[RFC PATCH 1/6] spi: Extend the core to ease integration of SPI memory controllers
Miquel Raynal
miquel.raynal at bootlin.com
Fri Feb 9 04:52:05 PST 2018
Hi Boris,
Just a few comments on the form below.
On Tue, 6 Feb 2018 00:21:15 +0100, Boris Brezillon
<boris.brezillon at bootlin.com> wrote:
> From: Boris Brezillon <boris.brezillon at free-electrons.com>
>
> Some controllers are exposing high-level interfaces to access various
> kind of SPI memories. Unfortunately they do not fit in the current
> spi_controller model and usually have drivers placed in
> drivers/mtd/spi-nor which are only supporting SPI NORs and not SPI
> memories in general.
>
> This is an attempt at defining a SPI memory interface which works for
> all kinds of SPI memories (NORs, NANDs, SRAMs).
>
> Signed-off-by: Boris Brezillon <boris.brezillon at free-electrons.com>
> ---
> drivers/spi/spi.c | 423 +++++++++++++++++++++++++++++++++++++++++++++++-
> include/linux/spi/spi.h | 226 ++++++++++++++++++++++++++
> 2 files changed, 646 insertions(+), 3 deletions(-)
>
> diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c
> index b33a727a0158..57bc540a0521 100644
> --- a/drivers/spi/spi.c
> +++ b/drivers/spi/spi.c
> @@ -2057,6 +2057,24 @@ static int of_spi_register_master(struct spi_controller *ctlr)
> }
> #endif
>
> +static int spi_controller_check_ops(struct spi_controller *ctlr)
> +{
> + /*
> + * The controller can implement only the high-level SPI-memory like
> + * operations if it does not support regular SPI transfers.
> + */
> + if (ctlr->mem_ops) {
> + if (!ctlr->mem_ops->supports_op ||
> + !ctlr->mem_ops->exec_op)
> + return -EINVAL;
> + } else if (!ctlr->transfer && !ctlr->transfer_one &&
> + !ctlr->transfer_one_message) {
> + return -EINVAL;
> + }
> +
> + return 0;
> +}
> +
> /**
> * spi_register_controller - register SPI master or slave controller
> * @ctlr: initialized master, originally from spi_alloc_master() or
> @@ -2090,6 +2108,14 @@ int spi_register_controller(struct spi_controller *ctlr)
> if (!dev)
> return -ENODEV;
>
> + /*
> + * Make sure all necessary hooks are implemented before registering
> + * the SPI controller.
> + */
> + status = spi_controller_check_ops(ctlr);
> + if (status)
> + return status;
> +
> if (!spi_controller_is_slave(ctlr)) {
> status = of_spi_register_master(ctlr);
> if (status)
> @@ -2155,10 +2181,14 @@ int spi_register_controller(struct spi_controller *ctlr)
> spi_controller_is_slave(ctlr) ? "slave" : "master",
> dev_name(&ctlr->dev));
>
> - /* If we're using a queued driver, start the queue */
> - if (ctlr->transfer)
> + /*
> + * If we're using a queued driver, start the queue. Note that we don't
> + * need the queueing logic if the driver is only supporting high-level
> + * memory operations.
> + */
> + if (ctlr->transfer) {
> dev_info(dev, "controller is unqueued, this is deprecated\n");
> - else {
> + } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
> status = spi_controller_initialize_queue(ctlr);
> if (status) {
> device_del(&ctlr->dev);
> @@ -2893,6 +2923,13 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
> {
> struct spi_controller *ctlr = spi->controller;
>
> + /*
> + * Some controllers do not support doing regular SPI transfers. Return
> + * ENOTSUPP when this is the case.
> + */
> + if (!ctlr->transfer)
> + return -ENOTSUPP;
> +
> message->spi = spi;
>
> SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
> @@ -3321,6 +3358,386 @@ int spi_write_then_read(struct spi_device *spi,
> }
> EXPORT_SYMBOL_GPL(spi_write_then_read);
>
> +/**
> + * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
> + * memory operation
> + * @ctlr: the SPI controller requesting this dma_map()
> + * @op: the memory operation containing the buffer to map
> + * @sgt: a pointer to a non-initialized sg_table that will be filled by this
> + * function
> + *
> + * Some controllers might want to do DMA on the data buffer embedded in @op.
