[PATCH v22 18/18] mtd: rawnand: pl353: Add support for the ARM PL353 SMC NAND controller

Miquel Raynal miquel.raynal at bootlin.com
Wed Jun 9 01:01:12 PDT 2021


This hardware controller is embedded in XilinX Zynq-7000 SoCs and has
partial support for Hamming ECC correction.

This work is inspired from the original contributions of Punnaiah
Choudary Kalluri and Naga Sureshkumar Relli.

Signed-off-by: Miquel Raynal <miquel.raynal at bootlin.com>
Tested-by: Michael Walle <michael at walle.cc> [on zynq-7000]
---
 drivers/mtd/nand/raw/Kconfig                 |    8 +
 drivers/mtd/nand/raw/Makefile                |    1 +
 drivers/mtd/nand/raw/pl35x-nand-controller.c | 1194 ++++++++++++++++++
 3 files changed, 1203 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/pl35x-nand-controller.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 30f061939560..630728de4b7c 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -453,6 +453,14 @@ config MTD_NAND_ROCKCHIP
 	    NFC v800: RK3308, RV1108
 	    NFC v900: PX30, RK3326
 
+config MTD_NAND_PL35X
+	tristate "ARM PL35X NAND controller"
+	depends on OF || COMPILE_TEST
+	depends on PL353_SMC
+	help
+	  Enables support for PrimeCell SMC PL351 and PL353 NAND
+	  controller found on Zynq7000.
+
 comment "Misc"
 
 config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index d011c6c53f8f..2f97958c3a33 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_CADENCE)		+= cadence-nand-controller.o
 obj-$(CONFIG_MTD_NAND_ARASAN)		+= arasan-nand-controller.o
 obj-$(CONFIG_MTD_NAND_INTEL_LGM)	+= intel-nand-controller.o
 obj-$(CONFIG_MTD_NAND_ROCKCHIP)		+= rockchip-nand-controller.o
+obj-$(CONFIG_MTD_NAND_PL35X)		+= pl35x-nand-controller.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/pl35x-nand-controller.c b/drivers/mtd/nand/raw/pl35x-nand-controller.c
new file mode 100644
index 000000000000..8a91e069ee2e
--- /dev/null
+++ b/drivers/mtd/nand/raw/pl35x-nand-controller.c
@@ -0,0 +1,1194 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM PL35X NAND flash controller driver
+ *
+ * Copyright (C) 2017 Xilinx, Inc
+ * Author:
+ *   Miquel Raynal <miquel.raynal at bootlin.com>
+ * Original work (rewritten):
+ *   Punnaiah Choudary Kalluri <punnaia at xilinx.com>
+ *   Naga Sureshkumar Relli <nagasure at xilinx.com>
+ */
+
+#include <linux/amba/bus.h>
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/iopoll.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+
+#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
+
+/* SMC controller status register (RO) */
+#define PL35X_SMC_MEMC_STATUS 0x0
+#define   PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1	BIT(6)
+/* SMC clear config register (WO) */
+#define PL35X_SMC_MEMC_CFG_CLR 0xC
+#define   PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1	BIT(1)
+#define   PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1	BIT(4)
+#define   PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1	BIT(6)
+/* SMC direct command register (WO) */
+#define PL35X_SMC_DIRECT_CMD 0x10
+#define   PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
+#define   PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
+/* SMC set cycles register (WO) */
+#define PL35X_SMC_CYCLES 0x14
+#define   PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
+#define   PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
+#define   PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
+#define   PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
+#define   PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
+#define   PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
+#define   PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
+/* SMC set opmode register (WO) */
+#define PL35X_SMC_OPMODE 0x18
+#define   PL35X_SMC_OPMODE_BW_8 0
+#define   PL35X_SMC_OPMODE_BW_16 1
+/* SMC ECC status register (RO) */
+#define PL35X_SMC_ECC_STATUS 0x400
+#define   PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
+/* SMC ECC configuration register */
+#define PL35X_SMC_ECC_CFG 0x404
+#define   PL35X_SMC_ECC_CFG_MODE_MASK 0xC
+#define   PL35X_SMC_ECC_CFG_MODE_BYPASS 0
+#define   PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
+#define   PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
+#define   PL35X_SMC_ECC_CFG_PGSIZE_MASK	0x3
+/* SMC ECC command 1 register */
+#define PL35X_SMC_ECC_CMD1 0x408
+#define   PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
+#define   PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
+#define   PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
+#define   PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
+/* SMC ECC command 2 register */
+#define PL35X_SMC_ECC_CMD2 0x40C
+#define   PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
+#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
+#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
