[RFC PATCH v4 1/2] mtd: nand: vf610_nfc: make use of ->exec_op()

Boris Brezillon boris.brezillon at bootlin.com
Thu Feb 22 14:06:37 PST 2018


On Thu, 22 Feb 2018 21:29:17 +0100
Stefan Agner <stefan at agner.ch> wrote:

> This reworks the driver to make use of ->exec_op() callback. The
> command sequencer of the VF610 NFC aligns well with the new ops
> interface.
> 
> The ops are translated to a NFC command code while filling the
> necessary registers. Instead of using the special status and
> read id command codes (which require the status/id form special
> registers) the driver now uses the main data buffer for all
> commands. This simplifies the driver as no special casing is
> needed.
> 
> For control data (status byte, id bytes and parameter page) the
> driver needs to reverse byte order for little endian CPUs since
> the controller seems to store the bytes in big endian order in
> the data buffer.
> 
> The current state seems to pass MTD tests on a Colibri VF61.
> 
> Signed-off-by: Stefan Agner <stefan at agner.ch>
> ---
>  drivers/mtd/nand/raw/vf610_nfc.c | 439 +++++++++++++++++++++++++++++++++++++--
>  1 file changed, 425 insertions(+), 14 deletions(-)
> 
> diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
> index 5d7a1f8f580f..9baf80766307 100644
> --- a/drivers/mtd/nand/raw/vf610_nfc.c
> +++ b/drivers/mtd/nand/raw/vf610_nfc.c
> @@ -74,6 +74,22 @@
>  #define RESET_CMD_CODE			0x4040
>  #define STATUS_READ_CMD_CODE		0x4068
>  
> +/* NFC_CMD2[CODE] controller cycle bit masks */
> +#define COMMAND_CMD_BYTE1		BIT(14)
> +#define COMMAND_CAR_BYTE1		BIT(13)
> +#define COMMAND_CAR_BYTE2		BIT(12)
> +#define COMMAND_RAR_BYTE1		BIT(11)
> +#define COMMAND_RAR_BYTE2		BIT(10)
> +#define COMMAND_RAR_BYTE3		BIT(9)
> +#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) - 1)
> +#define COMMAND_WRITE_DATA		BIT(8)
> +#define COMMAND_CMD_BYTE2		BIT(7)
> +#define COMMAND_RB_HANDSHAKE		BIT(6)
> +#define COMMAND_READ_DATA		BIT(5)
> +#define COMMAND_CMD_BYTE3		BIT(4)
> +#define COMMAND_READ_STATUS		BIT(3)
> +#define COMMAND_READ_ID			BIT(2)
> +
>  /* NFC ECC mode define */
>  #define ECC_BYPASS			0
>  #define ECC_45_BYTE			6
> @@ -97,10 +113,14 @@
>  /* NFC_COL_ADDR Field */
>  #define COL_ADDR_MASK				0x0000FFFF
>  #define COL_ADDR_SHIFT				0
> +#define COL_ADDR(pos, val)			((val & 0xFF) << (8 * (pos)))
> +
>  
>  /* NFC_ROW_ADDR Field */
>  #define ROW_ADDR_MASK				0x00FFFFFF
>  #define ROW_ADDR_SHIFT				0
> +#define ROW_ADDR(pos, val)			((val & 0xFF) << (8 * (pos)))
> +
>  #define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
>  #define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
>  #define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
> @@ -165,6 +185,7 @@ struct vf610_nfc {
>  	enum vf610_nfc_variant variant;
>  	struct clk *clk;
>  	bool use_hw_ecc;
> +	bool page_access;

This field deserves a comment IMO, even if you describe in details what
it does in the rd/wr_from/to_sram() funcs.

>  	u32 ecc_mode;
>  };
>  
> @@ -173,6 +194,11 @@ static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
>  	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
>  }
>  
> +static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
> +{
> +	return container_of(chip, struct vf610_nfc, chip);
> +}
> +
>  static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
>  {
>  	return readl(nfc->regs + reg);
> @@ -214,6 +240,86 @@ static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
>  	memcpy(dst, src, n);
>  }
>  
> +static inline bool vf610_nfc_is_little_endian(void)

It's not really the NFC that is LE, is it? I mean, you could have the
kernel configured in BIG ENDIAN for this platform, and then you wouldn't
have to do the byte-swapping.

