);
> + rzn1_nfc_clear_status(nfc);
> + rzn1_nfc_en_correction(nfc);
> + rzn1_nfc_trigger_op(nfc, &rop);
> +
> + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG)))
> + cpu_relax();
> +
> + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG)))
> + cpu_relax();
> +
> + ioread32_rep(nfc->regs + FIFO_DATA_REG, bufpoi + page_off,
> + real_len / 4);
> +
> + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) {
> + dev_err(nfc->dev, "Clearing residual data in the read FIFO\n");
> + rzn1_nfc_clear_fifo(nfc);
> + }
> +
> + ret = rzn1_nfc_wait_end_of_op(nfc, chip);
> + rzn1_nfc_dis_correction(nfc);
> + if (ret) {
> + dev_err(nfc->dev, "Read subpage operation never ending\n");
> + return ret;
> + }
> +
> + ecc_stat = readl_relaxed(nfc->regs + ECC_STAT_REG);
> +
> + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
> + ret = nand_change_read_column_op(chip, mtd->writesize,
> + chip->oob_poi, mtd->oobsize,
> + false);
> + if (ret)
> + return ret;
> +
> + for (i = start_chunk; i < nchunks; i++) {
> + unsigned int dataoff = i * chip->ecc.size;
> + unsigned int eccoff = 2 + (i * chip->ecc.bytes);
> +
> + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff,
> + chip->ecc.size,
> + chip->oob_poi + eccoff,
> + chip->ecc.bytes,
> + NULL, 0,
> + chip->ecc.strength);
> + if (bf < 0) {
> + mtd->ecc_stats.failed++;
> + } else {
> + mtd->ecc_stats.corrected += bf;
> + max_bitflips = max_t(unsigned int, max_bitflips, bf);
> + }
> + }
> + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) {
> + bf = ECC_CNT(cs, readl_relaxed(nfc->regs + ECC_CNT_REG));
> + /*
> + * The number of bitflips is an approximation given the fact
> + * that this controller does not provide per-chunk details but
> + * only gives statistics on the entire page.
> + */
> + mtd->ecc_stats.corrected += bf;
> + }
> +
> + return 0;
> +}
> +
> +static int rzn1_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
> + int oob_required, int page)
> +{
> + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller);
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct rzn1_nand_chip *rzn1_nand = to_rzn1_nand(chip);
> + unsigned int cs = to_nfc_cs(rzn1_nand);
> + struct rzn1_op rop = {
> + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) |
> + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL |
> + COMMAND_SEQ_WRITE_PAGE,
> + .addr0_row = page,
> + .len = mtd->writesize,
> + .ecc_offset = ECC_OFFSET(mtd->writesize + 2),
> + };
> + dma_addr_t dma_addr;
> + int ret;
> +
> + memcpy(nfc->buf, buf, mtd->writesize);
> +
> + /* Prepare controller */
> + rzn1_nfc_select_target(chip, chip->cur_cs);
> + rzn1_nfc_clear_status(nfc);
> + reinit_completion(&nfc->complete);
> + rzn1_nfc_en_interrupts(nfc, INT_MEM_RDY(cs));
> + rzn1_nfc_en_correction(nfc);
> +
> + /* Configure DMA */
> + dma_addr = dma_map_single(nfc->dev, (void *)nfc->buf, mtd->writesize,
> + DMA_TO_DEVICE);
> + writel(dma_addr, nfc->regs + DMA_ADDR_LOW_REG);
> + writel(mtd->writesize, nfc->regs + DMA_CNT_REG);
> + writel(DMA_TLVL_MAX, nfc->regs + DMA_TLVL_REG);
> +
> + rzn1_nfc_trigger_op(nfc, &rop);
> + rzn1_nfc_trigger_dma(nfc);
> +
> + ret = rzn1_nfc_wait_end_of_io(nfc, chip);
> + dma_unmap_single(nfc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE);
> + rzn1_nfc_dis_correction(nfc);
> + if (ret) {
> + dev_err(nfc->dev, "Write page operation never ending\n");
> + return ret;
> + }
> +
> + if (oob_required) {
Return early if !oob_required, to reduce indentation below?
> + ret = nand_change_write_column_op(chip, mtd->writesize,
> + chip->oob_poi, mtd->oobsize,
> + false);
> + if (ret)
> + return ret;
> + }
> +
> + return 0;
> +}
> +/*
> + * This controller is simple enough and thus does not need to use the parser
> + * provided by the core, instead, handle every situation here.
