[PATCH 02/12] mtd: nand: add reworked Marvell NAND controller driver
Ezequiel Garcia
ezequiel at vanguardiasur.com.ar
Mon Dec 11 08:27:30 PST 2017
On 7 December 2017 at 17:18, Miquel Raynal
<miquel.raynal at free-electrons.com> wrote:
> Add marvell_nand driver which aims at replacing the existing pxa3xx_nand
> driver.
>
> The new driver intends to be easier to understand and follows the brand
> new NAND framework rules by implementing hooks for every pattern the
> controller might support and referencing them inside a parser object
> that will be given to the core at each ->exec_op() call.
>
> Raw accessors are implemented, useful to test/debug memory/filesystem
> corruptions. Userspace binaries contained in the mtd-utils package may
> now be used and their output trusted.
>
> Timings may not be kept from the bootloader anymore, the timings used
> for instance in U-Boot were not optimal and it supposed to have NAND
> support (and initialized) in the bootloader.
>
> Thanks to the improved timings, implementation of ONFI mode 5 support
> (with EDO managed by adding a delay on data sampling), merging the
> commands together and optimizing writes in the command registers, the
> new driver may achieve faster throughputs in both directions.
> Measurements show an improvement of about +23% read throughput and +24%
> write throughput. These measurements have been done with an
> Armada-385-DB-AP (4kiB NAND pages forced in 4-bit strength BCH ECC
> correction) using the userspace tool 'flash_speed' from the MTD test
> suite.
>
> Besides these important topics, the new driver addresses several
> unsolved known issues in the old driver which:
> - did not work with ECC soft neither with ECC none ;
> - relied on naked read/write (which is unchanged) while the NFCv1
> embedded in the pxa3xx platforms do not implement it, so several
> NAND commands did not actually ever work without any notice (like
> reading the ONFI PARAM_PAGE or SET/GET_FEATURES) ;
> - wrote the OOB data correctly, but was not able to read it correctly
> past the first OOB data chunk ;
> - did not displayed ECC bytes ;
> - used device tree bindings that did not allow more than one NAND chip,
> and did not allow to choose the correct chip select if not
> incrementing from 0. Plus, the Ready/Busy line used had to be 0.
>
> Old device tree bindings are still supported but deprecated. A more
> hierarchical view has to be used to keep the controller and the NAND
> chip structures clearly separated both inside the device tree and also
> in the driver code.
>
So, is this driver fully compatible with the current pxa3xx-nand driver?
Have you tested with U-Boot's driver (based on the pxa3xx-nand)?
I recally some subtle issues with the fact that U-Boot and Linux had
to agree about the BBT format.
> Signed-off-by: Miquel Raynal <miquel.raynal at free-electrons.com>
> ---
> drivers/mtd/nand/Kconfig | 12 +
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/marvell_nand.c | 2951 +++++++++++++++++++++++++++++++++++++++
> 3 files changed, 2964 insertions(+)
> create mode 100644 drivers/mtd/nand/marvell_nand.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 859eb7790c46..9e141e03f5c2 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -323,6 +323,18 @@ config MTD_NAND_PXA3xx
> platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada
> platforms (7K, 8K) (NFCv2).
>
> +config MTD_NAND_MARVELL
> + tristate "NAND controller support on Marvell boards"
> + depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
> + COMPILE_TEST
> + depends on HAS_IOMEM
> + help
> + This enables the NAND flash controller driver for Marvell boards,
> + including:
> + - PXA3xx processors (NFCv1)
> + - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
> + - 64-bit Aramda platforms (7k, 8k) (NFCv2)
> +
> config MTD_NAND_SLC_LPC32XX
> tristate "NXP LPC32xx SLC Controller"
> depends on ARCH_LPC32XX
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 118a1349aad3..921634ba400c 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -32,6 +32,7 @@ obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
> obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
> obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
> obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
> +obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o
> obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o
> obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
> obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
> diff --git a/drivers/mtd/nand/marvell_nand.c b/drivers/mtd/nand/marvell_nand.c
> new file mode 100644
> index 000000000000..2525d9b2f4fa
> --- /dev/null
> +++ b/drivers/mtd/nand/marvell_nand.c
> @@ -0,0 +1,2951 @@
> +/*
> + * Marvell NAND flash controller driver
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License version 2 as
> + * published by the Free Software Foundation.
> + *
> + * Copyright (C) 2017 Marvell
> + * Author: Miquel RAYNAL <miquel.raynal at free-electrons.com>
> + */
> +
> +#include <linux/module.h>
> +#include <linux/clk.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of_platform.h>
> +#include <linux/iopoll.h>
> +#include <linux/interrupt.h>
> +#include <linux/slab.h>
> +#include <linux/mfd/syscon.h>
> +#include <linux/regmap.h>
> +#include <asm/unaligned.h>
> +
> +#include <linux/dmaengine.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dma/pxa-dma.h>
> +#include <linux/platform_data/mtd-nand-pxa3xx.h>
> +
> +/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
> +#define FIFO_DEPTH 8
> +#define FIFO_REP(x) (x / sizeof(u32))
> +#define BCH_SEQ_READS (32 / FIFO_DEPTH)
> +/* NFC does not support transfers of larger chunks at a time */
> +#define MAX_CHUNK_SIZE 2112
> +/* NFCv1 cannot read more that 7 bytes of ID */
> +#define NFCV1_READID_LEN 7
> +/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
> +#define POLL_PERIOD 0
> +#define POLL_TIMEOUT 100000
> +/* Interrupt maximum wait period in ms */
> +#define IRQ_TIMEOUT 1000
> +/* Latency in clock cycles between SoC pins and NFC logic */
> +#define MIN_RD_DEL_CNT 3
> +/* Maximum number of contiguous address cycles */
> +#define MAX_ADDRESS_CYC_NFCV1 5
> +#define MAX_ADDRESS_CYC_NFCV2 7
> +/* System control registers/bits to enable the NAND controller on some SoCs */
> +#define GENCONF_SOC_DEVICE_MUX 0x208
> +#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
> +#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
> +#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
> +#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
> +#define GENCONF_CLK_GATING_CTRL 0x220
> +#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
> +#define GENCONF_ND_CLK_CTRL 0x700
> +#define GENCONF_ND_CLK_CTRL_EN BIT(0)
> +
> +/* NAND controller data flash control register */
> +#define NDCR 0x00
> +/* NAND interface timing parameter 0 register */
> +#define NDTR0 0x04
> +/* NAND interface timing parameter 1 register */
> +#define NDTR1 0x0C
> +/* NAND controller status register */
> +#define NDSR 0x14
> +/* NAND ECC control register */
> +#define NDECCCTRL 0x28
> +/* NAND controller data buffer register */
> +#define NDDB 0x40
> +/* NAND controller command buffer 0 register */
> +#define NDCB0 0x48
> +/* NAND controller command buffer 1 register */
> +#define NDCB1 0x4C
> +/* NAND controller command buffer 2 register */
> +#define NDCB2 0x50
> +/* NAND controller command buffer 3 register */
> +#define NDCB3 0x54
> +
> +/* Data flash control register bitfields */
> +#define NDCR_ALL_INT GENMASK(11, 0)
> +#define NDCR_CS1_CMDDM BIT(7)
> +#define NDCR_CS0_CMDDM BIT(8)
> +#define NDCR_RDYM BIT(11)
> +#define NDCR_ND_ARB_EN BIT(12)
> +#define NDCR_RA_START BIT(15)
> +#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
> +#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
> +#define NDCR_DWIDTH_M BIT(26)
> +#define NDCR_DWIDTH_C BIT(27)
> +#define NDCR_ND_RUN BIT(28)
> +#define NDCR_DMA_EN BIT(29)
> +#define NDCR_ECC_EN BIT(30)
> +#define NDCR_SPARE_EN BIT(31)
> +
> +/* NAND interface timing parameter registers bitfields */
> +#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
> +#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
> +#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
> +#define NDTR0_SEL_NRE_EDGE BIT(7)
> +#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
> +#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
> +#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
> +#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
> +#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
> +#define NDTR0_SELCNTR BIT(26)
> +#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
> +
> +#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
> +#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
> +#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
> +#define NDTR1_PRESCALE BIT(14)
> +#define NDTR1_WAIT_MODE BIT(15)
> +#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
> +
> +/* NAND controller status register bitfields */
> +#define NDSR_WRCMDREQ BIT(0)
> +#define NDSR_RDDREQ BIT(1)
> +#define NDSR_WRDREQ BIT(2)
> +#define NDSR_CORERR BIT(3)
> +#define NDSR_UNCERR BIT(4)
> +#define NDSR_CMDD(cs) BIT(8 - cs)
> +#define NDSR_RDY(rb) BIT(11 + rb)
> +#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
> +
> +/* NAND ECC control register bitfields */
> +#define NDECCTRL_BCH_EN BIT(0)
> +
> +/* NAND controller command buffer registers bitfields */
> +#define NDCB0_CMD1(x) ((x & 0xFF) << 0)
> +#define NDCB0_CMD2(x) ((x & 0xFF) << 8)
> +#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
> +#define NDCB0_DBC BIT(19)
> +#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
> +#define NDCB0_CSEL BIT(24)
> +#define NDCB0_RDY_BYP BIT(27)
> +#define NDCB0_LEN_OVRD BIT(28)
> +#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
> +
> +#define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
> +#define NDCB1_ADDRS(x) (x << 16)
> +
> +#define NDCB2_ADDR5(x) (((x >> 16) & 0xFF) << 0)
> +
> +#define NDCB3_ADDR6(x) ((x & 0xFF) << 16)
> +#define NDCB3_ADDR7(x) ((x & 0xFF) << 24)
> +
> +/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
> +#define TYPE_READ 0
> +#define TYPE_WRITE 1
> +#define TYPE_ERASE 2
> +#define TYPE_READ_ID 3
> +#define TYPE_STATUS 4
> +#define TYPE_RESET 5
> +#define TYPE_NAKED_CMD 6
> +#define TYPE_NAKED_ADDR 7
> +#define TYPE_MASK 7
> +#define XTYPE_MONOLITHIC_RW 0
> +#define XTYPE_LAST_NAKED_RW 1
> +#define XTYPE_FINAL_COMMAND 3
> +#define XTYPE_READ 4
> +#define XTYPE_WRITE_DISPATCH 4
> +#define XTYPE_NAKED_RW 5
> +#define XTYPE_COMMAND_DISPATCH 6
> +#define XTYPE_MASK 7
> +
> +/*
> + * Marvell ECC engine works differently than the others, in order to limit the
> + * size of the IP, hardware engineers choose to set a fixed strength at 16 bits
> + * per subpage, and depending on a the desired strength needed by the NAND chip,
> + * a particular layout mixing data/spare/ecc is defined, with a possible last
> + * chunk smaller that the others.