> +{
> +#ifdef __LITTLE_ENDIAN
> +	return true;
> +#else
> +	return false;
> +#endif
> +}
> +
> +/**
> + * Read accessor for internal SRAM buffer
> + * @dst: destination address in regular memory
> + * @src: source address in SRAM buffer
> + * @len: bytes to copy
> + * @fix_endian: Fix endianness if required
> + *
> + * Use this accessor for the internal SRAM buffers. On the ARM
> + * Freescale Vybrid SoC it's known that the driver can treat
> + * the SRAM buffer as if it's memory. Other platform might need
> + * to treat the buffers differently.
> + *
> + * The controller stores bytes from the NAND chip internally in big
> + * endianness. On little endian platforms such as Vybrid this leads
> + * to reversed byte order.
> + * For performance reason (and earlier probably due to unanawareness)

							  ^ unawareness

> + * the driver avoids correcting endianness where it has control over
> + * write and read side (e.g. page wise data access).
> + * In case endianness matters len should be a multiple of 4.
> + */
> +static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
> +					  size_t len, bool fix_endian)
> +{
> +	if (vf610_nfc_is_little_endian() && fix_endian) {
> +		unsigned int i;
> +
> +		for (i = 0; i < len; i += 4) {
> +			u32 val = be32_to_cpu(__raw_readl(src + i));
> +			memcpy(dst + i, &val, min(sizeof(val), len - i));
> +		}
> +	} else {
> +		memcpy_fromio(dst, src, len);
> +	}
> +}
> +
> +/**
> + * Write accessor for internal SRAM buffer
> + * @dst: destination address in SRAM buffer
> + * @src: source address in regular memory
> + * @len: bytes to copy
> + * @fix_endian: Fix endianness if required
> + *
> + * Use this accessor for the internal SRAM buffers. On the ARM
> + * Freescale Vybrid SoC it's known that the driver can treat
> + * the SRAM buffer as if it's memory. Other platform might need
> + * to treat the buffers differently.
> + *
> + * The controller stores bytes from the NAND chip internally in big
> + * endianness. On little endian platforms such as Vybrid this leads
> + * to reversed byte order.
> + * For performance reason (and earlier probably due to unanawareness)

							  ^ unawareness

> + * the driver avoids correcting endianness where it has control over
> + * write and read side (e.g. page wise data access).
> + * In case endianness matters len should be a multiple of 4.

That's the opposite actually. If fix_endian is set, we don't have any
requirement on len alignment, because the cpu_to_be32(val) will save
us. But we have a problem when fix_endian is false an len is not
aligned on 4, because, AFAIR memcpy_toio() does 32-bit accesses when
things are properly aligned on 32 bits, and when that's not the case it
falls back to 16 or 8 bit accesses, which in our case may lead to data
loss on LE platforms.