> + * This helper prepares everything for you and provides a ready-to-use
> + * sg_table. This function is not intended to be called from spi drivers.
> + * Only SPI controller drivers should use it.
> + * Note that the caller must ensure the memory region pointed by
> + * op->data.buf.{in,out} is DMA-able before calling this function.
> + *
> + * Return: 0 in case of success, a negative error code otherwise.
> + */
> +int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
> + const struct spi_mem_op *op,
> + struct sg_table *sgt)
> +{
> + struct device *dmadev;
> +
> + if (!op->data.nbytes)
> + return -EINVAL;
> +
> + if (op->data.dir == SPI_MEM_DATA_OUT)
> + dmadev = ctlr->dma_tx ?
> + ctlr->dma_tx->device->dev : ctlr->dev.parent;
> + else
> + dmadev = ctlr->dma_rx ?
> + ctlr->dma_rx->device->dev : ctlr->dev.parent;
> +
> + if (!dmadev)
> + return -EINVAL;
> +
> + return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
> + op->data.dir == SPI_MEM_DATA_IN ?
> + DMA_FROM_DEVICE : DMA_TO_DEVICE);
> +}
> +EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
> +
> +/**
> + * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
> + * memory operation
> + * @ctlr: the SPI controller requesting this dma_unmap()
> + * @op: the memory operation containing the buffer to unmap
> + * @sgt: a pointer to an sg_table previously initialized by
> + * spi_controller_dma_map_mem_op_data()
> + *
> + * Some controllers might want to do DMA on the data buffer embedded in @op.
> + * This helper prepares things so that the CPU can access the
> + * op->data.buf.{in,out} buffer again.
> + *
> + * This function is not intended to be called from spi drivers. Only SPI
s/spi/SPI/
> + * controller drivers should use it.
> + *
> + * This function should be called after the DMA operation has finished an is
s/an/and/
> + * only valid if the previous spi_controller_dma_map_mem_op_data() has returned
> + * 0.
> + *
> + * Return: 0 in case of success, a negative error code otherwise.
> + */
> +void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
> + const struct spi_mem_op *op,
> + struct sg_table *sgt)
> +{
> + struct device *dmadev;
> +
> + if (!op->data.nbytes)
> + return;
> +
> + if (op->data.dir == SPI_MEM_DATA_OUT)
> + dmadev = ctlr->dma_tx ?
> + ctlr->dma_tx->device->dev : ctlr->dev.parent;
> + else
> + dmadev = ctlr->dma_rx ?
> + ctlr->dma_rx->device->dev : ctlr->dev.parent;
> +
> + spi_unmap_buf(ctlr, dmadev, sgt,
> + op->data.dir == SPI_MEM_DATA_IN ?
> + DMA_FROM_DEVICE : DMA_TO_DEVICE);
> +}
> +EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
> +
> +static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
> +{
> + u32 mode = mem->spi->mode;
> +
> + switch (buswidth) {
> + case 1:
> + return 0;
> +
> + case 2:
> + if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
> + (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
> + return 0;
> +
> + break;
> +
> + case 4:
> + if ((tx && (mode & SPI_TX_QUAD)) ||
> + (!tx && (mode & SPI_RX_QUAD)))
> + return 0;
> +
> + break;
> +
> + default:
> + break;
> + }
> +
> + return -ENOTSUPP;
> +}
> +
> +/**
> + * spi_mem_supports_op() - Check if a memory device and the controller it is
> + * connected to support a specific memory operation
> + * @mem: the SPI memory
> + * @op: the memory operation to check
> + *
> + * Some controllers are only supporting Single or Dual IOs, others might only
> + * support specific opcodes, or it can even be that the controller and device
> + * both support Quad IOs but the hardware prevents you from using it because
> + * only 2 IO lines are connected.
> + *
> + * This function checks whether a specific operation is supported.
> + *
> + * Return: true if @op is supported, false otherwise.