+#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
+/* SMC ECC value registers (RO) */
+#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
+#define   PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
+#define   PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
+#define   PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
+
+/* NAND AXI interface */
+#define PL35X_SMC_CMD_PHASE 0
+#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
+#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
+#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
+#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
+#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
+#define PL35X_SMC_DATA_PHASE BIT(19)
+#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
+#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
+
+#define PL35X_NAND_MAX_CS 1
+#define PL35X_NAND_LAST_XFER_SZ 4
+#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
+
+#define PL35X_NAND_ECC_BITS_MASK 0xFFF
+#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
+#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
+
+struct pl35x_nand_timings {
+	unsigned int t_rc:4;
+	unsigned int t_wc:4;
+	unsigned int t_rea:3;
+	unsigned int t_wp:3;
+	unsigned int t_clr:3;
+	unsigned int t_ar:3;
+	unsigned int t_rr:4;
+	unsigned int rsvd:8;
+};
+
+struct pl35x_nand {
+	struct list_head node;
+	struct nand_chip chip;
+	unsigned int cs;
+	unsigned int addr_cycles;
+	u32 ecc_cfg;
+	u32 timings;
+};
+
+/**
+ * struct pl35x_nandc - NAND flash controller driver structure
+ * @dev: Kernel device
+ * @conf_regs: SMC configuration registers for command phase
+ * @io_regs: NAND data registers for data phase
+ * @controller: Core NAND controller structure
+ * @chip: NAND chip information structure
+ * @selected_chip: NAND chip currently selected by the controller
+ * @assigned_cs: List of assigned CS
+ * @ecc_buf: Temporary buffer to extract ECC bytes
+ */
+struct pl35x_nandc {
+	struct device *dev;
+	void __iomem *conf_regs;
+	void __iomem *io_regs;
+	struct nand_controller controller;
+	struct list_head chips;
+	struct nand_chip *selected_chip;
+	unsigned long assigned_cs;
+	u8 *ecc_buf;
+};
+
+static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
+{
+	return container_of(ctrl, struct pl35x_nandc, controller);
+}
+
+static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
+{
+	return container_of(chip, struct pl35x_nand, chip);
+}
+
+static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * chip->ecc.bytes);
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * chip->ecc.bytes) + 8;
+	oobregion->length = 8;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
+	.ecc = pl35x_ecc_ooblayout16_ecc,
+	.free = pl35x_ecc_ooblayout16_free,
+};
+
+/* Generic flash bbt decriptors */
+static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
+{
+	writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
+	       PL35X_SMC_DIRECT_CMD_UPD_REGS,
+	       nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
+}
+
+static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
+{
+	if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
+		return -EINVAL;
+
+	writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
+	pl35x_smc_update_regs(nfc);
+
+	return 0;
+}
+
+static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
+{
+	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
+	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
+}
+
+static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
+{
+	u32 reg;
+	int ret;
+
+	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
+				 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
+				 10, 1000000);
+	if (ret)
+		dev_err(nfc->dev,
+			"Timeout polling on NAND controller interrupt (0x%x)\n",
+			reg);
+
+	pl35x_smc_clear_irq(nfc);
+
+	return ret;
+}
+
+static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
+{
+	u32 reg;
+	int ret;
+
+	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
+				 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
+				 10, 1000000);
+	if (ret)
+		dev_err(nfc->dev,
+			"Timeout polling on ECC controller interrupt\n");
+
+	return ret;
+}
+
+static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
+				  struct nand_chip *chip,
+				  unsigned int mode)
+{
+	struct pl35x_nand *plnand;
+	u32 ecc_cfg;
+
+	ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
+	ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
+	ecc_cfg |= mode;
+	writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
+
+	if (chip) {
+		plnand = to_pl35x_nand(chip);
+		plnand->ecc_cfg = ecc_cfg;
+	}
+
+	if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
+		return pl35x_smc_wait_for_ecc_done(nfc);
+
+	return 0;
+}
+
+static void pl35x_smc_force_byte_access(struct nand_chip *chip,