> + *
> + * @writesize: Full page size on which the layout applies
> + * @chunk: Desired ECC chunk size on which the layout applies
> + * @strength: Desired ECC strength (per chunk size bytes) on which the
> + * layout applies
> + * @full_chunk_cnt: Number of full-sized chunks, which is the number of
> + * repetitions of the pattern:
> + * (data_bytes + spare_bytes + ecc_bytes).
> + * @data_bytes: Number of data bytes per chunk
> + * @spare_bytes: Number of spare bytes per chunk
> + * @ecc_bytes: Number of ecc bytes per chunk
> + * @last_chunk_cnt: If there is a last chunk with a different size than
> + * the first ones, the next fields may not be empty
> + * @last_data_bytes: Number of data bytes in the last chunk
> + * @last_spare_bytes: Number of spare bytes in the last chunk
> + * @last_ecc_bytes: Number of ecc bytes in the last chunk
> + */
> +struct marvell_hw_ecc_layout {
> + /* Constraints */
> + int writesize;
> + int chunk;
> + int strength;
> + /* Corresponding layout */
> + int full_chunk_cnt;
> + int data_bytes;
> + int spare_bytes;
> + int ecc_bytes;
> + int last_chunk_cnt;
> + int last_data_bytes;
> + int last_spare_bytes;
> + int last_ecc_bytes;
> +};
> +
> +#define MARVELL_LAYOUT(ws, dc, ds, fcc, db, sb, eb, lcc, ldb, lsb, leb) \
> + { \
> + .writesize = ws, \
> + .chunk = dc, \
> + .strength = ds, \
> + .full_chunk_cnt = fcc, \
> + .data_bytes = db, \
> + .spare_bytes = sb, \
> + .ecc_bytes = eb, \
> + .last_chunk_cnt = lcc, \
> + .last_data_bytes = ldb, \
> + .last_spare_bytes = lsb, \
> + .last_ecc_bytes = leb, \
> + }
> +
> +/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
> +static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
> + MARVELL_LAYOUT( 512, 512, 1, 1, 512, 8, 8, 0, 0, 0, 0),
> + MARVELL_LAYOUT( 2048, 512, 1, 1, 2048, 40, 24, 0, 0, 0, 0),
> + MARVELL_LAYOUT( 2048, 512, 4, 1, 2048, 32, 30, 0, 0, 0, 0),
> + MARVELL_LAYOUT( 4096, 512, 4, 2, 2048, 32, 30, 0, 0, 0, 0),
> + MARVELL_LAYOUT( 4096, 512, 8, 4, 1024, 0, 30, 1, 0, 64, 30),
> +};
> +
> +/*
> + * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
> + * is made by a field in NDCB0 register, and in another field in NDCB2 register.
> + * The datasheet describes the logic with an error: ADDR5 field is once
> + * declared at the beginning of NDCB2, and another time at its end. Because the
> + * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
> + * to use the last bit of this field instead of the first ones.
> + *
> + * @cs: Wanted CE lane.
> + * @ndcb0_csel: Value of the NDCB0 register with or without the flag
> + * selecting the wanted CE lane. This is set once when
> + * the Device Tree is probed.
> + * @rb: Ready/Busy pin for the flash chip
> + */
> +struct marvell_nand_chip_sel {
> + unsigned int cs;
> + u32 ndcb0_csel;
> + unsigned int rb;
> +};
> +
> +/*
> + * NAND chip structure: stores NAND chip device related information
> + *
> + * @chip: Base NAND chip structure
> + * @node: Used to store NAND chips into a list
> + * @layout NAND layout when using hardware ECC
> + * @ndtr0 Timing registers 0 value for this NAND chip
> + * @ndtr1 Timing registers 1 value for this NAND chip
> + * @selected_die: Current active CS
> + * @nsels: Number of CS lines required by the NAND chip
> + * @sels: Array of CS lines descriptions
> + */
> +struct marvell_nand_chip {
> + struct nand_chip chip;
> + struct list_head node;
> + const struct marvell_hw_ecc_layout *layout;
> + u32 ndtr0;
> + u32 ndtr1;
> + int addr_cyc;
> + int selected_die;
> + unsigned int nsels;
> + struct marvell_nand_chip_sel sels[0];
> +};
> +
> +static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
> +{
> + return container_of(chip, struct marvell_nand_chip, chip);
> +}
> +
> +static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
> + *nand)
> +{
> + return &nand->sels[nand->selected_die];
> +}
> +
> +/*
> + * NAND controller capabilities for distinction between compatible strings
> + *
> + * @max_cs_nb: Number of Chip Select lines available
> + * @max_rb_nb: Number of Ready/Busy lines available
> + * @need_system_controller: Indicates if the SoC needs to have access to the
> + * system controller (ie. to enable the NAND controller)
> + * @legacy_of_bindings: Indicates if DT parsing must be done using the old
> + * fashion way
> + * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
> + * BCH error detection and correction algorithm,
> + * NDCB3 register has been added
> + * @use_dma: Use dma for data transfers
> + */
> +struct marvell_nfc_caps {
> + unsigned int max_cs_nb;
> + unsigned int max_rb_nb;
> + bool need_system_controller;
> + bool legacy_of_bindings;
> + bool is_nfcv2;
> + bool use_dma;
> +};
> +
> +/*
> + * NAND controller structure: stores Marvell NAND controller information
> + *
> + * @controller: Base controller structure
> + * @dev: Parent device (used to print error messages)
> + * @regs: NAND controller registers
> + * @ecc_clk: ECC block clock, two times the NAND controller clock
> + * @complete: Completion object to wait for NAND controller events
> + * @assigned_cs: Bitmask describing already assigned CS lines
> + * @chips: List containing all the NAND chips attached to
> + * this NAND controller
> + * @caps: NAND controller capabilities for each compatible string
> + * @buf: Controller local buffer to store a part of the read
> + * buffer when the read operation was not 8 bytes aligned
> + * as is the FIFO.
> + * @buf_pos: Position in the 'buf' buffer
> + * @dma_chan: DMA channel (NFCv1 only)
> + * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
> + */
> +struct marvell_nfc {
> + struct nand_hw_control controller;
> + struct device *dev;
> + void __iomem *regs;
> + struct clk *ecc_clk;
> + struct completion complete;
> + unsigned long assigned_cs;
> + struct list_head chips;
> + struct nand_chip *selected_chip;
> + const struct marvell_nfc_caps *caps;
> +
> + /*
> + * Buffer handling: @buf will be accessed byte-per-byter but also
> + * int-per-int when exchanging data with the NAND controller FIFO,
> + * 32-bit alignment is then required.
> + */
> + u8 buf[FIFO_DEPTH] __aligned(sizeof(u32));
> + int buf_pos;
> +
> + /* DMA (NFCv1 only) */
> + bool use_dma;
> + struct dma_chan *dma_chan;
> + u8 *dma_buf;
> +};
> +
> +static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
> +{
> + return container_of(ctrl, struct marvell_nfc, controller);
> +}
> +
> +/*
> + * NAND controller timings expressed in NAND Controller clock cycles
> + *
> + * @tRP: ND_nRE pulse width
> + * @tRH: ND_nRE high duration
> + * @tWP: ND_nWE pulse time
> + * @tWH: ND_nWE high duration
> + * @tCS: Enable signal setup time
> + * @tCH: Enable signal hold time
> + * @tADL: Address to write data delay
> + * @tAR: ND_ALE low to ND_nRE low delay
> + * @tWHR: ND_nWE high to ND_nRE low for status read
> + * @tRHW: ND_nRE high duration, read to write delay
> + * @tR: ND_nWE high to ND_nRE low for read
> + */
> +struct marvell_nfc_timings {
> + /* NDTR0 fields */
> + unsigned int tRP;
> + unsigned int tRH;
> + unsigned int tWP;
> + unsigned int tWH;
> + unsigned int tCS;
> + unsigned int tCH;
> + unsigned int tADL;
> + /* NDTR1 fields */
> + unsigned int tAR;
> + unsigned int tWHR;
> + unsigned int tRHW;
> + unsigned int tR;
> +};
> +
> +/*
> + * Derives a duration in numbers of clock cycles.
> + *
> + * @ps: Duration in pico-seconds
> + * @period_ns: Clock period in nano-seconds
> + *
> + * Convert the duration in nano-seconds, then divide by the period and
> + * return the number of clock periods.
> + */
> +#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
> +
> +/*
> + * NAND driver structure filled during the parsing of the ->exec_op() subop
> + * subset of instructions.
> + *
> + * @ndcb: Array for the values of the NDCBx registers
> + * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
> + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
> + * @rdy_delay_ns: Optional delay after waiting for the RB pin
> + * @data_delay_ns: Optional delay after the data xfer
> + * @data_instr_idx: Index of the data instruction in the subop
> + * @data_instr: Pointer to the data instruction in the subop
> + */
> +struct marvell_nfc_op {
> + u32 ndcb[4];
> + unsigned int cle_ale_delay_ns;
> + unsigned int rdy_timeout_ms;
> + unsigned int rdy_delay_ns;
> + unsigned int data_delay_ns;
> + unsigned int data_instr_idx;
> + const struct nand_op_instr *data_instr;
> +};
> +
> +/*
> + * Internal helper to conditionnally apply a delay (from the above structure,
> + * most of the time).
> + */
> +static void cond_delay(unsigned int ns)
> +{
> + if (!ns)
> + return;
> +
> + if (ns < 10000)
> + ndelay(ns);
> + else
> + udelay(DIV_ROUND_UP(ns, 1000));
> +}
> +
> +/*
> + * Internal helper to mimic core functions whithout having to distinguish if
> + * this is the first read operation on the page or not and hence choose the
> + * right function.
> + */
> +int read_page_data(struct nand_chip *chip, unsigned int page,
> + unsigned int column, void *buf, unsigned int len)
> +{
> + if (!column)
> + return nand_read_page_op(chip, page, column, buf, len);
> + else
> + return nand_change_read_column_op(chip, column, buf, len,
> + false);
> +}
> +
> +/*
> + * The controller has many flags that could generate interrupts, most of them
> + * are disabled and polling is used. For the very slow signals, using interrupts
> + * may relax the CPU charge.
