[LINUX PATCH v8 2/2] mtd: rawnand: pl353: Add basic driver for arm pl353 smc nand interface
nagasureshkumarrelli at gmail.com
nagasureshkumarrelli at gmail.com
Wed Mar 14 03:48:25 PDT 2018
From: Naga Sureshkumar Relli <nagasure at xilinx.com>
Add driver for arm pl353 static memory controller nand interface with
HW ECC support. This controller is used in xilinx zynq soc for interfacing
the nand flash memory.
Signed-off-by: Naga Sureshkumar Relli <nagasure at xilinx.com>
---
Changes in v8:
- Added exec_op() implementation
- Fixed the below v7 review comments
- removed mtd_info from pl353_nand_info struct
- Corrected ecc layout offsets
- Added on-die ecc support
Changes in v7:
- Currently not implemented the memclk rate adjustments. I will
look into this later and once the basic driver is accepted.
- Fixed GPL licence ident
Changes in v6:
- Fixed the checkpatch.pl reported warnings
- Using the address cycles information from the onfi param page
earlier it is hardcoded to 5 in driver
Changes in v5:
- Configure the nand timing parameters as per the onfi spec
Changes in v4:
- Updated the driver to sync with pl353_smc driver APIs
Changes in v3:
- implemented the proper error codes
- further breakdown this patch to multiple sets
- added the controller and driver details to Documentation section
- updated the licenece to GPLv2
- reorganized the pl353_nand_ecc_init function
Changes in v2:
- use "depends on" rather than "select" option in kconfig
- remove unused variable parts
- remove dummy helper and use writel_relaxed directly
---
drivers/mtd/nand/raw/Kconfig | 8 +
drivers/mtd/nand/raw/Makefile | 1 +
drivers/mtd/nand/raw/pl353_nand.c | 1363 +++++++++++++++++++++++++++++++++++++
3 files changed, 1372 insertions(+)
create mode 100644 drivers/mtd/nand/raw/pl353_nand.c
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 2c6ecb7..5e20391 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -566,4 +566,12 @@ config MTD_NAND_MTK
Enables support for NAND controller on MTK SoCs.
This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+config MTD_NAND_PL353
+ tristate "ARM Pl353 NAND flash driver"
+ depends on MTD_NAND && ARM
+ depends on PL35X_SMC
+ help
+ This enables access to the NAND flash device on PL353
+ SMC controller.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index f16f59a..3e943f3 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o
nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_amd.o
diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c
new file mode 100644
index 0000000..55c51e2
--- /dev/null
+++ b/drivers/mtd/nand/raw/pl353_nand.c
@@ -0,0 +1,1363 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM PL353 NAND flash controller driver
+ *
+ * Copyright (C) 2017 Xilinx, Inc
+ * Author: Punnaiah <punnaiah at xilinx.com>
+ * Author: nagasuresh <nagasure at xilinx.com>
+ *
+ */
+
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/platform_data/pl353-smc.h>
+
+#define PL353_NAND_DRIVER_NAME "pl353-nand"
+
+/* NAND flash driver defines */
+#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */
+#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */
+#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */
+
+/* Flash memory controller operating parameters */
+
+#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \
+ (0 << 5)) /* No Jumping */
+
+/* AXI Address definitions */
+#define START_CMD_SHIFT 3
+#define END_CMD_SHIFT 11
+#define END_CMD_VALID_SHIFT 20
+#define ADDR_CYCLES_SHIFT 21
+#define CLEAR_CS_SHIFT 21
+#define ECC_LAST_SHIFT 10
+#define COMMAND_PHASE (0 << 19)
+#define DATA_PHASE BIT(19)
+
+#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */
+#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */
+
+#define ONDIE_ECC_FEATURE_ADDR 0x90
+#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
+#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ)
+#define PL353_NAND_LAST_TRANSFER_LENGTH 4
+
+/* Inline function for the NAND controller register write */
+static inline void pl353_nand_write32(void __iomem *addr, u32 val)
+{
+ writel_relaxed((val), (addr));
+}
+
+struct pl353_nfc_op {
+ u32 cmnds[4];
+ u32 thirdrow;
+ u32 type;
+ u32 end_cmd;
+ u32 addrs;
+ bool wait;
+ u32 len;
+ u32 naddrs;
+ unsigned int data_instr_idx;
+ const struct nand_op_instr *data_instr;
+ unsigned int rdy_timeout_ms;
+ unsigned int rdy_delay_ns;
+};
+
+/**
+ * struct pl353_nand_info - Defines the NAND flash driver instance
+ * @chip: NAND chip information structure
+ * @nand_base: Virtual address of the NAND flash device
+ * @end_cmd_pending: End command is pending