+					bool force_8bit)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	int ret;
+
+	if (!(chip->options & NAND_BUSWIDTH_16))
+		return;
+
+	if (force_8bit)
+		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
+	else
+		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
+
+	if (ret)
+		dev_err(nfc->dev, "Error in Buswidth\n");
+}
+
+static void pl35x_nand_select_target(struct nand_chip *chip,
+				     unsigned int die_nr)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	struct pl35x_nand *plnand = to_pl35x_nand(chip);
+
+	if (chip == nfc->selected_chip)
+		return;
+
+	/* Setup the timings */
+	writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
+	pl35x_smc_update_regs(nfc);
+
+	/* Configure the ECC engine */
+	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
+
+	nfc->selected_chip = chip;
+}
+
+static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
+				    unsigned int len, bool force_8bit,
+				    unsigned int flags, unsigned int last_flags)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	unsigned int buf_end = len / 4;
+	unsigned int in_start = round_down(len, 4);
+	unsigned int data_phase_addr;
+	u32 *buf32 = (u32 *)in;
+	u8 *buf8 = (u8 *)in;
+	int i;
+
+	if (force_8bit)
+		pl35x_smc_force_byte_access(chip, true);
+
+	for (i = 0; i < buf_end; i++) {
+		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
+		if (i + 1 == buf_end)
+			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
+
+		buf32[i] = readl(nfc->io_regs + data_phase_addr);
+	}
+
+	/* No working extra flags on unaligned data accesses */
+	for (i = in_start; i < len; i++)
+		buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
+
+	if (force_8bit)
+		pl35x_smc_force_byte_access(chip, false);
+}
+
+static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
+				     int len, bool force_8bit,
+				     unsigned int flags,
+				     unsigned int last_flags)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	unsigned int buf_end = len / 4;
+	unsigned int in_start = round_down(len, 4);
+	const u32 *buf32 = (const u32 *)out;
+	const u8 *buf8 = (const u8 *)out;
+	unsigned int data_phase_addr;
+	int i;
+
+	if (force_8bit)
+		pl35x_smc_force_byte_access(chip, true);
+
+	for (i = 0; i < buf_end; i++) {
+		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
+		if (i + 1 == buf_end)
+			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
+
+		writel(buf32[i], nfc->io_regs + data_phase_addr);
+	}
+
+	/* No working extra flags on unaligned data accesses */
+	for (i = in_start; i < len; i++)
+		writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
+
+	if (force_8bit)
+		pl35x_smc_force_byte_access(chip, false);
+}
+
+static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
+				   unsigned char *read_ecc,
+				   unsigned char *calc_ecc)
+{
+	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
+	unsigned short calc_ecc_lower, calc_ecc_upper;
+	unsigned short byte_addr, bit_addr;
+
+	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
+			 PL35X_NAND_ECC_BITS_MASK;
+	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
+			 PL35X_NAND_ECC_BITS_MASK;
+
+	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
+			 PL35X_NAND_ECC_BITS_MASK;
+	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
+			 PL35X_NAND_ECC_BITS_MASK;
+
+	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+	ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+	/* No error */
+	if (likely(!ecc_odd && !ecc_even))
+		return 0;
+
+	/* One error in the main data; to be corrected */
+	if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
+		/* Bits [11:3] of error code give the byte offset */
+		byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
+		/* Bits [2:0] of error code give the bit offset */
+		bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
+		/* Toggle the faulty bit */
+		buf[byte_addr] ^= (BIT(bit_addr));
+
+		return 1;
+	}
+
+	/* One error in the ECC data; no action needed */
+	if (hweight32(ecc_odd | ecc_even) == 1)
+		return 1;
+
+	return -EBADMSG;
+}
+
+static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
+					u8 *ecc_array)
+{
+	u32 ecc_value = ~ecc_reg;
+	unsigned int ecc_byte;
+
+	for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
+		ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
+}
+
+static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
+				    struct nand_chip *chip, u8 *read_ecc)
+{
+	u32 ecc_value;
+	int chunk;
+
+	for (chunk = 0; chunk < chip->ecc.steps;
+	     chunk++, read_ecc += chip->ecc.bytes) {
+		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
+		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
+			return -EINVAL;
+
+		pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
+	}
+
+	return 0;
+}
+
+static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
+					 struct nand_chip *chip, u8 *data,