> + */
> +static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
> +{
> + u32 reg;
> +
> + /* Writing 1 disables the interrupt */
> + reg = readl_relaxed(nfc->regs + NDCR);
> + writel_relaxed(reg | int_mask, nfc->regs + NDCR);
> +}
> +
> +static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
> +{
> + u32 reg;
> +
> + /* Writing 0 enables the interrupt */
> + reg = readl_relaxed(nfc->regs + NDCR);
> + writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
> +}
> +
> +static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
> +{
> + writel_relaxed(int_mask, nfc->regs + NDSR);
> +}
> +
> +/*
> + * The core may ask the controller to use only 8-bit accesses while usually
> + * using 16-bit accesses. Later function may blindly call this one with a
> + * boolean to indicate if 8-bit accesses must be enabled of disabled without
> + * knowing if 16-bit accesses are actually in use.
> + */
> +static void marvell_nfc_force_byte_access(struct nand_chip *chip,
> + bool force_8bit)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr;
> +
> + if (!(chip->options & NAND_BUSWIDTH_16))
> + return;
> +
> + ndcr = readl_relaxed(nfc->regs + NDCR);
> +
> + if (force_8bit)
> + ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
> + else
> + ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
> +
> + writel_relaxed(ndcr, nfc->regs + NDCR);
> +}
> +
> +static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 val;
> + int ret;
> +
> + /*
> + * The command is being processed, wait for the ND_RUN bit to be
> + * cleared by the NFC. If not, we must clear it by hand.
> + */
> + ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
> + (val & NDCR_ND_RUN) == 0,
> + POLL_PERIOD, POLL_TIMEOUT);
> + if (ret) {
> + dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
> + writel_relaxed(readl_relaxed(nfc->regs + NDCR) & ~NDCR_ND_RUN,
> + nfc->regs + NDCR);
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +/*
> + * Any time a command has to be sent to the controller, the following sequence
> + * has to be followed:
> + * - call marvell_nfc_prepare_cmd()
> + * -> activate the ND_RUN bit that will kind of 'start a job'
> + * -> wait the signal indicating the NFC is waiting for a command
> + * - send the command (cmd and address cycles)
> + * - enventually send or receive the data
> + * - call marvell_nfc_end_cmd() with the corresponding flag
> + * -> wait the flag to be triggered or cancel the job with a timeout
> + *
> + * The following functions are helpers to do this job and keep in the
> + * specialized functions the code that really does the operations.
> + */
> +static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr, val;
> + int ret;
> +
> + /* Poll ND_RUN and clear NDSR before issuing any command */
> + ret = marvell_nfc_wait_ndrun(chip);
> + if (ret) {
> + dev_err(nfc->dev, "Last operation did not suceed\n");
> + return ret;
> + }
> +
> + ndcr = readl_relaxed(nfc->regs + NDCR);
> + writel_relaxed(readl_relaxed(nfc->regs + NDSR), nfc->regs + NDSR);
> +
> + /* Assert ND_RUN bit and wait the NFC to be ready */
> + writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
> + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
> + val & NDSR_WRCMDREQ,
> + POLL_PERIOD, POLL_TIMEOUT);
> + if (ret) {
> + dev_err(nfc->dev, "Timeout on WRCMDRE\n");
> + return -ETIMEDOUT;
> + }
> +
> + /* Command may be written, clear WRCMDREQ status bit */
> + writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
> +
> + return 0;
> +}
> +
> +static void marvell_nfc_send_cmd(struct nand_chip *chip,
> + struct marvell_nfc_op *nfc_op)
> +{
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> +
> + dev_dbg(nfc->dev,
> + "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
> + nfc_op->ndcb[0], nfc_op->ndcb[1], nfc_op->ndcb[2],
> + nfc_op->ndcb[3]);
> +
> + writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
> + nfc->regs + NDCB0);
> + writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
> + writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
> +
> + /*
> + * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
> + * fields are used (only available on NFCv2).
> + */
> + if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
> + (nfc_op->ndcb[0] & NDCB0_ADDR_CYC(6)) == NDCB0_ADDR_CYC(6)) {
> + if (nfc->caps->is_nfcv2)
> + writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
> + else
> + dev_err(nfc->dev,
> + "NDCB3 does not exist on NFCv1 and should not be written\n");
> + }
> +}
> +
> +static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
> + const char *label)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 val;
> + int ret;
> +
> + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
> + val & flag,
> + POLL_PERIOD, POLL_TIMEOUT);
> +
> + if (ret) {
> + dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
> + label, val);
> + if (nfc->dma_chan)
> + dmaengine_terminate_all(nfc->dma_chan);
> + return ret;
> + }
> +
> + /*
> + * DMA function uses this helper to poll on CMDD bits without wanting
> + * them to be bleared.
> + */
> + if (nfc->use_dma && (readl(nfc->regs + NDCR) & NDCR_DMA_EN))
> + return 0;
> +
> + writel_relaxed(flag, nfc->regs + NDSR);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
> +{
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
> +
> + return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
> +}
> +
> +static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + int ret;
> +
> + /* Timeout is expressed in ms */
> + if (!timeout_ms)
> + timeout_ms = IRQ_TIMEOUT;
> +
> + init_completion(&nfc->complete);
> +
> + marvell_nfc_enable_int(nfc, NDCR_RDYM);
> + ret = wait_for_completion_timeout(&nfc->complete,
> + msecs_to_jiffies(timeout_ms));
> + marvell_nfc_disable_int(nfc, NDCR_RDYM);
> + marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
> + if (!ret) {
> + dev_err(nfc->dev, "Timeout waiting for RB signal\n");
> + return -ETIMEDOUT;
> + }
> +
> + return 0;
> +}
> +
> +static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr;
> +
> + if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
> + return;
> +
> + if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
> + nfc->selected_chip = NULL;
> + marvell_nand->selected_die = -1;
> + return;
> + }
> +
> + /*
> + * Do not change the timing registers when using the DT property
> + * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
> + * marvell_nand structure are supposedly empty.
> + */
> + if (marvell_nand->ndtr0 && marvell_nand->ndtr1) {
> + writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
> + writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
> + }
> +
> + ndcr = readl_relaxed(nfc->regs + NDCR);
> +
> + /* Ensure controller is not blocked; also clear some fields */
> + ndcr &= ~(NDCR_ND_RUN | NDCR_DWIDTH_M | NDCR_DWIDTH_C |
> + NDCR_PAGE_SZ(2048));
> +
> + /* Adapt bus width */
> + if (chip->options & NAND_BUSWIDTH_16)
> + ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
> +
> + /* Page size as seen by the controller, either 512B or 2kiB */
> + ndcr |= NDCR_PAGE_SZ(mtd->writesize);
> +
> + /* Update the control register */
> + writel_relaxed(ndcr, nfc->regs + NDCR);
> +
> + /* Also reset the interrupt status register */
> + marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
> +
> + nfc->selected_chip = chip;
> + marvell_nand->selected_die = die_nr;
> +}
> +
> +static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
> +{
> + struct marvell_nfc *nfc = dev_id;
> + u32 st = readl_relaxed(nfc->regs + NDSR);
> + u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
> +
> + /*
> + * RDY interrupt mask is one bit in NDCR while there are two status
> + * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
> + */
> + if (st & NDSR_RDY(1))
> + st |= NDSR_RDY(0);
> +
> + if (!(st & ien))
> + return IRQ_NONE;
> +
> + marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
> +
> + if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
> + complete(&nfc->complete);
> +
> + return IRQ_HANDLED;
> +}
> +
> +/* HW ECC related functions */
> +static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr = readl_relaxed(nfc->regs + NDCR);
> +
> + if (!(ndcr & NDCR_ECC_EN)) {
> + writel(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
> +
> + /*
> + * When enabling BCH, set threshold to 0 to always know the
> + * number of corrected bitflips.
> + */
> + if (chip->ecc.algo == NAND_ECC_BCH)
> + writel(NDECCTRL_BCH_EN, nfc->regs + NDECCCTRL);
> + }
> +}
> +
> +static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr = readl_relaxed(nfc->regs + NDCR);
> +
> + if (ndcr & NDCR_ECC_EN) {
> + writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
> + if (chip->ecc.algo == NAND_ECC_BCH)
> + writel_relaxed(0, nfc->regs + NDECCCTRL);
> + }
> +}
> +
> +/*
> + * Enable/disable spare area
> + *
> + * NFCv1 needs it (see Hamming related functions). NFCv2 uses LEN_OVRD and thus
> + * does not need this bit to be set.
> + */
> +static void marvell_nfc_enable_spare(struct nand_chip *chip)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr = readl_relaxed(nfc->regs + NDCR);
> +
> + if (!(ndcr & NDCR_SPARE_EN))
> + writel(ndcr | NDCR_SPARE_EN, nfc->regs + NDCR);
> +}
> +
> +static void marvell_nfc_disable_spare(struct nand_chip *chip)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + u32 ndcr = readl_relaxed(nfc->regs + NDCR);
> +
> + if (ndcr & NDCR_SPARE_EN)
> + writel_relaxed(ndcr & ~NDCR_SPARE_EN, nfc->regs + NDCR);
> +}
> +
> +/* DMA related helpers */
> +static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
> +{
> + u32 reg;
> +
> + reg = readl_relaxed(nfc->regs + NDCR);
> + writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
> +}
> +
> +static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
> +{
> + u32 reg;
> +
> + reg = readl_relaxed(nfc->regs + NDCR);
> + writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
> +}
> +
> +/* Read/write PIO/DMA accessors */
> +static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
> + enum dma_data_direction direction,
> + unsigned int len)
> +{
> + unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
> + struct dma_async_tx_descriptor *tx;
> + struct scatterlist sg;
> + dma_cookie_t cookie;
> + int ret;
> +
> + marvell_nfc_enable_dma(nfc);
> + /* Prepare the DMA transfer */
> + sg_init_one(&sg, nfc->dma_buf, dma_len);
> + dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
> + tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
> + direction == DMA_FROM_DEVICE ?
> + DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
> + DMA_PREP_INTERRUPT);
> + if (!tx) {
> + dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
> + return -ENXIO;
> + }
> +
> + /* Do the task and wait for it to finish */
> + cookie = dmaengine_submit(tx);
> + ret = dma_submit_error(cookie);
> + if (ret)
> + return -EIO;
> +
> + dma_async_issue_pending(nfc->dma_chan);
> + ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
> + dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
> + marvell_nfc_disable_dma(nfc);
> + if (ret) {
> + dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
> + dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
> + dmaengine_terminate_all(nfc->dma_chan);
> + return -ETIMEDOUT;
> + }
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
> + unsigned int len)
> +{
> + unsigned int last_len = len % FIFO_DEPTH;
> + unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
> + int i;
> +
> + for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
> + ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
> +
> + if (last_len) {
> + ioread32_rep(nfc->regs + NDDB, nfc->buf, FIFO_REP(FIFO_DEPTH));
> + memcpy(in + last_full_offset, nfc->buf, last_len);
> + }
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
> + unsigned int len)
> +{
> + unsigned int last_len = len % FIFO_DEPTH;
> + unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
> + int i;
> +
> + for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
> + iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
> +
> + if (last_len) {
> + memcpy(nfc->buf, out + last_full_offset, last_len);
> + iowrite32_rep(nfc->regs + NDDB, nfc->buf, FIFO_REP(FIFO_DEPTH));
> + }
> +
> + return 0;
> +}
> +
> +static void marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
> + u8 *data, int data_len,
> + u8 *oob, int oob_len,
> + unsigned int *max_bitflips)
> +{
> + struct mtd_info *mtd = nand_to_mtd(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + int bf = 0;
> + u32 ndsr;
> +
> + ndsr = readl_relaxed(nfc->regs + NDSR);
> +
> + /* Check uncorrectable error flag */
> + if (ndsr & NDSR_UNCERR) {
> + writel_relaxed(ndsr, nfc->regs + NDSR);
> +
> + /*
> + * Blank pages (all 0xFF) with no ECC are recognized as bad
> + * because hardware ECC engine expects non-empty ECC values
> + * in that case, so whenever an uncorrectable error occurs,
> + * check if the page is actually blank or not.
> + *
> + * It is important to check the emptyness only on oob_len,
> + * which only covers the spare bytes because after a read with
> + * ECC enabled, the ECC bytes in the buffer have been set by the
> + * ECC engine, so they are not 0xFF.
> + */
> + if (!data)
> + data_len = 0;
> + if (!oob)
> + oob_len = 0;
> + bf = nand_check_erased_ecc_chunk(data, data_len, NULL, 0,
> + oob, oob_len,
> + chip->ecc.strength);
> + if (bf < 0) {
> + mtd->ecc_stats.failed++;
> + return;
> + }
> + }
> +
> + /* Check correctable error flag */
> + if (ndsr & NDSR_CORERR) {
> + writel_relaxed(ndsr, nfc->regs + NDSR);
> +
> + if (chip->ecc.algo == NAND_ECC_BCH)
> + bf = NDSR_ERRCNT(ndsr);
> + else
> + bf = 1;
> + }
> +
> + /*
> + * Derive max_bitflips either from the number of bitflips detected by
> + * the hardware ECC engine or by nand_check_erased_ecc_chunk().
> + */
> + mtd->ecc_stats.corrected += bf;
> + *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
> +}
> +
> +/* Hamming read helpers */
> +static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, u8 *buf,
> + bool oob_required, bool raw,
> + int page)
> +{
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + struct marvell_nfc_op nfc_op = {
> + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
> + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
> + NDCB0_DBC |
> + NDCB0_CMD1(NAND_CMD_READ0) |
> + NDCB0_CMD2(NAND_CMD_READSTART),
> + .ndcb[1] = NDCB1_ADDRS(page),
> + .ndcb[2] = NDCB2_ADDR5(page),
> + };
> + unsigned int oob_bytes = 0;
> + int ret;
> +
> + /* NFCv2 needs more information about the operation being executed */
> + if (nfc->caps->is_nfcv2)
> + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + if (oob_required) {
> + marvell_nfc_enable_spare(chip);
> + oob_bytes = lt->spare_bytes;
> + if (raw)
> + oob_bytes += lt->ecc_bytes;
> + }
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
> + "RDDREQ while draining FIFO (data/oob)");
> + if (ret)
> + return ret;
> +
> + /* Read the page then the OOB area */
> + if (nfc->use_dma) {
> + marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
> + lt->data_bytes + oob_bytes);
> + memcpy(buf, nfc->dma_buf, lt->data_bytes);
> + memcpy(chip->oob_poi + (raw ? 0 : lt->ecc_bytes),
> + nfc->dma_buf + lt->data_bytes, oob_bytes);
> + } else {
> + marvell_nfc_xfer_data_in_pio(nfc, buf, lt->data_bytes);
> + marvell_nfc_xfer_data_in_pio(nfc, chip->oob_poi, oob_bytes);
> + }
> +
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + if (oob_required)
> + marvell_nfc_disable_spare(chip);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip, u8 *buf,
> + int oob_required, int page)
> +{
> + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, oob_required,
> + true, page);
> +}
> +
> +static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + u8 *buf, int oob_required,
> + int page)
> +{
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int max_bf = 0;
> +
> + /*
> + * Reading/Writing a given page must always be performed with the same
> + * configuration regarding the state of the SPARE_EN bit or ECC bytes
> + * will not be present at the same location (writing only data, without
> + * SPARE_EN will put the ECC bytes at the beginning of the OOB area,
> + * while writing with the SPARE_EN bit (hence, also writing free OOB
> + * bytes) will put first the spare bytes then, at the end of the OOB
> + * area, the ECC bytes. Choices has been made to always read/write OOB
> + * area (padding with 0xFF is handled by the core for writes).
> + */
> +
> + marvell_nfc_enable_hw_ecc(chip);
> + marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, true, false, page);
> + marvell_nfc_hw_ecc_correct(chip, buf, lt->data_bytes, NULL, 0, &max_bf);
> + marvell_nfc_disable_hw_ecc(chip);
> +
> + /*
> + * Re-read the OOB area in raw mode to get the ECC bytes if the OOB area
> + * is needed.
> + */
> + if (oob_required)
> + chip->ecc.read_oob_raw(mtd, chip, page);
> +
> + return max_bf;
> +}
> +
> +/*
> + * Spare area in Hamming layouts is not protected by the ECC engine (even if
> + * it appears before the ECC bytes when reading), the ->read_oob_raw() function
> + * also stands for ->read_oob().
> + */
> +static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
> + struct nand_chip *chip, int page)
> +{
> + /* Invalidate page cache */
> + chip->pagebuf = -1;
> +
> + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, true,
> + true, page);
> +}
> +
> +/* Hamming write helpers */
> +static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
> + const u8 *buf,
> + bool oob_required, bool raw,
> + int page)
> +{
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + struct marvell_nfc_op nfc_op = {
> + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
> + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
> + NDCB0_CMD1(NAND_CMD_SEQIN) |
> + NDCB0_CMD2(NAND_CMD_PAGEPROG) |
> + NDCB0_DBC,
> + .ndcb[1] = NDCB1_ADDRS(page),
> + .ndcb[2] = NDCB2_ADDR5(page),
> + };
> + int oob_bytes = 0;
> + int ret;
> +
> + /* NFCv2 needs more information about the operation being executed */
> + if (nfc->caps->is_nfcv2)
> + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + if (oob_required) {
> + marvell_nfc_enable_spare(chip);
> + oob_bytes = lt->spare_bytes;
> + if (raw)
> + oob_bytes += lt->ecc_bytes;
> + }
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
> + "WRDREQ while loading FIFO (data)");
> + if (ret)
> + return ret;
> +
> + /* Write the page then the OOB area */
> + if (nfc->use_dma) {
> + memcpy(nfc->dma_buf, buf, lt->data_bytes);
> + if (oob_required)
> + memcpy(nfc->dma_buf + lt->data_bytes, chip->oob_poi,
> + oob_bytes);
> + marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
> + lt->ecc_bytes + lt->spare_bytes);
> + } else {
> + marvell_nfc_xfer_data_out_pio(nfc, buf, lt->data_bytes);
> + if (oob_required)
> + marvell_nfc_xfer_data_out_pio(nfc, chip->oob_poi,
> + oob_bytes);
> + }
> +
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + ret = marvell_nfc_wait_op(chip,
> + chip->data_interface.timings.sdr.tPROG_max);
> + if (ret)
> + return ret;
> +
> + if (oob_required)
> + marvell_nfc_disable_spare(chip);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + const u8 *buf,
> + int oob_required, int page)
> +{
> + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, oob_required,
> + true, page);
> +}
> +
> +static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + const u8 *buf,
> + int oob_required, int page)
> +{
> + int ret;
> +
> + /*
> + * Reading/Writing a given page must always be performed with the same
> + * configuration regarding the state of the SPARE_EN bit or ECC bytes
> + * will not be present at the same location (writing only data, without
> + * SPARE_EN will put the ECC bytes at the beginning of the OOB area,
> + * while writing with the SPARE_EN bit (hence, also writing free OOB
> + * bytes) will put first the spare bytes then, at the end of the OOB
> + * area, the ECC bytes. Choices has been made to always read/write OOB
> + * area (padding with 0xFF is handled by the core for writes).
> + */
> +
> + marvell_nfc_enable_hw_ecc(chip);
> + ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, true, false,
> + page);
> + marvell_nfc_disable_hw_ecc(chip);
> +
> + return ret;
> +}
> +
> +/*
> + * Spare area in Hamming layouts is not protected by the ECC engine (even if
> + * it appears before the ECC bytes when reading), the ->write_oob_raw() function
> + * also stands for ->write_oob().
> + */
> +static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + int page)
> +{
> + /* Invalidate page cache */
> + chip->pagebuf = -1;
> +
> + memset(chip->data_buf, 0xFF, mtd->writesize);
> +
> + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, true,
> + true, page);
> +}
> +
> +/* BCH read helpers */
> +static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip, u8 *buf,
> + int oob_required, int page)
> +{
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + u8 *oob = chip->oob_poi;
> + int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
> + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
> + (lt->last_chunk_cnt * lt->last_spare_bytes);
> + int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
> + int data_len = lt->data_bytes;
> + int spare_len = lt->spare_bytes;
> + int ecc_len = lt->ecc_bytes;
> + int chunk;
> +
> + if (oob_required)
> + memset(chip->oob_poi, 0xFF, mtd->oobsize);
> +
> + nand_read_page_op(chip, page, 0, NULL, 0);
> +
> + for (chunk = 0; chunk < nchunks; chunk++) {
> + int offset_in_page = chunk * chunk_size;
> +
> + /* Update last chunk length */
> + if (chunk >= lt->full_chunk_cnt) {
> + data_len = lt->last_data_bytes;
> + spare_len = lt->last_spare_bytes;
> + ecc_len = lt->last_ecc_bytes;
> + }
> +
> + nand_change_read_column_op(chip, offset_in_page, buf,
> + lt->data_bytes, false);
> + buf += lt->data_bytes;
> +
> + if (!oob_required)
> + continue;
> +
> + offset_in_page += data_len;
> + nand_change_read_column_op(chip, offset_in_page,
> + oob + (lt->spare_bytes * chunk),
> + spare_len, false);
> +
> + offset_in_page += spare_len;
> + nand_change_read_column_op(chip, offset_in_page,
> + oob + ecc_offset +
> + (ALIGN(lt->ecc_bytes, 32) * chunk),
> + ecc_len, false);
> + }
> +
> + return 0;
> +}
> +
> +static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
> + u8 *data, unsigned int data_len,
> + u8 *spare, unsigned int spare_len,
> + int page)
> +{
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
> + int i, ret;
> + struct marvell_nfc_op nfc_op = {
> + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
> + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
> + NDCB0_LEN_OVRD,
> + .ndcb[1] = NDCB1_ADDRS(page),
> + .ndcb[2] = NDCB2_ADDR5(page),
> + };
> +
> + /*
> + * Reading spare area is mandatory when using HW ECC or read operation
> + * will trigger uncorrectable ECC errors, but do not read ECC here.