+ * @end_cmd: End command
+ * @row_addr_cycles: Row address cycles
+ * @col_addr_cycles: Column address cycles
+ * @address: Page address
+ * @cmd_pending: More command is needed
+ */
+struct pl353_nand_info {
+ struct nand_chip chip;
+ void __iomem *nand_base;
+ unsigned long end_cmd_pending;
+ unsigned long end_cmd;
+ u8 row_addr_cycles;
+ u8 col_addr_cycles;
+ u32 address;
+ u32 cmd_pending;
+};
+
+static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section >= chip->ecc.steps)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 0;
+ oobregion->length = chip->ecc.bytes;
+
+ return 0;
+}
+
+static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section >= chip->ecc.steps)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 8;
+
+ oobregion->length = 8;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
+ .ecc = pl353_ecc_ooblayout16_ecc,
+ .free = pl353_ecc_ooblayout16_free,
+};
+
+static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section >= chip->ecc.steps)
+ return -ERANGE;
+
+ oobregion->offset = (section * chip->ecc.bytes) + 52;
+ oobregion->length = chip->ecc.bytes;
+
+ return 0;
+}
+
+static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+ if (section >= chip->ecc.steps)
+ return -ERANGE;
+
+ oobregion->offset = (section * chip->ecc.bytes) + 2;
+
+ oobregion->length = 50;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
+ .ecc = pl353_ecc_ooblayout64_ecc,
+ .free = pl353_ecc_ooblayout64_free,
+};
+
+/* Generic flash bbt decriptors */
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 4,
+ .len = 4,
+ .veroffs = 20,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 4,
+ .len = 4,
+ .veroffs = 20,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/**
+ * pl353_nand_read_buf_l - read chip data into buffer
+ * @chip: Pointer to the NAND chip info structure
+ * @in: Pointer to the buffer to store read data
+ * @len: Number of bytes to read
+ * Return: Always return zero
+ */
+static int pl353_nand_read_buf_l(struct nand_chip *chip,
+ uint8_t *in,
+ unsigned int len)
+{
+ int i;
+ unsigned long *ptr = (unsigned long *)in;
+
+ len >>= 2;
+ for (i = 0; i < len; i++)
+ ptr[i] = readl(chip->IO_ADDR_R);
+ return 0;
+}
+
+static void pl353_nand_write_buf_l(struct nand_chip *chip, const uint8_t *buf,
+ int len)
+{
+ int i;
+ unsigned long *ptr = (unsigned long *)buf;
+
+ for (i = 0; i < len; i++)
+ writeb(ptr[i], chip->IO_ADDR_W);
+}
+
+/**
+ * pl353_nand_write_buf - write buffer to chip
+ * @mtd: Pointer to the mtd info structure
+ * @buf: Pointer to the buffer to store read data
+ * @len: Number of bytes to write
+ */
+static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
+{
+ int i;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ unsigned long *ptr = (unsigned long *)buf;
+
+ len >>= 2;
+
+ for (i = 0; i < len; i++)
+ writel(ptr[i], chip->IO_ADDR_W);
+}
+
+/**
+ * pl353_nand_read_buf - read chip data into buffer
+ * @chip: Pointer to the NAND chip info structure
+ * @in: Pointer to the buffer to store read data
+ * @len: Number of bytes to read
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_read_buf(struct nand_chip *chip,
+ uint8_t *in,
+ unsigned int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ in[i] = readb(chip->IO_ADDR_R);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd: Pointer to the mtd_info structure
+ * @data: Pointer to the page data
+ * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ *
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
+ const u8 *data, u8 *ecc_code)
+{
+ u32 ecc_value, ecc_status;
+ u8 ecc_reg, ecc_byte;
+ unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
+ /* Wait till the ECC operation is complete or timeout */
+ do {
+ if (pl353_smc_ecc_is_busy())
+ cpu_relax();
+ else
+ break;
+ } while (!time_after_eq(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ pr_err("%s timed out\n", __func__);
+ return -ETIMEDOUT;
+ }
+
+ for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+ /* Read ECC value for each block */
+ ecc_value = pl353_smc_get_ecc_val(ecc_reg);
+ ecc_status = (ecc_value >> 24) & 0xFF;
+ /* ECC value valid */
+ if (ecc_status & 0x40) {
+ for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+ /* Copy ECC bytes to MTD buffer */
+ *ecc_code = ~ecc_value & 0xFF;
+ ecc_value = ecc_value >> 8;
+ ecc_code++;
+ }
+ } else {
+ pr_warn("%s status failed\n", __func__);
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * onehot - onehot function
+ * @value: Value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if onebit is set.