+					 u8 *read_ecc)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int max_bitflips = 0, chunk;
+	u8 calc_ecc[3];
+	u32 ecc_value;
+	int stats;
+
+	for (chunk = 0; chunk < chip->ecc.steps;
+	     chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
+		/* Read ECC value for each chunk */
+		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
+
+		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
+			return -EINVAL;
+
+		if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
+			mtd->ecc_stats.failed++;
+			continue;
+		}
+
+		pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
+		stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
+		if (stats < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stats;
+			max_bitflips = max_t(unsigned int, max_bitflips, stats);
+		}
+	}
+
+	return max_bitflips;
+}
+
+static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
+				       const u8 *buf, int oob_required,
+				       int page)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	struct pl35x_nand *plnand = to_pl35x_nand(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
+	unsigned int nrows = plnand->addr_cycles;
+	u32 addr1 = 0, addr2 = 0, row;
+	u32 cmd_addr;
+	int i, ret;
+
+	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
+	if (ret)
+		return ret;
+
+	cmd_addr = PL35X_SMC_CMD_PHASE |
+		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
+		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
+
+	for (i = 0, row = first_row; row < nrows; i++, row++) {
+		u8 addr = page >> ((i * 8) & 0xFF);
+
+		if (row < 4)
+			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
+		else
+			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
+	}
+
+	/* Send the command and address cycles */
+	writel(addr1, nfc->io_regs + cmd_addr);
+	if (plnand->addr_cycles > 4)
+		writel(addr2, nfc->io_regs + cmd_addr);
+
+	/* Write the data with the engine enabled */
+	pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
+				 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
+	ret = pl35x_smc_wait_for_ecc_done(nfc);
+	if (ret)
+		goto disable_ecc_engine;
+
+	/* Copy the HW calculated ECC bytes in the OOB buffer */
+	ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
+	if (ret)
+		goto disable_ecc_engine;
+
+	if (!oob_required)
+		memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+	ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
+					 0, chip->ecc.total);
+	if (ret)
+		goto disable_ecc_engine;
+
+	/* Write the spare area with ECC bytes */
+	pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
+				 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
+				 PL35X_SMC_CMD_PHASE_CMD1_VALID |
+				 PL35X_SMC_DATA_PHASE_CLEAR_CS);
+	ret = pl35x_smc_wait_for_irq(nfc);
+	if (ret)
+		goto disable_ecc_engine;
+
+disable_ecc_engine:
+	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
+
+	return ret;
+}
+
+/*
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * There is a limitation with SMC controller: ECC_LAST must be set on the
+ * last data access to tell the ECC engine not to expect any further data.
+ * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
+ * and doing a last 4-byte transfer with the additional bit set. The last block
+ * should be aligned with the end of an ECC block. Because of this limitation,
+ * it is not possible to use the core routines.
+ */
+static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
+				      u8 *buf, int oob_required, int page)
+{
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(nand_get_interface_config(chip));
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	struct pl35x_nand *plnand = to_pl35x_nand(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
+	unsigned int nrows = plnand->addr_cycles;
+	unsigned int addr1 = 0, addr2 = 0, row;
+	u32 cmd_addr;
+	int i, ret;
+
+	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
+	if (ret)
+		return ret;
+
+	cmd_addr = PL35X_SMC_CMD_PHASE |
+		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
+		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
+		   PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
+		   PL35X_SMC_CMD_PHASE_CMD1_VALID;
+
+	for (i = 0, row = first_row; row < nrows; i++, row++) {
+		u8 addr = page >> ((i * 8) & 0xFF);
+
+		if (row < 4)
+			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
+		else
+			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
+	}
+
+	/* Send the command and address cycles */
+	writel(addr1, nfc->io_regs + cmd_addr);
+	if (plnand->addr_cycles > 4)
+		writel(addr2, nfc->io_regs + cmd_addr);
+
+	/* Wait the data to be available in the NAND cache */
+	ndelay(PSEC_TO_NSEC(sdr->tRR_min));
+	ret = pl35x_smc_wait_for_irq(nfc);
+	if (ret)
+		goto disable_ecc_engine;
+
+	/* Retrieve the raw data with the engine enabled */
+	pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
+				0, PL35X_SMC_DATA_PHASE_ECC_LAST);