> + */
> +bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
> +{
> + struct spi_controller *ctlr = mem->spi->controller;
> +
> + if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
> + return false;
> +
> + if (op->addr.nbytes &&
> + spi_check_buswidth_req(mem, op->addr.buswidth, true))
> + return false;
> +
> + if (op->dummy.nbytes &&
> + spi_check_buswidth_req(mem, op->dummy.buswidth, true))
> + return false;
> +
> + if (op->data.nbytes &&
> + spi_check_buswidth_req(mem, op->data.buswidth,
> + op->data.dir == SPI_MEM_DATA_IN ?
> + false : true))
Why not just op->data.dir != SPI_MEM_DATA_IN or even better ==
SPI_MEM_DATA_OUT if it exists?
> + return false;
> +
> + if (ctlr->mem_ops)
> + return ctlr->mem_ops->supports_op(mem, op);
> +
> + return true;
> +}
> +EXPORT_SYMBOL_GPL(spi_mem_supports_op);
> +
> +/**
> + * spi_mem_exec_op() - Execute a memory operation
> + * @mem: the SPI memory
> + * @op: the memory operation to execute
> + *
> + * Executes a memory operation.
> + *
> + * This function first checks that @op is supported and then tries to execute
> + * it.
> + *
> + * Return: 0 in case of success, a negative error code otherwise.
> + */
> +int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
> +{
> + unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
> + struct spi_controller *ctlr = mem->spi->controller;
> + struct spi_transfer xfers[4] = { };
> + struct spi_message msg;
> + u8 *tmpbuf;
> + int ret;
> +
> + if (!spi_mem_supports_op(mem, op))
> + return -ENOTSUPP;
> +
> + if (ctlr->mem_ops) {
> + if (ctlr->auto_runtime_pm) {
> + ret = pm_runtime_get_sync(ctlr->dev.parent);
> + if (ret < 0) {
> + dev_err(&ctlr->dev,
> + "Failed to power device: %d\n",
> + ret);
> + return ret;
> + }
> + }
> +
> + mutex_lock(&ctlr->bus_lock_mutex);
> + mutex_lock(&ctlr->io_mutex);
> + ret = ctlr->mem_ops->exec_op(mem, op);
> + mutex_unlock(&ctlr->io_mutex);
> + mutex_unlock(&ctlr->bus_lock_mutex);
Is not this a bit dangerous? I guess that no one should release the bus
lock without having already released the IO lock but maybe this should
be clearly mentioned in a comment in the original structure definition?
> +
> + if (ctlr->auto_runtime_pm)
> + pm_runtime_put(ctlr->dev.parent);
> +
> + /*
> + * Some controllers only optimize specific paths (typically the
> + * read path) and expect the core to use the regular SPI
> + * interface in these cases.
> + */
> + if (!ret || ret != -ENOTSUPP)
> + return ret;
> + }
> +
> + tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
> + op->dummy.nbytes;
> +
> + /*
> + * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
> + * we're guaranteed that this buffer is DMA-able, as required by the
> + * SPI layer.