+ *
+ * Return: 1 if it is onehot else 0
+ */
+static int onehot(unsigned short value)
+{
+ return (value & (value - 1)) == 0;
+}
+
+/**
+ * pl353_nand_correct_data - ECC correction function
+ * @mtd: Pointer to the mtd_info structure
+ * @buf: Pointer to the page data
+ * @read_ecc: Pointer to the ECC value read from spare data area
+ * @calc_ecc: Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * Return: 0 if no ECC errors found
+ * 1 if single bit error found and corrected.
+ * -1 if multiple ECC errors found.
+ */
+static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+ unsigned char *read_ecc,
+ unsigned char *calc_ecc)
+{
+ unsigned char bit_addr;
+ unsigned int byte_addr;
+ unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
+ unsigned short calc_ecc_lower, calc_ecc_upper;
+
+ read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+ read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+ calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+ calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+ ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+ ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+ if ((ecc_odd == 0) && (ecc_even == 0))
+ return 0; /* no error */
+
+ if (ecc_odd == (~ecc_even & 0xfff)) {
+ /* bits [11:3] of error code is byte offset */
+ byte_addr = (ecc_odd >> 3) & 0x1ff;
+ /* bits [2:0] of error code is bit offset */
+ bit_addr = ecc_odd & 0x7;
+ /* Toggling error bit */
+ buf[byte_addr] ^= (1 << bit_addr);
+ return 1;
+ }
+
+ if (onehot(ecc_odd | ecc_even) == 1)
+ return 1; /* one error in parity */
+
+ return -1; /* Uncorrectable error */
+}
+
+static int pl353_dev_timeout(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+
+ do {
+ if (chip->dev_ready(mtd))
+ break;
+ cpu_relax();
+ } while (!time_after_eq(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ pr_err("%s timed out\n", __func__);
+ return -1;
+ }
+
+ return 0;
+}
+
+static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int column, int start_cmd, int end_cmd, bool read)
+{
+ unsigned long data_phase_addr;
+ u32 end_cmd_valid = 0;
+ void __iomem *cmd_addr;
+ unsigned long cmd_phase_addr = 0, cmd_data = 0;
+
+ struct pl353_nand_info *xnand =
+ container_of(chip, struct pl353_nand_info, chip);
+
+ if (read)
+ end_cmd_valid = 1;
+ else
+ end_cmd_valid = 0;
+
+ cmd_phase_addr = (unsigned long __force)xnand->nand_base + (
+ (((xnand->row_addr_cycles) + (xnand->col_addr_cycles))
+ << ADDR_CYCLES_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT) |
+ (COMMAND_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (start_cmd << START_CMD_SHIFT));
+ cmd_addr = (void __iomem * __force)cmd_phase_addr;
+
+ /* Get the data phase address */
+ data_phase_addr = (unsigned long __force)xnand->nand_base + (
+ (0x0 << CLEAR_CS_SHIFT) |
+ (0 << END_CMD_VALID_SHIFT) |
+ (DATA_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (0x0 << ECC_LAST_SHIFT));
+
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ chip->IO_ADDR_W = chip->IO_ADDR_R;
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ cmd_data = column;
+ if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+ cmd_data |= page << 16;
+ /* Another address cycle for devices > 128MiB */
+ if (chip->chipsize > (128 << 20)) {
+ pl353_nand_write32(cmd_addr, cmd_data);
+ cmd_data = (page >> 16);
+ }
+ } else {
+ cmd_data |= page << 8;
+ }
+ pl353_nand_write32(cmd_addr, cmd_data);
+}
+
+/**
+ * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @page: Page number to read
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+
+ unsigned long data_phase_addr;
+ uint8_t *p;
+
+ chip->pagebuf = -1;
+ if (mtd->writesize < PL353_NAND_ECC_SIZE)
+ return 0;
+
+ pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0,
+ NAND_CMD_READSTART, 1);
+
+ ndelay(100);
+ pl353_dev_timeout(mtd, chip);
+
+ p = chip->oob_poi;
+ pl353_nand_read_buf_l(chip, p,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ pl353_nand_read_buf_l(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @page: Page number to write