> + */
> +static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
> +					size_t len, bool fix_endian)
> +{
> +	if (vf610_nfc_is_little_endian() && fix_endian) {
> +		unsigned int i;
> +
> +		for (i = 0; i < len; i += 4) {
> +			u32 val;
> +			memcpy(&val, src + i, min(sizeof(val), len - i));
> +			__raw_writel(cpu_to_be32(val), dst + i);
> +		}
> +	} else {
> +		memcpy_toio(dst, src, len);
> +	}
> +}
> +
>  /* Clear flags for upcoming command */
>  static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
>  {
> @@ -489,6 +595,170 @@ static int vf610_nfc_dev_ready(struct mtd_info *mtd)
>  	return 1;
>  }
>  
> +static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, u32 cmd1, u32 cmd2, u32 trfr_sz)
> +{
> +	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
> +			    COL_ADDR_SHIFT, col);
> +
> +	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
> +			    ROW_ADDR_SHIFT, row);
> +
> +	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
> +	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
> +	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
> +
> +	dev_dbg(nfc->dev, "col 0x%08x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, trfr_sz %d\n",
> +		col, row, cmd1, cmd2, trfr_sz);
> +
> +	vf610_nfc_done(nfc);
> +}
> +
> +static inline const struct nand_op_instr *vf610_get_next_instr(
> +	const struct nand_subop *subop, int *op_id)
> +{
> +	if (*op_id + 1 >= subop->ninstrs)
> +		return NULL;
> +
> +	(*op_id)++;
> +
> +	return &subop->instrs[*op_id];
> +}
> +
> +static int vf610_nfc_cmd(struct nand_chip *chip,
> +				const struct nand_subop *subop)
> +{
> +	const struct nand_op_instr *instr;
> +	struct vf610_nfc *nfc = chip_to_nfc(chip);
> +	int op_id = -1, trfr_sz = 0, offset;
> +	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
> +	bool force8bit = false;
> +
> +	/*
> +	 * Some ops are optional, but the hardware requires the operations
> +	 * to be in this exact order.
> +	 * The op parser enforces the order and makes sure that there isn't
> +	 * a read and write element in a single operation.
> +	 */
> +	instr = vf610_get_next_instr(subop, &op_id);
> +	if (!instr)
> +		return -EINVAL;
> +
> +	if (instr && instr->type == NAND_OP_CMD_INSTR) {
> +		dev_dbg(nfc->dev, "OP_CMD: code 0x%02x\n", instr->ctx.cmd.opcode);
> +		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
> +		code |= COMMAND_CMD_BYTE1;
> +
> +		instr = vf610_get_next_instr(subop, &op_id);
> +	}
> +
> +	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
> +		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> +		int i = nand_subop_get_addr_start_off(subop, op_id);
> +
> +		for (; i < naddrs; i++) {
> +			u8 val = instr->ctx.addr.addrs[i];
> +			if (i < 2)
> +				col |= COL_ADDR(i, val);
> +			else
> +				row |= ROW_ADDR(i - 2, val);
> +		}
> +		code |= COMMAND_NADDR_BYTES(naddrs);
> +
> +		dev_dbg(nfc->dev, "OP_ADDR: col %d, row %d\n", col, row);
> +
> +		instr = vf610_get_next_instr(subop, &op_id);
> +	}
> +
> +	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
> +		trfr_sz = nand_subop_get_data_len(subop, op_id);
> +		offset = nand_subop_get_data_start_off(subop, op_id);
> +		force8bit = instr->ctx.data.force_8bit;
> +
> +		dev_dbg(nfc->dev, "OP_DATA_OUT: len %d, offset %d\n",
> +			trfr_sz, offset);
> +
> +		/* We don't care about endianness when writing a NAND page */
> +		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
> +				     instr->ctx.data.buf.in + offset,
> +				     trfr_sz, !nfc->page_access);
> +		code |= COMMAND_WRITE_DATA;
> +
> +		instr = vf610_get_next_instr(subop, &op_id);
> +	}
> +
> +	if (instr && instr->type == NAND_OP_CMD_INSTR) {
> +		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
> +		code |= COMMAND_CMD_BYTE2;
> +
> +		instr = vf610_get_next_instr(subop, &op_id);

You seem to have debug traces almost everywhere except here and...

> +	}
> +
> +	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
> +		code |= COMMAND_RB_HANDSHAKE;
> +
> +		instr = vf610_get_next_instr(subop, &op_id);

... here. Can we please make that consistent. Either drop all of them
or add the missing ones.

IMHO it's more interesting to have a dev_dbg() giving the col, row,
cmd1, cmd2 and trfr_sz values in vf610_nfc_run() rather than those you
add here, because they kind of duplicate the information given in
nand_op_parser_trace().

> +	}
> +
> +	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
> +		trfr_sz = nand_subop_get_data_len(subop, op_id);
> +		offset = nand_subop_get_data_start_off(subop, op_id);
> +		force8bit = instr->ctx.data.force_8bit;
> +
> +		dev_dbg(nfc->dev, "OP_DATA_IN: len %d, offset %d\n",
> +			trfr_sz, offset);
> +
> +		code |= COMMAND_READ_DATA;
> +	}

Still not a big fan of the

	if (instr && instr->type == NAND_OP_XXX_INSTR) {
		...
		instr = vf610_get_next_instr(subop, &op_id);
	}

approach, but I'm ready to make a concession on that :-).