> + */
> + tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
> + if (!tmpbuf)
> + return -ENOMEM;
> +
> + spi_message_init(&msg);
> +
> + tmpbuf[0] = op->cmd.opcode;
> + xfers[xferpos].tx_buf = tmpbuf;
> + xfers[xferpos].len = sizeof(op->cmd.opcode);
> + xfers[xferpos].tx_nbits = op->cmd.buswidth;
> + spi_message_add_tail(&xfers[xferpos], &msg);
> + xferpos++;
> + totalxferlen++;
> +
> + if (op->addr.nbytes) {
> + memcpy(tmpbuf + 1, op->addr.buf, op->addr.nbytes);
> + xfers[xferpos].tx_buf = tmpbuf + 1;
> + xfers[xferpos].len = op->addr.nbytes;
> + xfers[xferpos].tx_nbits = op->addr.buswidth;
> + spi_message_add_tail(&xfers[xferpos], &msg);
> + xferpos++;
> + totalxferlen += op->addr.nbytes;
> + }
> +
> + if (op->dummy.nbytes) {
> + memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
> + xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
> + xfers[xferpos].len = op->dummy.nbytes;
> + xfers[xferpos].tx_nbits = op->dummy.buswidth;
> + spi_message_add_tail(&xfers[xferpos], &msg);
> + xferpos++;
> + totalxferlen += op->dummy.nbytes;
> + }
> +
> + if (op->data.nbytes) {
> + if (op->data.dir == SPI_MEM_DATA_IN) {
> + xfers[xferpos].rx_buf = op->data.buf.in;
> + xfers[xferpos].rx_nbits = op->data.buswidth;
> + } else {
> + xfers[xferpos].tx_buf = op->data.buf.out;
> + xfers[xferpos].tx_nbits = op->data.buswidth;
> + }
> +
> + xfers[xferpos].len = op->data.nbytes;
> + spi_message_add_tail(&xfers[xferpos], &msg);
> + xferpos++;
> + totalxferlen += op->data.nbytes;
> + }
> +
> + ret = spi_sync(mem->spi, &msg);
> +
> + kfree(tmpbuf);
> +
> + if (ret)
> + return ret;
> +
> + if (msg.actual_length != totalxferlen)
> + return -EIO;
> +
> + return 0;
> +}
> +EXPORT_SYMBOL_GPL(spi_mem_exec_op);
> +
> +/**
> + * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
> + * match controller limitations
> + * @mem: the SPI memory
> + * @op: the operation to adjust
> + *
> + * Some controllers have FIFO limitations and must split a data transfer
> + * operation into multiple ones, others require a specific alignment for
> + * optimized accesses. This function allows SPI mem drivers to split a single
> + * operation into multiple sub-operations when required.
> + *
> + * Return: a negative error code if the controller can't properly adjust @op,
> + * 0 otherwise. Note that @op->data.nbytes will be updated if @op
> + * can't be handled in a single step.
> + */
> +int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
> +{
> + struct spi_controller *ctlr = mem->spi->controller;
> +
> + if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
> + return ctlr->mem_ops->adjust_op_size(mem, op);
> +
> + return 0;
> +}
> +EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
> +
> +static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
> +{
> + return container_of(drv, struct spi_mem_driver, spidrv.driver);
> +}
> +
> +static int spi_mem_probe(struct spi_device *spi)
> +{
> + struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
> + struct spi_mem *mem;
> +
> + mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
> + if (!mem)
> + return -ENOMEM;
> +
> + mem->spi = spi;
> + spi_set_drvdata(spi, mem);
> +
> + return memdrv->probe(mem);
> +}
> +
> +static int spi_mem_remove(struct spi_device *spi)
> +{
> + struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
> + struct spi_mem *mem = spi_get_drvdata(spi);
> +
> + if (memdrv->remove)
> + return memdrv->remove(mem);
> +
> + return 0;
> +}
> +
> +static void spi_mem_shutdown(struct spi_device *spi)
> +{
> + struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
> + struct spi_mem *mem = spi_get_drvdata(spi);
> +
> + if (memdrv->shutdown)
> + memdrv->shutdown(mem);
> +}
> +
> +/**
> + * spi_mem_driver_register_with_owner() - Register a SPI memory driver
> + * @memdrv: the SPI memory driver to register
> + * @owner: the owner of this driver
> + *
> + * Registers a SPI memory driver.
> + *
> + * Return: 0 in case of success, a negative error core otherwise.
> + */
> +
> +int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
> + struct module *owner)
> +{
> + memdrv->spidrv.probe = spi_mem_probe;
> + memdrv->spidrv.remove = spi_mem_remove;
> + memdrv->spidrv.shutdown = spi_mem_shutdown;
> +
> + return __spi_register_driver(owner, &memdrv->spidrv);
> +}
> +EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
> +
> +/**
> + * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
> + * @memdrv: the SPI memory driver to unregister
> + *
> + * Unregisters a SPI memory driver.
> + */
> +void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
> +{
> + spi_unregister_driver(&memdrv->spidrv);
> +}
> +EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
> +
> /*-------------------------------------------------------------------------*/
>
> #if IS_ENABLED(CONFIG_OF_DYNAMIC)
> diff --git a/include/linux/spi/spi.h b/include/linux/spi/spi.h
> index 7b2170bfd6e7..af3c4ac62b55 100644
> --- a/include/linux/spi/spi.h
> +++ b/include/linux/spi/spi.h
> @@ -27,6 +27,7 @@ struct property_entry;
> struct spi_controller;
> struct spi_transfer;
> struct spi_flash_read_message;
> +struct spi_controller_mem_ops;
>
> /*
> * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
> @@ -376,6 +377,9 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
> * transfer_one callback.