+ *
+ * Return: Zero on success and EIO on failure
+ */
+static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+
+ const uint8_t *buf = chip->oob_poi;
+ unsigned long data_phase_addr;
+ struct pl353_nand_info *xnand =
+ container_of(chip, struct pl353_nand_info, chip);
+ u32 addrcycles = 0, ret;
+ unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+ u8 status;
+
+ chip->pagebuf = -1;
+ addrcycles = xnand->row_addr_cycles + xnand->col_addr_cycles;
+ pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN,
+ NAND_CMD_PAGEPROG, 0);
+ ndelay(100);
+ pl353_nand_write_buf(mtd, buf,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+ pl353_nand_write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Send command to program the OOB data */
+ ret = nand_status_op(chip, &status);
+ timeout = jiffies + msecs_to_jiffies(timeout);
+ do {
+ if (chip->dev_ready) {
+ if (chip->dev_ready(mtd))
+ break;
+ } else {
+ if (status & NAND_STATUS_READY)
+ break;
+ }
+ cond_resched();
+ } while (time_before(jiffies, timeout));
+
+ /* This can happen if in case of timeout or buggy dev_ready */
+ WARN_ON(!(status & NAND_STATUS_READY));
+
+ return (status & NAND_STATUS_FAIL) ? -EIO : 0;
+}
+
+/**
+ * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the data buffer
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to read
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ unsigned long data_phase_addr;
+ uint8_t *p;
+
+ pl353_nand_read_buf_l(chip, buf, mtd->writesize);
+ p = chip->oob_poi;
+ pl353_nand_read_buf_l(chip, p,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+ pl353_nand_read_buf_l(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+ return 0;
+}
+
+/**
+ * pl353_nand_write_page_raw - [Intern] raw page write function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the data buffer
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to write
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const uint8_t *buf, int oob_required,
+ int page)
+{
+ unsigned long data_phase_addr;
+ uint8_t *p;
+
+ pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
+ NAND_CMD_PAGEPROG, 0);
+ pl353_nand_write_buf(mtd, buf, mtd->writesize);
+ p = chip->oob_poi;
+ pl353_nand_write_buf(mtd, p,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+
+ pl353_nand_write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ return 0;
+}
+
+/**
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the data buffer
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to write
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+
+ int eccsize = chip->ecc.size;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->ecc.calc_buf;
+ const uint8_t *p = buf;
+ uint8_t *oob_ptr;
+ u32 ret;
+ unsigned long data_phase_addr, timeo;
+ u8 status;
+
+ pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
+ NAND_CMD_PAGEPROG, 0);
+ ndelay(100);
+ for ( ; (eccsteps - 1); eccsteps--) {
+ pl353_nand_write_buf(mtd, p, eccsize);
+ p += eccsize;
+ }
+ pl353_nand_write_buf(mtd, p,
+ (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Set ECC Last bit to 1 */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+ pl353_nand_write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ p = buf;
+ chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+ /* Wait for ECC to be calculated and read the error values */
+ ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+ 0, chip->ecc.total);
+ if (ret)
+ return ret;
+ /* Clear ECC last bit */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr &= ~PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+
+ /* Write the spare area with ECC bytes */
+ oob_ptr = chip->oob_poi;
+ pl353_nand_write_buf(mtd, oob_ptr,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+ oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+ pl353_nand_write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /*
+ * Apply this short delay always to ensure that we do wait tWB in any
+ * case on any machine.