> +
> +	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
> +		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
> +
> +	cmd2 |= code << CMD_CODE_SHIFT;
> +
> +	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
> +
> +	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
> +		/* We don't care about endianness when reading a NAND page */
> +		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
> +				       nfc->regs + NFC_MAIN_AREA(0) + offset,
> +				       trfr_sz, !nfc->page_access);
> +	}
> +
> +	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
> +		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
> +
> +	return 0;
> +}
> +
> +static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
> +	NAND_OP_PARSER_PATTERN(
> +		vf610_nfc_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
> +		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> +	NAND_OP_PARSER_PATTERN(
> +		vf610_nfc_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
> +	);
> +
> +static int vf610_nfc_exec_op(struct nand_chip *chip,
> +			     const struct nand_operation *op,
> +			     bool check_only)
> +{
> +	struct vf610_nfc *nfc = chip_to_nfc(chip);
> +
> +	dev_dbg(nfc->dev, "exec_op, opcode 0x%02x\n", op->instrs[0].ctx.cmd.opcode);

Bad idea: according to the pattern list you described above the first
instruction is not necessarily a CMD instruction. I think you should
drop this dev_dbg().

> +
> +	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, check_only);
> +}
> +
> +
>  /*
>   * This function supports Vybrid only (MPC5125 would have full RB and four CS)
>   */
> @@ -526,9 +796,14 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
>  	if (!(ecc_status & ECC_STATUS_MASK))
>  		return ecc_count;
>  
> -	/* Read OOB without ECC unit enabled */
> -	vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
> -	vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
> +	/*
> +	 * Read OOB without ECC unit enabled. We temporarily set ->page_access
> +	 * to true to make sure vf610_nfc_cmd() does not swap bytes when
> +	 * reading data from the internal SRAM.
> +	 */
> +	nfc->page_access = true;
> +	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
> +	nfc->page_access = false;
>  
>  	/*
>  	 * On an erased page, bit count (including OOB) should be zero or
> @@ -542,12 +817,46 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
>  static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
>  				uint8_t *buf, int oob_required, int page)
>  {
> -	int eccsize = chip->ecc.size;
> +	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +	int trfr_sz = mtd->writesize + mtd->oobsize;
> +	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
>  	int stat;
>  
> -	nand_read_page_op(chip, page, 0, buf, eccsize);
> +	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
> +	code |= COMMAND_CMD_BYTE1;
> +
> +	code |= COMMAND_CAR_BYTE1;
> +	code |= COMMAND_CAR_BYTE2;
> +
> +	row = ROW_ADDR(0, page & 0xff);
> +	code |= COMMAND_RAR_BYTE1;
> +	row |= ROW_ADDR(1, page >> 8);
> +	code |= COMMAND_RAR_BYTE2;
> +
> +	if (chip->options & NAND_ROW_ADDR_3) {
> +		row |= ROW_ADDR(2, page >> 16);
> +		code |= COMMAND_RAR_BYTE3;
> +	}
> +
> +	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
> +	code |= COMMAND_CMD_BYTE2;
> +
> +	code |= COMMAND_RB_HANDSHAKE;
> +	code |= COMMAND_READ_DATA;
> +	cmd2 |= code << CMD_CODE_SHIFT;
> +
> +	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
> +	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
> +	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
> +
> +	/* We don't care about endianness when reading a NAND page */
> +	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
> +			       mtd->writesize, false);
>  	if (oob_required)
> -		vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +		vf610_nfc_rd_from_sram(chip->oob_poi,
> +				       nfc->regs + NFC_MAIN_AREA(0) +
> +						   mtd->writesize,
> +				       mtd->oobsize, false);
>  
>  	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
>  
> @@ -564,16 +873,113 @@ static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
>  				const uint8_t *buf, int oob_required, int page)
>  {
>  	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +	int trfr_sz = mtd->writesize + mtd->oobsize;
> +	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
> +	int ret = 0;
> +
> +	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
> +	code |= COMMAND_CMD_BYTE1;
> +
> +	code |= COMMAND_CAR_BYTE1;
> +	code |= COMMAND_CAR_BYTE2;
> +
> +	row = ROW_ADDR(0, page & 0xff);
> +	code |= COMMAND_RAR_BYTE1;
> +	row |= ROW_ADDR(1, page >> 8);
> +	code |= COMMAND_RAR_BYTE2;
> +	if (chip->options & NAND_ROW_ADDR_3) {
> +		row |= ROW_ADDR(2, page >> 16);
> +		code |= COMMAND_RAR_BYTE3;
> +	}
>  
> -	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
> -	if (oob_required)
> -		vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
> +	code |= COMMAND_CMD_BYTE2;
> +
> +	code |= COMMAND_WRITE_DATA;
> +
> +	/* We don't care about endianness when writing a NAND page */
> +	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
> +			     mtd->writesize, false);
>  
> -	/* Always write whole page including OOB due to HW ECC */
> -	nfc->use_hw_ecc = true;
> -	nfc->write_sz = mtd->writesize + mtd->oobsize;
> +	code |= COMMAND_RB_HANDSHAKE;
> +	cmd2 |= code << CMD_CODE_SHIFT;
>  
> -	return nand_prog_page_end_op(chip);
> +	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
> +	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
> +	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
> +
> +	return ret;
> +}
> +
> +static int vf610_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> +				uint8_t *buf, int oob_required, int page)
> +{
> +	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +	int ret;
> +
> +	/*
> +	 * We temporarily set ->page_access to true to make sure
> +	 * vf610_nfc_cmd() does not swap bytes when reading data
> +	 * from the internal SRAM.
> +	 */
> +	nfc->page_access = true;
> +	ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
> +	nfc->page_access = false;
> +
> +	return ret;
> +}
> +
> +static int vf610_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
> +				const uint8_t *buf, int oob_required, int page)
> +{
> +	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +	int ret;
> +
> +	/*
> +	 * We temporarily set ->page_access to true to make sure
> +	 * vf610_nfc_cmd() does not swap bytes when reading data