> + */
> + nfc_op.ndcb[3] = data_len + spare_len;
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return;
> +
> + if (chunk == 0)
> + nfc_op.ndcb[0] |= NDCB0_DBC |
> + NDCB0_CMD1(NAND_CMD_READ0) |
> + NDCB0_CMD2(NAND_CMD_READSTART);
> +
> + /*
> + * Trigger the naked read operation only on the last chunk.
> + * Otherwise, use monolithic read.
> + */
> + if (chunk < nchunks - 1)
> + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
> + else
> + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> +
> + /*
> + * According to the datasheet, when reading from NDDB
> + * with BCH enabled, after each 32 bytes reads, we
> + * have to make sure that the NDSR.RDDREQ bit is set.
> + *
> + * Drain the FIFO, 8 32-bit reads at a time, and skip
> + * the polling on the last read.
> + *
> + * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
> + *
> + */
> +
> + for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
> + marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
> + "RDDREQ while draining FIFO (data)");
> + marvell_nfc_xfer_data_in_pio(nfc, data,
> + FIFO_DEPTH * BCH_SEQ_READS);
> + data += FIFO_DEPTH * BCH_SEQ_READS;
> + }
> +
> + for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
> + marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
> + "RDDREQ while draining FIFO (OOB)");
> + marvell_nfc_xfer_data_in_pio(nfc, spare,
> + FIFO_DEPTH * BCH_SEQ_READS);
> + spare += FIFO_DEPTH * BCH_SEQ_READS;
> + }
> +}
> +
> +static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + u8 *buf, int oob_required,
> + int page)
> +{
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
> + int data_len = lt->data_bytes;
> + int spare_len = lt->spare_bytes;
> + u8 *data = buf;
> + u8 *spare = chip->oob_poi;
> + int max_bitflips = 0;
> + int chunk, ecc_offset_in_page, ecc_offset_in_oob_buf, ecc_len;
> +
> + /*
> + * With BCH, OOB is not fully used (and thus not read entirely), not
> + * expected bytes could show up at the end of the OOB buffer if not
> + * explicitly erased.
> + */
> + if (oob_required)
> + memset(chip->oob_poi, 0xFF, mtd->oobsize);
> +
> + marvell_nfc_enable_hw_ecc(chip);
> +
> + for (chunk = 0; chunk < nchunks; chunk++) {
> + /* Update length for the last chunk */
> + if (chunk >= lt->full_chunk_cnt) {
> + data_len = lt->last_data_bytes;
> + spare_len = lt->last_spare_bytes;
> + }
> +
> + /* Read the chunk and detect number of bitflips */
> + marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
> + spare, spare_len, page);
> + marvell_nfc_hw_ecc_correct(chip, data, data_len,
> + spare, spare_len, &max_bitflips);
> +
> + data += data_len;
> + spare += spare_len;
> + }
> +
> + marvell_nfc_disable_hw_ecc(chip);
> +
> + if (!oob_required)
> + return max_bitflips;
> +
> + /*
> + * Re-read ECC bytes without ECC enabled, else it is garbage and it
> + * fails the ->correct() call.
> + */
> + ecc_len = lt->ecc_bytes;
> + ecc_offset_in_oob_buf =
> + (lt->full_chunk_cnt * lt->spare_bytes) +
> + (lt->last_chunk_cnt * lt->last_spare_bytes);
> + ecc_offset_in_page = lt->data_bytes + lt->spare_bytes;
> +
> + for (chunk = 0; chunk < nchunks;) {
> + /* Do the actual raw read of the ECC bytes */
> + nand_change_read_column_op(chip, ecc_offset_in_page,
> + chip->oob_poi + ecc_offset_in_oob_buf,
> + ecc_len, false);
> +
> + chunk++;
> +
> + /* When using a "last chunk", the ECC size might vary */
> + if (chunk >= lt->full_chunk_cnt)
> + ecc_len = lt->last_ecc_bytes;
> +
> + /* Increment the offsets where ECC will be read and written */
> + ecc_offset_in_oob_buf += ALIGN(lt->ecc_bytes, 32);
> + ecc_offset_in_page += lt->ecc_bytes;
> + if (chunk < lt->full_chunk_cnt)
> + ecc_offset_in_page += lt->data_bytes + lt->spare_bytes;
> + else
> + ecc_offset_in_page += lt->last_data_bytes +
> + lt->last_spare_bytes;
> + }
> +
> + return max_bitflips;
> +}
> +
> +static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
> + struct nand_chip *chip, int page)
> +{
> + /* Invalidate page cache */
> + chip->pagebuf = -1;
> +
> + return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
> +}
> +
> +static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
> + struct nand_chip *chip, int page)
> +{
> + /* Invalidate page cache */
> + chip->pagebuf = -1;
> +
> + return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
> +}
> +
> +/* BCH write helpers */
> +static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + const u8 *buf,
> + int oob_required, int page)
> +{
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
> + int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
> + int data_len = lt->data_bytes;
> + int spare_len = lt->spare_bytes;
> + int ecc_len = lt->ecc_bytes;
> + int oob_len = spare_len + ecc_len;
> + int spare_offset = 0;
> + int ecc_offset =
> + (lt->full_chunk_cnt * lt->spare_bytes) +
> + (lt->last_chunk_cnt * lt->last_spare_bytes);
> + int chunk;
> +
> + nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +
> + for (chunk = 0; chunk < nchunks; chunk++) {
> + if (chunk >= lt->full_chunk_cnt) {
> + data_len = lt->last_data_bytes;
> + spare_len = lt->last_spare_bytes;
> + ecc_len = lt->last_ecc_bytes;
> + oob_len = spare_len + ecc_len;
> + }
> +
> + /* Point to the column of the next chunk */
> + nand_change_write_column_op(chip, chunk * full_chunk_size,
> + NULL, 0, false);
> +
> + /* Write the data */
> + nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
> + data_len, false);
> +
> + if (!oob_required)
> + continue;
> +
> + /* Write the spare bytes */
> + if (spare_len)
> + nand_write_data_op(chip, chip->oob_poi + spare_offset,
> + spare_len, false);
> +
> + /* Write the ECC bytes */
> + if (ecc_len)
> + nand_write_data_op(chip, chip->oob_poi + ecc_offset,
> + ecc_len, false);
> +
> + spare_offset += spare_len;
> + ecc_offset += ALIGN(ecc_len, 32);
> + }
> +
> + return nand_prog_page_end_op(chip);
> +}
> +
> +static int
> +marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
> + const u8 *data, unsigned int data_len,
> + const u8 *spare, unsigned int spare_len,
> + int page)
> +{
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
> + int ret;
> + struct marvell_nfc_op nfc_op = {
> + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
> + .ndcb[3] = data_len + spare_len,
> + };
> +
> + /*
> + * First operation dispatches the CMD_SEQIN command, issue the address
> + * cycles and asks for the first chunk of data.
> + * All operations in the middle (if any) will issue a naked write and
> + * also ask for data.
> + * Last operation dispatches the PAGEPROG command and also asks for the
> + * last chunk of data.
> + */
> + if (chunk == 0) {
> + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) |
> + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
> + NDCB0_CMD1(NAND_CMD_SEQIN);
> + nfc_op.ndcb[1] |= NDCB1_ADDRS(page);
> + nfc_op.ndcb[2] |= NDCB2_ADDR5(page);
> + } else if (chunk < nchunks - 1) {
> + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
> + } else {
> + nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC |
> + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
> + }
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
> + "WRDREQ while loading FIFO (data)");
> + if (ret)
> + return ret;
> +
> + /* Transfer the contents */
> + iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
> + iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + const u8 *buf,
> + int oob_required, int page)
> +{
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt + lt->last_chunk_cnt;
> + const u8 *data = buf;
> + const u8 *spare = chip->oob_poi;
> + int data_len = lt->data_bytes;
> + int spare_len = lt->spare_bytes;
> + int chunk, ret;
> +
> + /* Spare data will be written anyway, so clear it to avoid garbage */
> + if (!oob_required)
> + memset(chip->oob_poi, 0xFF, mtd->oobsize);
> +
> + marvell_nfc_enable_hw_ecc(chip);
> +
> + for (chunk = 0; chunk < nchunks; chunk++) {
> + if (chunk >= lt->full_chunk_cnt) {
> + data_len = lt->last_data_bytes;
> + spare_len = lt->last_spare_bytes;
> + }
> +
> + marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
> + spare, spare_len, page);
> + data += data_len;
> + spare += spare_len;
> +
> + /*
> + * Waiting only for CMDD or PAGED is not enough, ECC are
> + * partially written. No flag is set once the operation is
> + * really finished but the ND_RUN bit is cleared, so wait for it
> + * before stepping into the next command.