+	ret = pl35x_smc_wait_for_ecc_done(nfc);
+	if (ret)
+		goto disable_ecc_engine;
+
+	/* Retrieve the stored ECC bytes */
+	pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
+				0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
+	ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		goto disable_ecc_engine;
+
+	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
+
+	/* Correct the data and report failures */
+	return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
+
+disable_ecc_engine:
+	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
+
+	return ret;
+}
+
+static int pl35x_nand_exec_op(struct nand_chip *chip,
+			      const struct nand_subop *subop)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	const struct nand_op_instr *instr, *data_instr = NULL;
+	unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
+	u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
+	unsigned int op_id, len, offset, rdy_del_ns;
+	int last_instr_type = -1;
+	bool cmd1_valid = false;
+	const u8 *addrs;
+	int i, ret;
+
+	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+		instr = &subop->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			if (!cmds) {
+				cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
+			} else {
+				cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
+				if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
+					cmd1_valid = true;
+			}
+			cmds++;
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			offset = nand_subop_get_addr_start_off(subop, op_id);
+			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+			addrs = &instr->ctx.addr.addrs[offset];
+			cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
+
+			for (i = offset; i < naddrs; i++) {
+				if (i < 4)
+					addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
+				else
+					addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
+			}
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+		case NAND_OP_DATA_OUT_INSTR:
+			data_instr = instr;
+			len = nand_subop_get_data_len(subop, op_id);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
+			rdy_del_ns = instr->delay_ns;
+			break;
+		}
+
+		last_instr_type = instr->type;
+	}
+
+	/* Command phase */
+	cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
+		    (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
+	writel(addr1, nfc->io_regs + cmd_addr);
+	if (naddrs > 4)
+		writel(addr2, nfc->io_regs + cmd_addr);
+
+	/* Data phase */
+	if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
+		last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
+		if (cmds == 2)
+			last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
+
+		pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
+					 len, data_instr->ctx.data.force_8bit,
+					 0, last_flags);
+	}
+
+	if (rdy_tim_ms) {
+		ndelay(rdy_del_ns);
+		ret = pl35x_smc_wait_for_irq(nfc);
+		if (ret)
+			return ret;
+	}
+
+	if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
+		pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
+					len, data_instr->ctx.data.force_8bit,
+					0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
+
+	return 0;
+}
+
+static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
+	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+	);
+
+static int pl35x_nfc_exec_op(struct nand_chip *chip,
+			     const struct nand_operation *op,
+			     bool check_only)
+{
+	if (!check_only)
+		pl35x_nand_select_target(chip, op->cs);
+
+	return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
+				      op, check_only);
+}
+
+static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
+				     const struct nand_interface_config *conf)
+{
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	struct pl35x_nand *plnand = to_pl35x_nand(chip);
+	struct pl35x_nand_timings tmgs = {};
+	const struct nand_sdr_timings *sdr;
+	unsigned int period_ns, val;
+	struct clk *mclk;
+
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
+	if (IS_ERR(mclk)) {
+		dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
+		return PTR_ERR(mclk);
+	}
+
+	/*
+	 * SDR timings are given in pico-seconds while NFC timings must be
+	 * expressed in NAND controller clock cycles. We use the TO_CYCLE()
+	 * macro to convert from one to the other.
+	 */
+	period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
+
+	/*
+	 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
+	 * written anywhere in the datasheet but is an empirical observation.
+	 */
+	val = TO_CYCLES(sdr->tRC_min, period_ns);
+	if (sdr->tRC_min <= 20000)
+		val++;
+
+	tmgs.t_rc = val;
+	if (tmgs.t_rc != val || tmgs.t_rc < 2)
+		return -EINVAL;
+
+	val = TO_CYCLES(sdr->tWC_min, period_ns);
+	tmgs.t_wc = val;
+	if (tmgs.t_wc != val || tmgs.t_wc < 2)
+		return -EINVAL;
+
+	/*
+	 * For all SDR modes, PL35X SMC needs tREA_max being 1,
+	 * this is also an empirical result.