						    ^ writing data to

> +	 * from the internal SRAM.
> +	 */
> +	nfc->page_access = true;
> +	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
> +	nfc->page_access = false;
> +
> +	return ret;

As you discovered while debugging the new implementation, this doesn't
work, because then the STATUS byte is read without the proper
byte-swapping enabled. So the solution would be to replace the above
code by:

	nfc->page_access = true;
	ret = nand_prog_page_begin_op(chip, page, 0, buf,
				      mtd->writesize);
	if (!ret && oob_required)
		ret = nand_write_data_op(chip, chip->oob_poi,
					 mtd->oobsize, false);
	nfc->page_access = false;

	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);

> +}
> +
> +static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> +			int page)
> +{
> +	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +	int ret;
> +
> +	/*
> +	 * We temporarily set ->page_access to true to make sure
> +	 * vf610_nfc_cmd() does not swap bytes when reading data
> +	 * from the internal SRAM.
> +	 */
> +	nfc->page_access = true;
> +	ret = nand_read_oob_std(mtd, chip, page);
> +	nfc->page_access = false;
> +
> +	return ret;
> +}
> +static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> +			int page)
> +{
> +	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
> +	int ret;
> +
> +	/*
> +	 * We temporarily set ->page_access to true to make sure
> +	 * vf610_nfc_cmd() does not swap bytes when reading data
> +	 * from the internal SRAM.
> +	 */
> +	nfc->page_access = true;
> +	ret = nand_write_oob_std(mtd, chip, page);
> +	nfc->page_access = false;
> +
> +	return ret;

Same problem here. The above logic should be replaced by:

	nfc->page_access = true;
	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
				      chip->oob_poi, mtd->oobsize);

	nfc->page_access = false;

	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);

>  }
>  
>  static const struct of_device_id vf610_nfc_dt_ids[] = {
> @@ -590,6 +996,7 @@ static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
>  	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
>  	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
>  	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
> +	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
>  
>  	/* Disable virtual pages, only one elementary transfer unit */
>  	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
> @@ -686,6 +1093,7 @@ static int vf610_nfc_probe(struct platform_device *pdev)
>  	chip->read_word = vf610_nfc_read_word;
>  	chip->read_buf = vf610_nfc_read_buf;
>  	chip->write_buf = vf610_nfc_write_buf;
> +	chip->exec_op = vf610_nfc_exec_op;
>  	chip->select_chip = vf610_nfc_select_chip;
>  	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
>  	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
> @@ -755,7 +1163,10 @@ static int vf610_nfc_probe(struct platform_device *pdev)
>  
>  		chip->ecc.read_page = vf610_nfc_read_page;
>  		chip->ecc.write_page = vf610_nfc_write_page;
> -
> +		chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
> +		chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
> +		chip->ecc.read_oob = vf610_nfc_read_oob;
> +		chip->ecc.write_oob = vf610_nfc_write_oob;
>  		chip->ecc.size = PAGE_2K;
>  	}
>  



-- 
Boris Brezillon, Bootlin (formerly Free Electrons)
Embedded Linux and Kernel engineering
https://bootlin.com



More information about the linux-mtd mailing list