> + */
> + marvell_nfc_wait_ndrun(chip);
> + }
> +
> + ret = marvell_nfc_wait_op(chip,
> + chip->data_interface.timings.sdr.tPROG_max);
> +
> + marvell_nfc_disable_hw_ecc(chip);
> +
> + if (ret)
> + return ret;
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + int page)
> +{
> + /* Invalidate page cache */
> + chip->pagebuf = -1;
> +
> + memset(chip->data_buf, 0xFF, mtd->writesize);
> +
> + return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
> +}
> +
> +static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
> + struct nand_chip *chip, int page)
> +{
> + /* Invalidate page cache */
> + chip->pagebuf = -1;
> +
> + memset(chip->data_buf, 0xFF, mtd->writesize);
> +
> + return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
> +}
> +
> +/* NAND framework ->exec_op() hooks and related helpers */
> +static void marvell_nfc_parse_instructions(struct nand_chip *chip,
> + const struct nand_subop *subop,
> + struct marvell_nfc_op *nfc_op)
> +{
> + const struct nand_op_instr *instr = NULL;
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + bool first_cmd = true;
> + unsigned int op_id;
> + int i;
> +
> + /* Reset the input structure as most of its fields will be OR'ed */
> + memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
> +
> + for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> + unsigned int offset, naddrs;
> + const u8 *addrs;
> + int len = nand_subop_get_data_len(subop, op_id);
> +
> + instr = &subop->instrs[op_id];
> +
> + switch (instr->type) {
> + case NAND_OP_CMD_INSTR:
> + if (first_cmd)
> + nfc_op->ndcb[0] |=
> + NDCB0_CMD1(instr->ctx.cmd.opcode);
> + else
> + nfc_op->ndcb[0] |=
> + NDCB0_CMD2(instr->ctx.cmd.opcode) |
> + NDCB0_DBC;
> +
> + nfc_op->cle_ale_delay_ns = instr->delay_ns;
> + first_cmd = false;
> + break;
> +
> + case NAND_OP_ADDR_INSTR:
> + offset = nand_subop_get_addr_start_off(subop, op_id);
> + naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> + addrs = &instr->ctx.addr.addrs[offset];
> +
> + nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
> +
> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
> + nfc_op->ndcb[1] |= addrs[i] << (8 * i);
> +
> + if (naddrs >= 5)
> + nfc_op->ndcb[2] |= NDCB2_ADDR5(addrs[5]);
> + if (naddrs >= 6)
> + nfc_op->ndcb[3] |= NDCB3_ADDR6(addrs[6]);
> + if (naddrs == 7)
> + nfc_op->ndcb[3] |= NDCB3_ADDR7(addrs[7]);
> +
> + nfc_op->cle_ale_delay_ns = instr->delay_ns;
> + break;
> +
> + case NAND_OP_DATA_IN_INSTR:
> + nfc_op->data_instr = instr;
> + nfc_op->data_instr_idx = op_id;
> + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
> + if (nfc->caps->is_nfcv2) {
> + nfc_op->ndcb[0] |=
> + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
> + NDCB0_LEN_OVRD;
> + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
> + }
> + nfc_op->data_delay_ns = instr->delay_ns;
> + break;
> +
> + case NAND_OP_DATA_OUT_INSTR:
> + nfc_op->data_instr = instr;
> + nfc_op->data_instr_idx = op_id;
> + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
> + if (nfc->caps->is_nfcv2) {
> + nfc_op->ndcb[0] |=
> + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
> + NDCB0_LEN_OVRD;
> + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
> + }
> + nfc_op->data_delay_ns = instr->delay_ns;
> + break;
> +
> + case NAND_OP_WAITRDY_INSTR:
> + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> + nfc_op->rdy_delay_ns = instr->delay_ns;
> + break;
> + }
> + }
> +}
> +
> +static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
> + const struct nand_subop *subop,
> + struct marvell_nfc_op *nfc_op)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + const struct nand_op_instr *instr = nfc_op->data_instr;
> + unsigned int op_id = nfc_op->data_instr_idx;
> + unsigned int len = nand_subop_get_data_len(subop, op_id);
> + unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
> + bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
> + int ret;
> +
> + if (instr->ctx.data.force_8bit)
> + marvell_nfc_force_byte_access(chip, true);
> +
> + if (reading) {
> + u8 *in = instr->ctx.data.buf.in + offset;
> +
> + ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
> + } else {
> + const u8 *out = instr->ctx.data.buf.out + offset;
> +
> + ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
> + }
> +
> + if (instr->ctx.data.force_8bit)
> + marvell_nfc_force_byte_access(chip, false);
> +
> + return ret;
> +}
> +
> +static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + bool reading;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
> + "RDDREQ/WRDREQ while draining raw data");
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.cle_ale_delay_ns);
> +
> + if (reading) {
> + if (nfc_op.rdy_timeout_ms) {
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + if (ret)
> + return ret;
> + }
> +
> + cond_delay(nfc_op.rdy_delay_ns);
> + }
> +
> + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.data_delay_ns);
> +
> + if (!reading) {
> + if (nfc_op.rdy_timeout_ms) {
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + if (ret)
> + return ret;
> + }
> +
> + cond_delay(nfc_op.rdy_delay_ns);
> + }
> +
> + /*
> + * NDCR ND_RUN bit should be cleared automatically at the end of each
> + * operation but experience shows that the behavior is buggy when it
> + * comes to writes (with LEN_OVRD). Clear it by hand in this case.
> + */
> + if (!reading) {
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> +
> + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
> + nfc->regs + NDCR);
> + }
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> +
> + /*
> + * Naked access are different in that they need to be flagged as naked
> + * by the controller. Reset the controller registers fields that inform
> + * on the type and refill them according to the ongoing operation.
> + */
> + nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
> + NDCB0_CMD_XTYPE(XTYPE_MASK));
> + switch (subop->instrs[0].type) {
> + case NAND_OP_CMD_INSTR:
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
> + break;
> + case NAND_OP_ADDR_INSTR:
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
> + break;
> + case NAND_OP_DATA_IN_INSTR:
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
> + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
> + break;
> + case NAND_OP_DATA_OUT_INSTR:
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
> + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
> + break;
> + default:
> + /* This should never happen */
> + break;
> + }
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> +
> + if (!nfc_op.data_instr) {
> + ret = marvell_nfc_wait_cmdd(chip);
> + cond_delay(nfc_op.cle_ale_delay_ns);
> + return ret;
> + }
> +
> + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
> + "RDDREQ/WRDREQ while draining raw data");
> + if (ret)
> + return ret;
> +
> + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + /*
> + * NDCR ND_RUN bit should be cleared automatically at the end of each
> + * operation but experience shows that the behavior is buggy when it
> + * comes to writes (with LEN_OVRD). Clear it by hand in this case.
> + */
> + if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> +
> + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
> + nfc->regs + NDCR);
> + }
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> +
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + cond_delay(nfc_op.rdy_delay_ns);
> +
> + return ret;
> +}
> +
> +static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
> + "RDDREQ while reading ID");
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.cle_ale_delay_ns);
> +
> + if (nfc_op.rdy_timeout_ms) {
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + if (ret)
> + return ret;
> + }
> +
> + cond_delay(nfc_op.rdy_delay_ns);
> +
> + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.data_delay_ns);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_read_status_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
> + "RDDREQ while reading status");
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.cle_ale_delay_ns);
> +
> + if (nfc_op.rdy_timeout_ms) {
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + if (ret)
> + return ret;
> + }
> +
> + cond_delay(nfc_op.rdy_delay_ns);
> +
> + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.data_delay_ns);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.cle_ale_delay_ns);
> +
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.rdy_delay_ns);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
> + const struct nand_subop *subop)
> +{
> + struct marvell_nfc_op nfc_op;
> + int ret;
> +
> + marvell_nfc_parse_instructions(chip, subop, &nfc_op);
> + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
> +
> + ret = marvell_nfc_prepare_cmd(chip);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_send_cmd(chip, &nfc_op);
> + ret = marvell_nfc_wait_cmdd(chip);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.cle_ale_delay_ns);
> +
> + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
> + if (ret)
> + return ret;
> +
> + cond_delay(nfc_op.rdy_delay_ns);
> +
> + return 0;
> +}
> +
> +static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
> + /* Monolithic reads/writes */
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_monolithic_access_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_monolithic_access_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
> + NAND_OP_PARSER_PAT_CMD_ELEM(true),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> + /* Naked commands */
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_naked_access_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_naked_access_exec,
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_naked_access_exec,
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_naked_access_exec,
> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_naked_waitrdy_exec,
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> + );
> +
> +static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
> + /* Naked commands not supported, use a function for each pattern */
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_read_id_type_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_erase_cmd_type_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_read_status_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_reset_cmd_type_exec,
> + NAND_OP_PARSER_PAT_CMD_ELEM(false),
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> + NAND_OP_PARSER_PATTERN(
> + marvell_nfc_naked_waitrdy_exec,
> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> + );
> +
> +static int marvell_nfc_exec_op(struct nand_chip *chip,
> + const struct nand_operation *op,
> + bool check_only)
> +{
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> +
> + if (nfc->caps->is_nfcv2)
> + return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
> + op, check_only);
> + else
> + return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
> + op, check_only);
> +}
> +
> +/*
> + * HW ECC layouts, identical to old pxa3xx_nand driver,
> + * to be fully backward compatible.
> + */
> +static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt;
> +
> + if (section >= nchunks)
> + return -ERANGE;
> +
> + oobregion->offset = ((lt->spare_bytes + lt->ecc_bytes) * section) +
> + lt->spare_bytes;
> + oobregion->length = lt->ecc_bytes;
> +
> + return 0;
> +}
> +
> +static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
> + struct mtd_oob_region *oobregion)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
> + int nchunks = lt->full_chunk_cnt;
> +
> + if (section >= nchunks)
> + return -ERANGE;
> +
> + if (!lt->spare_bytes)
> + return 0;
> +
> + oobregion->offset = section * (lt->spare_bytes + lt->ecc_bytes);
> + oobregion->length = lt->spare_bytes;
> + if (!section) {
> + /*
> + * Bootrom looks in bytes 0 & 5 for bad blocks for the
> + * 4KB page / 4bit BCH combination.