> * @handle_err: the subsystem calls the driver to handle an error that occurs
> * in the generic implementation of transfer_one_message().
> + * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
> + * This field is optional and should only be implemented if the
> + * controller has native support for memory like operations.
> * @unprepare_message: undo any work done by prepare_message().
> * @slave_abort: abort the ongoing transfer request on an SPI slave controller
> * @spi_flash_read: to support spi-controller hardwares that provide
> @@ -564,6 +568,9 @@ struct spi_controller {
> void (*handle_err)(struct spi_controller *ctlr,
> struct spi_message *message);
>
> + /* Optimized handlers for SPI memory-like operations. */
> + const struct spi_controller_mem_ops *mem_ops;
> +
> /* gpio chip select */
> int *cs_gpios;
>
> @@ -1227,6 +1234,225 @@ int spi_flash_read(struct spi_device *spi,
>
> /*---------------------------------------------------------------------------*/
>
> +/* SPI memory related definitions. */
> +
> +#define SPI_MEM_OP_CMD(__opcode, __buswidth) \
> + { \
> + .buswidth = __buswidth, \
> + .opcode = __opcode, \
> + }
> +
> +#define SPI_MEM_OP_ADDRS(__nbytes, __buf, __buswidth) \
> + { \
> + .nbytes = __nbytes, \
> + .buf = __buf, \
> + .buswidth = __buswidth, \
> + }
> +
> +#define SPI_MEM_OP_NO_ADDRS { }
> +
> +#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
> + { \
> + .nbytes = __nbytes, \
> + .buswidth = __buswidth, \
> + }
> +
> +#define SPI_MEM_OP_NO_DUMMY { }
> +
> +#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
> + { \
> + .dir = SPI_MEM_DATA_IN, \
> + .nbytes = __nbytes, \
> + .buf.in = __buf, \
> + .buswidth = __buswidth, \
> + }
> +
> +#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
> + { \
> + .dir = SPI_MEM_DATA_OUT, \
> + .nbytes = __nbytes, \
> + .buf.out = __buf, \
> + .buswidth = __buswidth, \
> + }
> +
> +#define SPI_MEM_OP_NO_DATA { }
> +
> +/**
> + * enum spi_mem_data_dir - describes the direction of a SPI memory data
> + * transfer from the controller perspective
> + * @SPI_MEM_DATA_IN: data coming from the SPI memory
> + * @SPI_MEM_DATA_OUT: data sent the SPI memory
> + */
> +enum spi_mem_data_dir {
> + SPI_MEM_DATA_IN,
> + SPI_MEM_DATA_OUT,
> +};
> +
> +/**
> + * struct spi_mem_op - describes a SPI memory operation
> + * @cmd.buswidth: number of IO lines used to transmit the command
> + * @cmd.opcode: operation opcode
> + * @addr.nbytes: number of address bytes to send. Can be zero if the operation
> + * does not need to send an address
> + * @addr.buswidth: number of IO lines used to transmit the address cycles
> + * @addr.buf: buffer storing the address bytes
> + * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
> + * be zero if the operation does not require dummy bytes
> + * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
> + * @data.buswidth: number of IO lanes used to send/receive the data
> + * @data.dir: direction of the transfer
> + * @data.buf.in: input buffer
> + * @data.buf.out: output buffer
> + */
> +struct spi_mem_op {
> + struct {
> + u8 buswidth;
> + u8 opcode;
> + } cmd;
> +
> + struct {
> + u8 nbytes;
> + u8 buswidth;
> + const u8 *buf;
> + } addr;
> +
> + struct {
> + u8 nbytes;
> + u8 buswidth;
> + } dummy;
> +
> + struct {
> + u8 buswidth;
> + enum spi_mem_data_dir dir;
> + unsigned int nbytes;
> + /* buf.{in,out} must be DMA-able. */
> + union {
> + void *in;
> + const void *out;
> + } buf;
> + } data;
> +};
> +
> +#define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \
> + { \
> + .cmd = __cmd, \
> + .addr = __addr, \
> + .dummy = __dummy, \
> + .data = __data, \
> + }
> +
> +/**
> + * struct spi_mem - describes a SPI memory device
> + * @spi: the underlying SPI device
> + * @drvpriv: spi_mem_drviver private data
> + *
> + * Extra information that describe the SPI memory device and may be needed by
> + * the controller to properly handle this device should be placed here.