+	 */
+	tmgs.t_rea = 1;
+
+	val = TO_CYCLES(sdr->tWP_min, period_ns);
+	tmgs.t_wp = val;
+	if (tmgs.t_wp != val || tmgs.t_wp < 1)
+		return -EINVAL;
+
+	val = TO_CYCLES(sdr->tCLR_min, period_ns);
+	tmgs.t_clr = val;
+	if (tmgs.t_clr != val)
+		return -EINVAL;
+
+	val = TO_CYCLES(sdr->tAR_min, period_ns);
+	tmgs.t_ar = val;
+	if (tmgs.t_ar != val)
+		return -EINVAL;
+
+	val = TO_CYCLES(sdr->tRR_min, period_ns);
+	tmgs.t_rr = val;
+	if (tmgs.t_rr != val)
+		return -EINVAL;
+
+	if (cs == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
+			  PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
+			  PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
+			  PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
+			  PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
+			  PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
+			  PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
+
+	return 0;
+}
+
+static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
+				      struct nand_chip *chip,
+				      unsigned int pg_sz)
+{
+	struct pl35x_nand *plnand = to_pl35x_nand(chip);
+	u32 sz;
+
+	switch (pg_sz) {
+	case SZ_512:
+		sz = 1;
+		break;
+	case SZ_1K:
+		sz = 2;
+		break;
+	case SZ_2K:
+		sz = 3;
+		break;
+	default:
+		sz = 0;
+		break;
+	}
+
+	plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
+	plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
+	plnand->ecc_cfg |= sz;
+	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
+}
+
+static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
+					     struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret = 0;
+
+	if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
+		dev_err(nfc->dev,
+			"The hardware ECC engine is limited to pages up to 2kiB\n");
+		return -EOPNOTSUPP;
+	}
+
+	chip->ecc.strength = 1;
+	chip->ecc.bytes = 3;
+	chip->ecc.size = SZ_512;
+	chip->ecc.steps = mtd->writesize / chip->ecc.size;
+	chip->ecc.read_page = pl35x_nand_read_page_hwecc;
+	chip->ecc.write_page = pl35x_nand_write_page_hwecc;
+	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
+	pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
+
+	nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
+				    GFP_KERNEL);
+	if (!nfc->ecc_buf)
+		return -ENOMEM;
+
+	switch (mtd->oobsize) {
+	case 16:
+		/* Legacy Xilinx layout */
+		mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
+		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
+		break;
+	case 64:
+		mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
+		break;
+	default:
+		dev_err(nfc->dev, "Unsupported OOB size\n");
+		return -EOPNOTSUPP;
+	}
+
+	return ret;
+}
+
+static int pl35x_nand_attach_chip(struct nand_chip *chip)
+{
+	const struct nand_ecc_props *requirements =
+		nanddev_get_ecc_requirements(&chip->base);
+	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
+	struct pl35x_nand *plnand = to_pl35x_nand(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
+	    (!chip->ecc.size || !chip->ecc.strength)) {
+		if (requirements->step_size && requirements->strength) {
+			chip->ecc.size = requirements->step_size;
+			chip->ecc.strength = requirements->strength;
+		} else {
+			dev_info(nfc->dev,
+				 "No minimum ECC strength, using 1b/512B\n");
+			chip->ecc.size = 512;
+			chip->ecc.strength = 1;
+		}
+	}
+
+	if (mtd->writesize <= SZ_512)
+		plnand->addr_cycles = 1;
+	else
+		plnand->addr_cycles = 2;
+
+	if (chip->options & NAND_ROW_ADDR_3)
+		plnand->addr_cycles += 3;
+	else
+		plnand->addr_cycles += 2;
+
+	switch (chip->ecc.engine_type) {
+	case NAND_ECC_ENGINE_TYPE_ON_DIE:
+		/* Keep these legacy BBT descriptors for ON_DIE situations */
+		chip->bbt_td = &bbt_main_descr;
+		chip->bbt_md = &bbt_mirror_descr;
+		fallthrough;
+	case NAND_ECC_ENGINE_TYPE_NONE:
+	case NAND_ECC_ENGINE_TYPE_SOFT:
+		break;
+	case NAND_ECC_ENGINE_TYPE_ON_HOST:
+		ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
+		if (ret)
+			return ret;
+		break;
+	default:
+		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
+			chip->ecc.engine_type);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops pl35x_nandc_ops = {
+	.attach_chip = pl35x_nand_attach_chip,
+	.exec_op = pl35x_nfc_exec_op,
+	.setup_interface = pl35x_nfc_setup_interface,
+};
+
+static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
+{
+	int ret;
+
+	/* Disable interrupts and clear their status */
+	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
+	       PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
+	       PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
+	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
+
+	/* Set default bus width to 8-bit */
+	ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
+	if (ret)
+		return ret;
+
+	/* Ensure the ECC controller is bypassed by default */
+	ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
+	if (ret)
+		return ret;
+
+	/*
+	 * Configure the commands that the ECC block uses to detect the
+	 * operations it should start/end.