> + */
> +static int rzn1_nfc_exec_op(struct nand_chip *chip,
> + const struct nand_operation *op, bool check_only)
> +{
> + struct rzn1_nfc *nfc = to_rzn1_nfc(chip->controller);
> + const struct nand_op_instr *instr = NULL;
> + struct rzn1_op rop = {
> + .command = COMMAND_INPUT_SEL_AHBS,
> + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ,
> + };
> + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0,
> + delay_phase = 0, delays = 0;
> + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words;
> + const u8 *addrs;
> + u32 last_bytes;
> + int i, ret;
unsigned int i
> +
> + if (!check_only)
> + rzn1_nfc_select_target(chip, op->cs);
> +
> + for (op_id = 0; op_id < op->ninstrs; op_id++) {
> + instr = &op->instrs[op_id];
> +
> + nand_op_trace(" ", instr);
> +
> + switch (instr->type) {
> + case NAND_OP_CMD_INSTR:
> + switch (cmd_phase++) {
> + case 0:
> + rop.command |= COMMAND_0(instr->ctx.cmd.opcode);
> + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN;
> + break;
> + case 1:
> + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode);
> + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN;
> + if (addr_phase == 0)
> + addr_phase = 1;
> + break;
> + case 2:
> + rop.command |= COMMAND_2(instr->ctx.cmd.opcode);
> + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN;
> + if (addr_phase <= 1)
> + addr_phase = 2;
> + break;
> + case 3:
> + rop.command |= COMMAND_1(instr->ctx.cmd.opcode);
> + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN;
> + if (addr_phase <= 1)
> + addr_phase = 2;
> + if (delay_phase == 0)
> + delay_phase = 1;
> + if (data_phase == 0)
> + data_phase = 1;
> + break;
> + default:
> + return -EOPNOTSUPP;
> + }
> + break;
> +
> + case NAND_OP_ADDR_INSTR:
> + addrs = instr->ctx.addr.addrs;
> + naddrs = instr->ctx.addr.naddrs;
> + if (naddrs > 5)
> + return -EOPNOTSUPP;
> +
> + col_addrs = min(2U, naddrs);
> + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0;
> +
> + switch (addr_phase++) {
> + case 0:
> + for (i = 0; i < col_addrs; i++)
> + rop.addr0_col |= addrs[i] << (i * 8);
> + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs);
> +
> + for (i = 0; i < row_addrs; i++)
> + rop.addr0_row |= addrs[2 + i] << (i * 8);
> + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs);
> +
> + if (cmd_phase == 0)
> + cmd_phase = 1;
> + break;
> + case 1:
> + for (i = 0; i < col_addrs; i++)
> + rop.addr1_col |= addrs[i] << (i * 8);
> + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs);
> +
> + for (i = 0; i < row_addrs; i++)
> + rop.addr1_row |= addrs[2 + i] << (i * 8);
> + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs);
> +
> + if (cmd_phase <= 1)
> + cmd_phase = 2;
> + break;
> + default:
> + return -EOPNOTSUPP;
> + }
> + break;
> +
> + case NAND_OP_DATA_IN_INSTR:
> + rop.read = true;
> + fallthrough;
> + case NAND_OP_DATA_OUT_INSTR:
> + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN;
> + rop.buf = instr->ctx.data.buf.in;
> + rop.len = instr->ctx.data.len;
> + rop.command |= COMMAND_FIFO_SEL;
> +
> + switch (data_phase++) {
> + case 0:
> + if (cmd_phase <= 2)
> + cmd_phase = 3;
> + if (addr_phase <= 1)
> + addr_phase = 2;
> + if (delay_phase == 0)
> + delay_phase = 1;
> + break;
> + default:
> + return -EOPNOTSUPP;
> + }
> + break;
> +
> + case NAND_OP_WAITRDY_INSTR:
> + switch (delay_phase++) {
> + case 0:
> + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN;
> +
> + if (cmd_phase <= 2)
> + cmd_phase = 3;
> + break;
> + case 1:
> + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN;
> +
> + if (cmd_phase <= 3)
> + cmd_phase = 4;
> + if (data_phase == 0)
> + data_phase = 1;
> + break;
> + default:
> + return -EOPNOTSUPP;
> + }
> + break;
> + }
> + }
> +
> + /*
> + * Sequence 19 is generic and dedicated to write operations.
> + * Sequence 18 is also generic and works for all other operations.