> + *
> + * One example would be the device size since some controller expose their SPI
> + * mem devices through a io-mapped region.
> + */
> +struct spi_mem {
> + struct spi_device *spi;
> + void *drvpriv;
> +};
> +
> +/**
> + * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
> + * device
> + * @mem: memory device
> + * @data: data to attach to the memory device
> + */
> +static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
> +{
> + mem->drvpriv = data;
> +}
> +
> +/**
> + * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
> + * device
> + * @mem: memory device
> + *
> + * Return: the data attached to the mem device.
> + */
> +static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
> +{
> + return mem->drvpriv;
> +}
> +
> +/**
> + * struct spi_controller_mem_ops - SPI memory operations
> + * @adjust_op_size: shrink the data xfer of an operation to match controller's
> + * limitations (can be alignment of max RX/TX size
> + * limitations)
> + * @supports_op: check if an operation is supported by the controller
> + * @exec_op: execute a SPI memory operation
> + *
> + * This interface should be implemented by SPI controllers providing an
> + * high-level interface to execute SPI memory operation, which is usually the
> + * case for QSPI controllers.
> + */
> +struct spi_controller_mem_ops {
> + int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
> + bool (*supports_op)(struct spi_mem *mem,
> + const struct spi_mem_op *op);
> + int (*exec_op)(struct spi_mem *mem,
> + const struct spi_mem_op *op);
:)
> +};
> +
> +int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
> + const struct spi_mem_op *op,
> + struct sg_table *sg);
> +
> +void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
> + const struct spi_mem_op *op,
> + struct sg_table *sg);
> +
> +int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
> +
> +bool spi_mem_supports_op(struct spi_mem *mem,
> + const struct spi_mem_op *op);
> +
> +int spi_mem_exec_op(struct spi_mem *mem,
> + const struct spi_mem_op *op);
> +
> +/**
> + * struct spi_mem_driver - SPI memory driver
> + * @spidrv: inherit from a SPI driver
> + * @probe: probe a SPI memory. Usually where detection/initialization takes
> + * place
> + * @remove: remove a SPI memory
> + * @shutdown: take appropriate action when the system is shutdown
> + *
> + * This is just a thin wrapper around a spi_driver. The core takes care of
> + * allocating the spi_mem object and forwarding the probe/remove/shutdown
> + * request to the spi_mem_driver. The reason we use this wrapper is because
> + * we might have to stuff more information into the spi_mem struct to let
> + * SPI controllers know more about the SPI memory they interact with, and
> + * having this intermediate layer allows us to do that without adding more
> + * useless fields to the spi_device object.
> + */
> +struct spi_mem_driver {
> + struct spi_driver spidrv;
> + int (*probe)(struct spi_mem *mem);
> + int (*remove)(struct spi_mem *mem);
> + void (*shutdown)(struct spi_mem *mem);
> +};
> +
> +int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
> + struct module *owner);
> +
> +#define spi_mem_driver_register(__drv) \
> + spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
> +
> +void spi_mem_driver_unregister(struct spi_mem_driver *drv);
> +
> +#define module_spi_mem_driver(__drv) \
> + module_driver(__drv, spi_mem_driver_register, \
> + spi_mem_driver_unregister)
> +
> +/*---------------------------------------------------------------------------*/
> +
> /*
> * INTERFACE between board init code and SPI infrastructure.
> *
Best regards,
Miquèl
--
Miquel Raynal, Bootlin (formerly Free Electrons)
Embedded Linux and Kernel engineering
http://bootlin.com
More information about the linux-mtd
mailing list