+ */
+ ndelay(100);
+ ret = nand_status_op(chip, &status);
+ timeo = jiffies + msecs_to_jiffies(400);
+ do {
+ if (chip->dev_ready) {
+ if (chip->dev_ready(mtd))
+ break;
+ } else {
+ if (status & NAND_STATUS_READY)
+ break;
+ }
+ cond_resched();
+ } while (time_before(jiffies, timeo));
+
+ /* This can happen if in case of timeout or buggy dev_ready */
+ WARN_ON(!(status & NAND_STATUS_READY));
+
+ return (status & NAND_STATUS_FAIL) ? -EIO : 0;
+}
+
+/**
+ * pl353_nand_write_page_swecc - [REPLACEABLE] software ecc based page write
+ * function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the data buffer
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to write
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_write_page_swecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *ecc_calc = chip->ecc.calc_buf;
+ const uint8_t *p = buf;
+ u32 ret;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+ ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+ 0, chip->ecc.total);
+ if (ret)
+ return ret;
+ chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the buffer to store read data
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * Return: 0 always and updates ECC operation status in to MTD structure
+ */
+static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i, stat, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->ecc.calc_buf;
+ uint8_t *ecc_code = chip->ecc.code_buf;
+
+ uint8_t *oob_ptr;
+ u32 ret;
+ unsigned long data_phase_addr;
+ unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+
+ pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0,
+ NAND_CMD_READSTART, 1);
+ ndelay(100);
+ do {
+ if (chip->dev_ready(mtd))
+ break;
+ cpu_relax();
+ } while (!time_after_eq(jiffies, timeout));
+
+ if (time_after_eq(jiffies, timeout)) {
+ pr_err("%s timed out\n", __func__);
+ return -1;
+ }
+ for ( ; (eccsteps - 1); eccsteps--) {
+ pl353_nand_read_buf_l(chip, p, eccsize);
+ p += eccsize;
+ }
+ pl353_nand_read_buf_l(chip, p,
+ (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+ p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Set ECC Last bit to 1 */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ pl353_nand_read_buf_l(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ /* Read the calculated ECC value */
+ p = buf;
+ chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+ /* Clear ECC last bit */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr &= ~PL353_NAND_ECC_LAST;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+ /* Read the stored ECC value */
+ oob_ptr = chip->oob_poi;
+ pl353_nand_read_buf_l(chip, oob_ptr,
+ (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+
+ /* de-assert chip select */
+ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+ data_phase_addr |= PL353_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+ oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+ pl353_nand_read_buf_l(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ /* Check ECC error for all blocks and correct if it is correctable */
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/**
+ * pl353_nand_read_page_swecc - [REPLACEABLE] software ecc based page read
+ * function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the buffer to store read data
+ * @oob_required: Caller requires OOB data read to chip->oob_poi
+ * @page: Page number to read
+ *
+ * Return: Always return zero
+ */
+static int pl353_nand_read_page_swecc(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->ecc.calc_buf;
+ uint8_t *ecc_code = chip->ecc.code_buf;
+ u32 ret;
+
+ chip->ecc.read_page_raw(mtd, chip, buf, page, 1);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_calc, chip->oob_poi,
+ 0, chip->ecc.total);
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/**
+ * pl353_nand_select_chip - Select the flash device
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void pl353_nfc_parse_instructions(struct nand_chip *chip,
+ const struct nand_subop *subop,
+ struct pl353_nfc_op *nfc_op)
+{
+ const struct nand_op_instr *instr = NULL;
+ unsigned int op_id, offset, naddrs;
+ int i;
+ const u8 *addrs;
+
+ memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+