> + */
> + if (rop.buf && !rop.read)
> + rop.command |= COMMAND_SEQ_GEN_OUT;
> + else
> + rop.command |= COMMAND_SEQ_GEN_IN;
> +
> + if (delays > 1) {
> + dev_err(nfc->dev, "Cannot handle more than one wait delay\n");
> + return -EOPNOTSUPP;
> + }
> +
> + if (check_only)
> + return 0;
> +
> + rzn1_nfc_trigger_op(nfc, &rop);
> +
> + words = rop.len / sizeof(u32);
> + remainder = rop.len % sizeof(u32);
> + if (rop.buf && rop.read) {
> + while (!FIFO_STATE_C_EMPTY(readl(nfc->regs + FIFO_STATE_REG)))
> + cpu_relax();
> +
> + while (FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG)))
> + cpu_relax();
> +
> + ioread32_rep(nfc->regs + FIFO_DATA_REG, rop.buf, words);
> + if (remainder) {
> + last_bytes = readl_relaxed(nfc->regs + FIFO_DATA_REG);
> + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes,
> + remainder);
> + }
> +
> + if (!FIFO_STATE_R_EMPTY(readl(nfc->regs + FIFO_STATE_REG))) {
> + dev_warn(nfc->dev,
> + "Clearing residual data in the read FIFO\n");
> + rzn1_nfc_clear_fifo(nfc);
> + }
> + } else if (rop.len && !rop.read) {
> + while (FIFO_STATE_W_FULL(readl(nfc->regs + FIFO_STATE_REG)))
> + cpu_relax();
> +
> + iowrite32_rep(nfc->regs + FIFO_DATA_REG, rop.buf,
> + DIV_ROUND_UP(rop.len, 4));
> +
> + if (remainder) {
> + last_bytes = 0;
> + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder);
> + writel_relaxed(last_bytes, nfc->regs + FIFO_DATA_REG);
> + }
> +
> + while (!FIFO_STATE_W_EMPTY(readl(nfc->regs + FIFO_STATE_REG)))
> + cpu_relax();
> + }
> +
> + ret = rzn1_nfc_wait_end_of_op(nfc, chip);
> + if (ret)
> + return ret;
> +
> + return 0;
> +}
> +static int rzn1_nfc_probe(struct platform_device *pdev)
> +{
> + struct rzn1_nfc *nfc;
> + int irq, ret;
> +
> + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
> + if (!nfc)
> + return -ENOMEM;
> +
> + nfc->dev = &pdev->dev;
> + nand_controller_init(&nfc->controller);
> + nfc->controller.ops = &rzn1_nfc_ops;
> + INIT_LIST_HEAD(&nfc->chips);
> + init_completion(&nfc->complete);
> +
> + nfc->regs = devm_platform_ioremap_resource(pdev, 0);
> + if (IS_ERR(nfc->regs))
> + return PTR_ERR(nfc->regs);
> +
> + rzn1_nfc_dis_interrupts(nfc);
> + irq = platform_get_irq(pdev, 0);
platform_get_irq_optional()
> + if (irq < 0) {
What if this is a real error, or -EPROBE_DEFER?
> + dev_info(&pdev->dev, "Using polling\n");
> + nfc->use_polling = true;
> + } else {
> + ret = devm_request_irq(&pdev->dev, irq, rzn1_nfc_irq_handler, 0,
> + "rzn1-nand-controller", nfc);
> + if (ret < 0)
> + return ret;
> + }
> +
> + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
> + if (ret)
> + return ret;
> +
> + nfc->hclk = devm_clk_get(&pdev->dev, "hclk");
> + if (IS_ERR(nfc->hclk))
> + return PTR_ERR(nfc->hclk);
> +
> + nfc->eclk = devm_clk_get(&pdev->dev, "eclk");
> + if (IS_ERR(nfc->eclk))
> + return PTR_ERR(nfc->eclk);
> +
> + ret = clk_prepare_enable(nfc->hclk);
> + if (ret)
> + return ret;
> +
> + ret = clk_prepare_enable(nfc->eclk);
> + if (ret)
> + goto disable_hclk;
> +
> + rzn1_nfc_clear_fifo(nfc);
> +
> + platform_set_drvdata(pdev, nfc);
> +
> + ret = rzn1_nand_chips_init(nfc);
> + if (ret)
> + goto disable_eclk;
> +
> + return 0;
> +
> +disable_eclk:
> + clk_disable_unprepare(nfc->eclk);
> +disable_hclk:
> + clk_disable_unprepare(nfc->hclk);
> +
> + return ret;
> +}
> +static const struct of_device_id rzn1_nfc_id_table[] = {
> + { .compatible = "renesas,r9a06g032-nand-controller" },
Given my comment on the bindings, you probably want to match against
"renesas,rzn1-nand-controller" instead.
> + {} /* sentinel */
> +};
> +MODULE_DEVICE_TABLE(of, nfc_id_table);
> +
> +static struct platform_driver rzn1_nfc_driver = {
> + .driver = {
> + .name = "renesas-nfc",
Perhaps s/nfc/nandc/ everywhere, to avoid confusion with the other nfc?
> + .of_match_table = of_match_ptr(rzn1_nfc_id_table),
> + },
> + .probe = rzn1_nfc_probe,
> + .remove = rzn1_nfc_remove,
> +};
> +module_platform_driver(rzn1_nfc_driver);
Gr{oetje,eeting}s,
Geert
--
Geert Uytterhoeven -- There's lots of Linux beyond ia32 -- geert at linux-m68k.org
In personal conversations with technical people, I call myself a hacker. But
when I'm talking to journalists I just say "programmer" or something like that.
-- Linus Torvalds
More information about the linux-mtd
mailing list