> + */
> + if (mtd->writesize == 4096 && lt->data_bytes == 2048) {
> + oobregion->offset += 6;
> + oobregion->length -= 6;
> + } else {
> + oobregion->offset += 2;
> + oobregion->length -= 2;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
> + .ecc = marvell_nand_ooblayout_ecc,
> + .free = marvell_nand_ooblayout_free,
> +};
> +
> +static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
> + struct nand_ecc_ctrl *ecc)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + const struct marvell_hw_ecc_layout *l;
> + int i;
> +
> + if (!nfc->caps->is_nfcv2 &&
> + (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
> + dev_err(nfc->dev,
> + "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
> + mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
> + return -ENOTSUPP;
> + }
> +
> + to_marvell_nand(chip)->layout = NULL;
> + for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
> + l = &marvell_nfc_layouts[i];
> + if (mtd->writesize == l->writesize &&
> + ecc->size == l->chunk && ecc->strength == l->strength) {
> + to_marvell_nand(chip)->layout = l;
> + break;
> + }
> + }
> +
> + if (!to_marvell_nand(chip)->layout ||
> + (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
> + dev_err(nfc->dev,
> + "ECC strength %d at page size %d is not supported\n",
> + ecc->strength, mtd->writesize);
> + return -ENOTSUPP;
> + }
> +
> + mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
> + ecc->steps = l->full_chunk_cnt + l->last_chunk_cnt;
> + ecc->size = l->data_bytes;
> +
> + if (ecc->strength == 1) {
> + chip->ecc.algo = NAND_ECC_HAMMING;
> + ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
> + ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
> + ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
> + ecc->read_oob = ecc->read_oob_raw;
> + ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
> + ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
> + ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
> + ecc->write_oob = ecc->write_oob_raw;
> + } else {
> + chip->ecc.algo = NAND_ECC_BCH;
> + ecc->strength = 16;
> + ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
> + ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
> + ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
> + ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
> + ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
> + ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
> + ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
> + ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
> + }
> +
> + return 0;
> +}
> +
> +static int marvell_nand_ecc_init(struct mtd_info *mtd,
> + struct nand_ecc_ctrl *ecc)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + int ret;
> +
> + if ((ecc->mode != NAND_ECC_NONE) && (!ecc->size || !ecc->strength)) {
> + if (chip->ecc_step_ds && chip->ecc_strength_ds) {
> + ecc->size = chip->ecc_step_ds;
> + ecc->strength = chip->ecc_strength_ds;
> + } else {
> + dev_info(nfc->dev,
> + "No minimum ECC strength, using 1b/512B\n");
> + ecc->size = 512;
> + ecc->strength = 1;
> + }
> + }
> +
> + switch (ecc->mode) {
> + case NAND_ECC_HW:
> + ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
> + if (ret)
> + return ret;
> + break;
> + case NAND_ECC_NONE:
> + chip->ecc.algo = 0;
> + case NAND_ECC_SOFT:
> + break;
> + default:
> + return -EINVAL;
> + }
> +
> + return 0;
> +}
> +
> +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
> +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
> +
> +static struct nand_bbt_descr bbt_main_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
> + NAND_BBT_2BIT | NAND_BBT_VERSION,
> + .offs = 8,
> + .len = 6,
> + .veroffs = 14,
> + .maxblocks = 8, /* Last 8 blocks in each chip */
> + .pattern = bbt_pattern
> +};
> +
> +static struct nand_bbt_descr bbt_mirror_descr = {
> + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
> + NAND_BBT_2BIT | NAND_BBT_VERSION,
> + .offs = 8,
> + .len = 6,
> + .veroffs = 14,
> + .maxblocks = 8, /* Last 8 blocks in each chip */
> + .pattern = bbt_mirror_pattern
> +};
> +
> +static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
> + const struct nand_data_interface
> + *conf)
> +{
> + struct nand_chip *chip = mtd_to_nand(mtd);
> + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
> + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
> + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2;
> + const struct nand_sdr_timings *sdr;
> + struct marvell_nfc_timings nfc_tmg;
> + int read_delay;
> +
> + sdr = nand_get_sdr_timings(conf);
> + if (IS_ERR(sdr))
> + return PTR_ERR(sdr);
> +
> + /*
> + * SDR timings are given in pico-seconds while NFC timings must be
> + * expressed in NAND controller clock cycles, which is half of the
> + * frequency of the accessible ECC clock retrieved by clk_get_rate().
> + * This is not written anywhere in the datasheet but was observed
> + * with an oscilloscope.
> + *
> + * NFC datasheet gives equations from which thoses calculations
> + * are derived, they tend to be slightly more restrictives than the
> + * given core timings and may improve the overall speed.
> + */
> + nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
> + nfc_tmg.tRH = nfc_tmg.tRP;
> + nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
> + nfc_tmg.tWH = nfc_tmg.tWP;
> + nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
> + nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
> + nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
> + /*
> + * Read delay is the time of propagation from SoC pins to NFC internal
> + * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
> + * EDO mode, an additional delay of tRH must be taken into account so
> + * the data is sampled on the falling edge instead of the rising edge.
> + */
> + read_delay = sdr->tRC_min >= 30000 ?
> + MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
> +
> + nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
> + /*
> + * tWHR and tRHW are supposed to be read to write delays (and vice
> + * versa) but in some cases, ie. when doing a change column, they must
> + * be greater than that to be sure tCCS delay is respected.
> + */
> + nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
> + period_ns) - 2,
> + nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
> + period_ns);
> +
> + /* Use WAIT_MODE (wait for RB line) instead of only relying on delays */
> + nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
> +
> + if (chipnr < 0)
> + return 0;
> +
> + marvell_nand->ndtr0 =
> + NDTR0_TRP(nfc_tmg.tRP) |
> + NDTR0_TRH(nfc_tmg.tRH) |
> + NDTR0_ETRP(nfc_tmg.tRP) |
> + NDTR0_TWP(nfc_tmg.tWP) |
> + NDTR0_TWH(nfc_tmg.tWH) |
> + NDTR0_TCS(nfc_tmg.tCS) |
> + NDTR0_TCH(nfc_tmg.tCH) |
> + NDTR0_RD_CNT_DEL(read_delay) |
> + NDTR0_SELCNTR |
> + NDTR0_TADL(nfc_tmg.tADL);
> +
> + marvell_nand->ndtr1 =
> + NDTR1_TAR(nfc_tmg.tAR) |
> + NDTR1_TWHR(nfc_tmg.tWHR) |
> + NDTR1_TRHW(nfc_tmg.tRHW) |
> + NDTR1_WAIT_MODE |
> + NDTR1_TR(nfc_tmg.tR);
> +
> + writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
> + writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
> +
> + return 0;
> +}
> +
> +static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
> + struct device_node *np)
> +{
> + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
> + struct marvell_nand_chip *marvell_nand;
> + struct mtd_info *mtd;
> + struct nand_chip *chip;
> + int nsels, ret, i;
> + u32 cs, rb;
> +
> + /*
> + * The legacy "num-cs" property indicates the number of CS on the only
> + * chip connected to the controller (legacy bindings does not support
> + * more than one chip). CS are only incremented one by one while the RB
> + * pin is always the #0.
> + *
> + * When not using legacy bindings, a couple of "reg" and "marvell,rb"
> + * properties must be filled. For each chip, expressed as a subnode,
> + * "reg" points to the CS lines and "marvell,rb" to the RB line.
> + */
> + if (pdata) {
> + nsels = 1;
> + } else if (nfc->caps->legacy_of_bindings) {
> + if (!of_get_property(np, "num-cs", &nsels)) {
> + dev_err(dev, "missing num-cs property\n");
> + return -EINVAL;
> + }
> + } else {
> + if (!of_get_property(np, "reg", &nsels)) {
> + dev_err(dev, "missing reg property\n");
> + return -EINVAL;
> + }
> + }
> +
> + if (!pdata)
> + nsels /= sizeof(u32);
> + if (!nsels) {
> + dev_err(dev, "invalid reg property size\n");
> + return -EINVAL;
> + }
> +
> + /* Alloc the nand chip structure */
> + marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
> + (nsels *
> + sizeof(struct marvell_nand_chip_sel)),
> + GFP_KERNEL);
> + if (!marvell_nand) {
> + dev_err(dev, "could not allocate chip structure\n");
> + return -ENOMEM;
> + }
> +
> + marvell_nand->nsels = nsels;
> + marvell_nand->selected_die = -1;
> +
> + for (i = 0; i < nsels; i++) {
> + if (pdata || nfc->caps->legacy_of_bindings) {
> + /*
> + * Legacy bindings use the CS lines in natural
> + * order (0, 1, ...)
> + */
> + cs = i;
> + } else {
> + /* Retrieve CS id */
> + ret = of_property_read_u32_index(np, "reg", i, &cs);
> + if (ret) {
> + dev_err(dev, "could not retrieve reg property: %d\n",
> + ret);
> + return ret;
> + }
> + }
> +
> + if (cs >= nfc->caps->max_cs_nb) {
> + dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
> + cs, nfc->caps->max_cs_nb);
> + return -EINVAL;
> + }
> +
> + if (test_and_set_bit(cs, &nfc->assigned_cs)) {
> + dev_err(dev, "CS %d already assigned\n", cs);
> + return -EINVAL;
> + }
> +
> + /*
> + * The cs variable represents the chip select id, which must be
> + * converted in bit fields for NDCB0 and NDCB2 to select the
> + * right chip. Unfortunately, due to a lack of information on
> + * the subject and incoherent documentation, the user should not
> + * use CS1 and CS3 at all as asserting them is not supported in
> + * a reliable way (due to multiplexing inside ADDR5 field).
> + */
> + marvell_nand->sels[i].cs = cs;
> + switch (cs) {
> + case 0:
> + case 2:
> + marvell_nand->sels[i].ndcb0_csel = 0;
> + break;
> + case 1:
> + case 3:
> + marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
> + break;
> + default:
> + return -EINVAL;
> + }
> +
> + /* Retrieve RB id */
> + if (pdata || nfc->caps->legacy_of_bindings) {
> + /* Legacy bindings always use RB #0 */
> + rb = 0;
> + } else {
> + ret = of_property_read_u32_index(np, "marvell,rb", i,
> + &rb);
> + if (ret) {
> + dev_err(dev,
> + "could not retrieve RB property: %d\n",
> + ret);
> + return ret;
> + }
> + }
> +
> + if (rb >= nfc->caps->max_rb_nb) {
> + dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
> + rb, nfc->caps->max_rb_nb);
> + return -EINVAL;
> + }
> +
> + marvell_nand->sels[i].rb = rb;
> + }
> +
> + chip = &marvell_nand->chip;
> + chip->controller = &nfc->controller;
> + nand_set_flash_node(chip, np);
> +
> + chip->exec_op = marvell_nfc_exec_op;
> + chip->select_chip = marvell_nfc_select_chip;
> + if (nfc->caps->is_nfcv2 &&
> + !of_property_read_bool(np, "marvell,nand-keep-config"))
> + chip->setup_data_interface = marvell_nfc_setup_data_interface;
> +
> + mtd = nand_to_mtd(chip);
> + mtd->dev.parent = dev;
> +
> + /*
> + * Default to HW ECC engine mode. If the nand-ecc-mode property is given
> + * in the DT node, this entry will be overwritten in nand_scan_ident().