+ nfc_op->len = nand_subop_get_data_len(subop, op_id);
+
+ instr = &subop->instrs[op_id];
+ if (subop->ninstrs == 1)
+ nfc_op->cmnds[0] = -1;
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ nfc_op->type = NAND_OP_CMD_INSTR;
+ nfc_op->end_cmd = op_id - 1;
+ if (op_id)
+ nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
+ else {
+ nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
+ nfc_op->cmnds[1] = -1;
+ }
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ addrs = &instr->ctx.addr.addrs[offset];
+ nfc_op->addrs = instr->ctx.addr.addrs[offset];
+ for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+ nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
+ (8 * i);
+
+ if (naddrs >= 5) {
+ nfc_op->addrs >>= 16;
+ nfc_op->addrs |= (addrs[4] << 16);
+ nfc_op->thirdrow = 1;
+ }
+ nfc_op->naddrs = nand_subop_get_num_addr_cyc
+ (subop, op_id);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ nfc_op->data_instr = instr;
+ nfc_op->type = NAND_OP_DATA_IN_INSTR;
+ nfc_op->data_instr_idx = op_id;
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ nfc_op->data_instr = instr;
+ nfc_op->type = NAND_OP_DATA_IN_INSTR;
+ nfc_op->data_instr_idx = op_id;
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+ nfc_op->rdy_delay_ns = instr->delay_ns;
+ nfc_op->wait = true;
+ break;
+ }
+ }
+}
+
+/**
+ * pl353_nand_cmd_function - Send command to NAND device
+ * @chip: Pointer to the NAND chip info structure
+ * @subop: Pointer to array of instructions
+ * Return: Always return zero
+ */
+static int pl353_nand_cmd_function(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ const struct nand_op_instr *instr;
+ struct pl353_nfc_op nfc_op;
+ struct pl353_nand_info *xnand =
+ container_of(chip, struct pl353_nand_info, chip);
+ void __iomem *cmd_addr;
+ unsigned long cmd_data = 0, end_cmd_valid = 0;
+ unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
+ unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+ u32 addrcycles = 0;
+ unsigned int op_id, len, offset;
+
+ pl353_nfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+ len = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+
+ if (nfc_op.cmnds[0] != -1) {
+ if (xnand->end_cmd_pending) {
+ /*
+ * Check for end command if this command request is
+ * same as the pending command then return
+ */
+ if (xnand->end_cmd == nfc_op.cmnds[0]) {
+ xnand->end_cmd = 0;
+ xnand->end_cmd_pending = 0;
+ return 0;
+ }
+ }
+
+ /* Clear interrupt */
+ pl353_smc_clr_nand_int();
+ end_cmd_valid = 0;
+ /* Get the command phase address */
+ if (nfc_op.cmnds[1] != -1) {
+ end_cmd_valid = 1;
+ } else {
+ if (nfc_op.cmnds[0] == NAND_CMD_READ0)
+ return 0;
+ }
+ if (nfc_op.end_cmd == NAND_CMD_NONE)
+ end_cmd = 0x0;
+ else
+ end_cmd = nfc_op.cmnds[1];
+
+ addrcycles = nfc_op.naddrs;
+ if (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
+ nfc_op.cmnds[0] == NAND_CMD_SEQIN)
+ addrcycles = xnand->row_addr_cycles +
+ xnand->col_addr_cycles;
+ else if ((nfc_op.cmnds[0] == NAND_CMD_ERASE1) ||
+ (nfc_op.cmnds[0] == NAND_CMD_ERASE2))
+ addrcycles = xnand->row_addr_cycles;
+ else
+ addrcycles = nfc_op.naddrs;
+ cmd_phase_addr = (unsigned long __force)xnand->nand_base + (
+ (addrcycles << ADDR_CYCLES_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT) |
+ (COMMAND_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (nfc_op.cmnds[0] << START_CMD_SHIFT));
+
+ cmd_addr = (void __iomem * __force)cmd_phase_addr;
+ /* Get the data phase address */
+ end_cmd_valid = 0;
+
+ data_phase_addr = (unsigned long __force)xnand->nand_base + (
+ (0x0 << CLEAR_CS_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT)|
+ (DATA_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (0x0 << ECC_LAST_SHIFT));
+ chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+ chip->IO_ADDR_W = chip->IO_ADDR_R;
+ /* Command phase AXI write */
+ /* Read & Write */
+ if (nfc_op.thirdrow) {
+ nfc_op.thirdrow = 0;
+ if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+ cmd_data |= nfc_op.addrs << 16;
+ /* Another address cycle for devices > 128MiB */
+ if (chip->chipsize > (128 << 20)) {
+ pl353_nand_write32(cmd_addr, cmd_data);
+ cmd_data = (nfc_op.addrs >> 16);
+ }
+ }
+ } else {