+	 */
+	writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
+	       PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
+	       PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
+	       PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
+	       nfc->conf_regs + PL35X_SMC_ECC_CMD1);
+	writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
+	       PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
+	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
+	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
+	       nfc->conf_regs + PL35X_SMC_ECC_CMD2);
+
+	return 0;
+}
+
+static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
+				struct device_node *np)
+{
+	struct pl35x_nand *plnand;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	int cs, ret;
+
+	plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
+	if (!plnand)
+		return -ENOMEM;
+
+	ret = of_property_read_u32(np, "reg", &cs);
+	if (ret)
+		return ret;
+
+	if (cs >= PL35X_NAND_MAX_CS) {
+		dev_err(nfc->dev, "Wrong CS %d\n", cs);
+		return -EINVAL;
+	}
+
+	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
+		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
+		return -EINVAL;
+	}
+
+	plnand->cs = cs;
+
+	chip = &plnand->chip;
+	chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+	chip->controller = &nfc->controller;
+	mtd = nand_to_mtd(chip);
+	mtd->dev.parent = nfc->dev;
+	nand_set_flash_node(chip, nfc->dev->of_node);
+	if (!mtd->name) {
+		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
+					   "%s", PL35X_NANDC_DRIVER_NAME);
+		if (!mtd->name) {
+			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
+			return -ENOMEM;
+		}
+	}
+
+	ret = nand_scan(chip, 1);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		nand_cleanup(chip);
+		return ret;
+	}
+
+	list_add_tail(&plnand->node, &nfc->chips);
+
+	return ret;
+}
+
+static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
+{
+	struct pl35x_nand *plnand, *tmp;
+	struct nand_chip *chip;
+	int ret;
+
+	list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
+		chip = &plnand->chip;
+		ret = mtd_device_unregister(nand_to_mtd(chip));
+		WARN_ON(ret);
+		nand_cleanup(chip);
+		list_del(&plnand->node);
+	}
+}
+
+static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
+{
+	struct device_node *np = nfc->dev->of_node, *nand_np;
+	int nchips = of_get_child_count(np);
+	int ret;
+
+	if (!nchips || nchips > PL35X_NAND_MAX_CS) {
+		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
+			nchips);
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(np, nand_np) {
+		ret = pl35x_nand_chip_init(nfc, nand_np);
+		if (ret) {
+			of_node_put(nand_np);
+			pl35x_nand_chips_cleanup(nfc);
+			break;
+		}
+	}
+
+	return ret;
+}
+
+static int pl35x_nand_probe(struct platform_device *pdev)
+{
+	struct device *smc_dev = pdev->dev.parent;
+	struct amba_device *smc_amba = to_amba_device(smc_dev);
+	struct pl35x_nandc *nfc;
+	u32 ret;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->dev = &pdev->dev;
+	nand_controller_init(&nfc->controller);
+	nfc->controller.ops = &pl35x_nandc_ops;
+	INIT_LIST_HEAD(&nfc->chips);
+
+	nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
+	if (IS_ERR(nfc->conf_regs))
+		return PTR_ERR(nfc->conf_regs);
+
+	nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
+	if (IS_ERR(nfc->io_regs))
+		return PTR_ERR(nfc->io_regs);
+
+	ret = pl35x_nand_reset_state(nfc);
+	if (ret)
+		return ret;
+
+	ret = pl35x_nand_chips_init(nfc);
+	if (ret)
+		return ret;
+
+	platform_set_drvdata(pdev, nfc);
+
+	return 0;
+}
+
+static int pl35x_nand_remove(struct platform_device *pdev)
+{
+	struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
+
+	pl35x_nand_chips_cleanup(nfc);
+
+	return 0;
+}
+
+static const struct of_device_id pl35x_nand_of_match[] = {
+	{ .compatible = "arm,pl353-nand-r2p1" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
+
+static struct platform_driver pl35x_nandc_driver = {
+	.probe = pl35x_nand_probe,
+	.remove	= pl35x_nand_remove,
+	.driver = {
+		.name = PL35X_NANDC_DRIVER_NAME,
+		.of_match_table = pl35x_nand_of_match,
+	},
+};
+module_platform_driver(pl35x_nandc_driver);
+
+MODULE_AUTHOR("Xilinx, Inc.");
+MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
+MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
+MODULE_LICENSE("GPL");
-- 
2.27.0




More information about the linux-mtd mailing list