+ if (nfc_op.addrs != -1) {
+ int column = nfc_op.addrs;
+ /*
+ * Change read/write column, read id etc
+ * Adjust columns for 16 bit bus width
+ */
+ if ((chip->options & NAND_BUSWIDTH_16) &&
+ ((nfc_op.cmnds[0] == NAND_CMD_READ0) ||
+ (nfc_op.cmnds[0] == NAND_CMD_SEQIN) ||
+ (nfc_op.cmnds[0] == NAND_CMD_RNDOUT) ||
+ (nfc_op.cmnds[0] == NAND_CMD_RNDIN))) {
+ column >>= 1;
+ }
+ cmd_data = nfc_op.addrs;
+ }
+ }
+ pl353_nand_write32(cmd_addr, cmd_data);
+ if (nfc_op.type != 0) {
+ xnand->end_cmd = nfc_op.end_cmd;
+ xnand->end_cmd_pending = 1;
+ }
+ ndelay(100);
+ if (nfc_op.cmnds[0] == 0xef)
+ nfc_op.wait = false;
+ if (nfc_op.wait) {
+ nfc_op.wait = false;
+ do {
+ if (chip->dev_ready(mtd))
+ break;
+ cpu_relax();
+ } while (!time_after_eq(jiffies, timeout));
+ if (time_after_eq(jiffies, timeout)) {
+ pr_err("%s timed out\n", __func__);
+ return -ETIMEDOUT;
+ }
+ return 0;
+ }
+ }
+
+ if (instr == NULL)
+ return 0;
+ if (instr->type == NAND_OP_DATA_IN_INSTR)
+ return pl353_nand_read_buf(chip, instr->ctx.data.buf.in, len);
+
+ if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+ if ((nfc_op.cmnds[0] == NAND_CMD_PAGEPROG) ||
+ (nfc_op.cmnds[0] == NAND_CMD_SEQIN))
+ pl353_nand_write_page_raw(mtd, chip,
+ instr->ctx.data.buf.out, 0, nfc_op.addrs);
+ else
+ pl353_nand_write_buf_l(chip, instr->ctx.data.buf.out,
+ len);
+ return 0;
+ }
+ return 0;
+}
+
+static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
+ NAND_OP_PARSER_PATTERN(
+ pl353_nand_cmd_function,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+ );
+
+static int pl353_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
+ op, check_only);
+}
+
+/**
+ * pl353_nand_device_ready - Check device ready/busy line
+ * @mtd: Pointer to the mtd_info structure
+ *
+ * Return: 0 on busy or 1 on ready state
+ */
+static int pl353_nand_device_ready(struct mtd_info *mtd)
+{
+ if (pl353_smc_get_nand_int_status_raw()) {
+ pl353_smc_clr_nand_int();
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
+ * @mtd: Pointer to the mtd_info structure
+ * @ecc: Pointer to ECC control structure
+ * @ecc_mode: ondie ecc status
+ *
+ * This function initializes the ecc block and functional pointers as per the
+ * ecc mode
+ */
+static void pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
+ int ecc_mode)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ ecc->read_oob = pl353_nand_read_oob;
+ ecc->read_page_raw = pl353_nand_read_page_raw;
+ ecc->write_oob = pl353_nand_write_oob;
+ ecc->write_page_raw = pl353_nand_write_page_raw;
+
+ if (ecc_mode == NAND_ECC_ON_DIE) {
+ pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
+
+ /*
+ * The software ECC routines won't work with the
+ * SMC controller
+ */
+ ecc->read_page = pl353_nand_read_page_raw;
+ ecc->write_page = pl353_nand_write_page_raw;
+ /*
+ * On-Die ECC spare bytes offset 8 is used for ECC codes
+ * Use the BBT pattern descriptors
+ */
+ chip->bbt_td = &bbt_main_descr;
+ chip->bbt_md = &bbt_mirror_descr;
+ } else {
+ ecc->mode = NAND_ECC_HW;
+ /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+ ecc->bytes = 3;
+ ecc->strength = 1;
+ ecc->calculate = pl353_nand_calculate_hwecc;
+ ecc->correct = pl353_nand_correct_data;
+ ecc->hwctl = NULL;
+ ecc->read_page = pl353_nand_read_page_hwecc;
+ ecc->size = PL353_NAND_ECC_SIZE;
+ ecc->write_page = pl353_nand_write_page_hwecc;
+ pl353_smc_set_ecc_pg_size(mtd->writesize);
+ switch (mtd->writesize) {
+ case 512:
+ case 1024:
+ case 2048:
+ pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
+ break;
+ default:
+ /*
+ * The software ECC routines won't work with the
+ * SMC controller
+ */
+ ecc->calculate = nand_calculate_ecc;
+ ecc->correct = nand_correct_data;
+ ecc->read_page = pl353_nand_read_page_swecc;
+ ecc->write_page = pl353_nand_write_page_swecc;
+ ecc->size = 256;
+ break;
+ }
+
+ if (mtd->oobsize == 16)
+ mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
+ else if (mtd->oobsize == 64)
+ mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
+ }
+}
+
+/**
+ * pl353_nand_probe - Probe method for the NAND driver
+ * @pdev: Pointer to the platform_device structure
+ *
+ * This function initializes the driver data structures and the hardware.
+ *
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_probe(struct platform_device *pdev)
+{
+ struct pl353_nand_info *xnand;
+ struct mtd_info *mtd;
+ struct nand_chip *nand_chip;
+ struct resource *res;
+
+ xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL);
+ if (!xnand)
+ return -ENOMEM;
+
+ /* Map physical address of NAND flash */
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ xnand->nand_base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(xnand->nand_base))
+ return PTR_ERR(xnand->nand_base);
+
+ nand_chip = &xnand->chip;
+ mtd = nand_to_mtd(nand_chip);
+ nand_chip->exec_op = pl353_nfc_exec_op;
+ nand_set_controller_data(nand_chip, xnand);
+ mtd->priv = nand_chip;
+ mtd->owner = THIS_MODULE;
+ mtd->name = PL353_NAND_DRIVER_NAME;
+ nand_set_flash_node(nand_chip, pdev->dev.of_node);
+
+ /* Set address of NAND IO lines */
+ nand_chip->IO_ADDR_R = xnand->nand_base;
+ nand_chip->IO_ADDR_W = xnand->nand_base;
+ /* Set the driver entry points for MTD */
+ nand_chip->dev_ready = pl353_nand_device_ready;
+ nand_chip->select_chip = pl353_nand_select_chip;
+ /* If we don't set this delay driver sets 20us by default */
+ nand_chip->chip_delay = 30;
+
+ /* Set the device option and flash width */
+ nand_chip->options = NAND_BUSWIDTH_AUTO;
+ nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+ platform_set_drvdata(pdev, xnand);
+
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(mtd, 1, NULL)) {
+ dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+ return -ENXIO;
+ }
+
+ xnand->row_addr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
+ xnand->col_addr_cycles =
+ (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
+
+ pl353_nand_ecc_init(mtd, &nand_chip->ecc, nand_chip->ecc.mode);
+ if (nand_chip->options & NAND_BUSWIDTH_16)
+ pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
+ /* second phase scan */
+ if (nand_scan_tail(mtd)) {
+ dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+ return -ENXIO;
+ }
+
+ mtd_device_register(mtd, NULL, 0);
+
+ return 0;
+}
+
+/**
+ * pl353_nand_remove - Remove method for the NAND driver
+ * @pdev: Pointer to the platform_device structure
+ *
+ * This function is called if the driver module is being unloaded. It frees all
+ * resources allocated to the device.
+ *
+ * Return: 0 on success or error value on failure
+ */
+static int pl353_nand_remove(struct platform_device *pdev)
+{
+ struct pl353_nand_info *xnand = platform_get_drvdata(pdev);
+ struct mtd_info *mtd = nand_to_mtd(&xnand->chip);
+
+ /* Release resources, unregister device */
+ nand_release(mtd);
+
+ return 0;
+}
+
+/* Match table for device tree binding */
+static const struct of_device_id pl353_nand_of_match[] = {
+ { .compatible = "arm,pl353-nand-r2p1" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
+
+/*
+ * pl353_nand_driver - This structure defines the NAND subsystem platform driver
+ */
+static struct platform_driver pl353_nand_driver = {
+ .probe = pl353_nand_probe,
+ .remove = pl353_nand_remove,
+ .driver = {
+ .name = PL353_NAND_DRIVER_NAME,
+ .of_match_table = pl353_nand_of_match,
+ },
+};
+
+module_platform_driver(pl353_nand_driver);
+
+MODULE_AUTHOR("Xilinx, Inc.");
+MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
+MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
+MODULE_LICENSE("GPL");
--
2.7.4
More information about the linux-mtd
mailing list