> + */
> + chip->ecc.mode = NAND_ECC_HW;
> +
> + ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
> + if (ret) {
> + dev_err(dev, "could not identify the nand chip\n");
> + return ret;
> + }
> +
> + if (pdata && pdata->flash_bbt)
> + chip->bbt_options |= NAND_BBT_USE_FLASH;
> +
> + if (chip->bbt_options & NAND_BBT_USE_FLASH) {
> + /*
> + * We'll use a bad block table stored in-flash and don't
> + * allow writing the bad block marker to the flash.
> + */
> + chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
> + chip->bbt_td = &bbt_main_descr;
> + chip->bbt_md = &bbt_mirror_descr;
> + }
> +
> + /*
> + * With RA_START bit set in NDCR, columns takes two address cycles. This
> + * means addressing a chip with more than 256 pages needs a fifth
> + * address cycle. Addressing a chip using CS 2 or 3 should also needs
> + * this additional cycle but due to insistance in the documentation and
> + * lack of hardware to test this situation, this case has been dropped
> + * and is not supported by this driver.
> + */
> + marvell_nand->addr_cyc = 4;
> + if (chip->options & NAND_ROW_ADDR_3)
> + marvell_nand->addr_cyc = 5;
> +
> + if (pdata) {
> + chip->ecc.size = pdata->ecc_step_size;
> + chip->ecc.strength = pdata->ecc_strength;
> + }
> +
> + ret = marvell_nand_ecc_init(mtd, &chip->ecc);
> + if (ret) {
> + dev_err(dev, "ECC init failed: %d\n", ret);
> + return ret;
> + }
> +
> + if (chip->ecc.mode == NAND_ECC_HW) {
> + /*
> + * Subpage write not available with hardware ECC, prohibit also
> + * subpage read as in userspace subpage acces would still be
> + * allowed and subpage write, if used, would lead to numerous
> + * uncorrectable ECC errors.
> + */
> + chip->options |= NAND_NO_SUBPAGE_WRITE;
> + }
> +
> + if (pdata || nfc->caps->legacy_of_bindings) {
> + /*
> + * We keep the MTD name unchanged to avoid breaking platforms
> + * where the MTD cmdline parser is used and the bootloader
> + * has not been updated to use the new naming scheme.
> + */
> + mtd->name = "pxa3xx_nand-0";
> + } else if (!mtd->name) {
> + /*
> + * If the new bindings are used and the bootloader has not been
> + * updated to pass a new mtdparts parameter on the cmdline, you
> + * should define the following property in your NAND node, ie:
> + *
> + * label = "main-storage";
> + *
> + * This way, mtd->name will be set by the core when
> + * nand_set_flash_node() is called.
> + */
> + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
> + "%s:nand.%d", dev_name(nfc->dev),
> + marvell_nand->sels[0].cs);
> + if (!mtd->name) {
> + dev_err(nfc->dev, "Failed to allocate mtd->name\n");
> + return -ENOMEM;
> + }
> + }
> +
> + ret = nand_scan_tail(mtd);
> + if (ret) {
> + dev_err(dev, "nand_scan_tail failed: %d\n", ret);
> + return ret;
> + }
> +
> + if (pdata)
> + /* Legacy bindings support only one chip */
> + ret = mtd_device_register(mtd, pdata->parts[0],
> + pdata->nr_parts[0]);
> + else
> + ret = mtd_device_register(mtd, NULL, 0);
> + if (ret) {
> + dev_err(dev, "failed to register mtd device: %d\n", ret);
> + nand_release(mtd);
> + return ret;
> + }
> +
> + list_add_tail(&marvell_nand->node, &nfc->chips);
> +
> + return 0;
> +}
> +
> +static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
> +{
> + struct device_node *np = dev->of_node;
> + struct device_node *nand_np;
> + int max_cs = nfc->caps->max_cs_nb;
> + int nchips;
> + int ret;
> +
> + if (!np)
> + nchips = 1;
> + else
> + nchips = of_get_child_count(np);
> +
> + if (nchips > max_cs) {
> + dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
> + max_cs);
> + return -EINVAL;
> + }
> +
> + /*
> + * Legacy bindings do not use child nodes to exhibit NAND chip
> + * properties and layout. Instead, NAND properties are mixed with the
> + * controller's and a single subnode presents the memory layout.
> + */
> + if (nfc->caps->legacy_of_bindings) {
> + ret = marvell_nand_chip_init(dev, nfc, np);
> + return ret;
> + }
> +
> + for_each_child_of_node(np, nand_np) {
> + ret = marvell_nand_chip_init(dev, nfc, nand_np);
> + if (ret) {
> + of_node_put(nand_np);
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +
> +static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
> +{
> + struct marvell_nand_chip *entry, *temp;
> +
> + list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
> + nand_release(nand_to_mtd(&entry->chip));
> + list_del(&entry->node);
> + }
> +}
> +
> +static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
> +{
> + struct platform_device *pdev = container_of(nfc->dev,
> + struct platform_device,
> + dev);
> + struct dma_slave_config config = {};
> + struct resource *r;
> + dma_cap_mask_t mask;
> + struct pxad_param param;
> + int ret;
> +
> + if (!IS_ENABLED(CONFIG_PXA_DMA)) {
> + dev_warn(nfc->dev,
> + "DMA not enabled in configuration\n");
> + return -ENOTSUPP;
> + }
> +
> + ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
> + if (ret)
> + return ret;
> +
> + r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
> + if (!r) {
> + dev_err(nfc->dev, "No resource defined for data DMA\n");
> + return -ENXIO;
> + }
> +
> + param.drcmr = r->start;
> + param.prio = PXAD_PRIO_LOWEST;
> + dma_cap_zero(mask);
> + dma_cap_set(DMA_SLAVE, mask);
> + nfc->dma_chan =
> + dma_request_slave_channel_compat(mask, pxad_filter_fn,
> + ¶m, nfc->dev,
> + "data");
> + if (!nfc->dma_chan) {
> + dev_err(nfc->dev,
> + "Unable to request data DMA channel\n");
> + return -ENODEV;
> + }
> +
> + r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + if (!r)
> + return -ENXIO;
> +
> + config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
> + config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
> + config.src_addr = r->start + NDDB;
> + config.dst_addr = r->start + NDDB;
> + config.src_maxburst = 32;
> + config.dst_maxburst = 32;
> + ret = dmaengine_slave_config(nfc->dma_chan, &config);
> + if (ret < 0) {
> + dev_err(nfc->dev, "Failed to configure DMA channel\n");
> + return ret;
> + }
> +
> + /*
> + * DMA must act on length multiple of 32 and this length may be
> + * bigger than the destination buffer. Use this buffer instead
> + * for DMA transfers and then copy the desired amount of data to
> + * the provided buffer.
> + */
> + nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_DMA);
> + if (!nfc->dma_buf)
> + return -ENOMEM;
> +
> + nfc->use_dma = true;
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_init(struct marvell_nfc *nfc)
> +{
> + struct device_node *np = nfc->dev->of_node;
> +
> + /*
> + * Some SoCs like A7k/A8k need to enable manually the NAND
> + * controller, gated clocks and reset bits to avoid being bootloader
> + * dependent. This is done through the use of the System Functions
> + * registers.
> + */
> + if (nfc->caps->need_system_controller) {
> + struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
> + np, "marvell,system-controller");
> + u32 reg;
> +
> + if (IS_ERR(sysctrl_base))
> + return PTR_ERR(sysctrl_base);
> +
> + reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
> + GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
> + GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
> + GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
> + regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
> +
> + regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®);
> + reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
> + regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
> +
> + regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®);
> + reg |= GENCONF_ND_CLK_CTRL_EN;
> + regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
> + }
> +
> + /* Configure the DMA if appropriate */
> + if (!nfc->caps->is_nfcv2)
> + marvell_nfc_init_dma(nfc);
> +
> + /*
> + * ECC operations and interruptions are only enabled when specifically
> + * needed. ECC shall not be activated in the early stages (fails probe).
> + * Arbiter flag, even if marked as "reserved", must be set (empirical).
> + */
> + writel_relaxed(NDCR_RA_START | NDCR_ALL_INT | NDCR_ND_ARB_EN |
> + (nfc->caps->is_nfcv2 ?
> + 0 : NDCR_RD_ID_CNT(NFCV1_READID_LEN)),
> + nfc->regs + NDCR);
> + writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
> + writel_relaxed(0, nfc->regs + NDECCCTRL);
> +
> + return 0;
> +}
> +
> +static int marvell_nfc_probe(struct platform_device *pdev)
> +{
> + struct device *dev = &pdev->dev;
> + struct resource *r;
> + struct marvell_nfc *nfc;
> + int ret;
> + int irq;
> +
> + nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
> + GFP_KERNEL);
> + if (!nfc)
> + return -ENOMEM;
> +
> + nfc->dev = dev;
> + nand_hw_control_init(&nfc->controller);
> + INIT_LIST_HEAD(&nfc->chips);
> +
> + r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + nfc->regs = devm_ioremap_resource(dev, r);
> + if (IS_ERR(nfc->regs))
> + return PTR_ERR(nfc->regs);
> +
> + irq = platform_get_irq(pdev, 0);
> + if (irq < 0) {
> + dev_err(dev, "failed to retrieve irq\n");
> + return irq;
> + }
> +
> + nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL);
> + if (IS_ERR(nfc->ecc_clk))
> + return PTR_ERR(nfc->ecc_clk);
> +
> + ret = clk_prepare_enable(nfc->ecc_clk);
> + if (ret)
> + return ret;
> +
> + marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
> + marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
> + ret = devm_request_irq(dev, irq, marvell_nfc_isr,
> + 0, "marvell-nfc", nfc);
> + if (ret)
> + goto unprepare_clk;
> +
> + /* Get NAND controller capabilities */
> + if (pdev->id_entry)
> + nfc->caps = (void *)pdev->id_entry->driver_data;
> + else
> + nfc->caps = of_device_get_match_data(&pdev->dev);
> +
> + if (!nfc->caps) {
> + dev_err(dev, "Could not retrieve NFC caps\n");
> + ret = -EINVAL;
> + goto unprepare_clk;
> + }
> +
> + /* Init the controller and then probe the chips */
> + ret = marvell_nfc_init(nfc);
> + if (ret)
> + goto unprepare_clk;
> +
> + platform_set_drvdata(pdev, nfc);
> +
> + ret = marvell_nand_chips_init(dev, nfc);
> + if (ret)
> + goto unprepare_clk;
> +
> + return 0;
> +
> +unprepare_clk:
> + clk_disable_unprepare(nfc->ecc_clk);
> +
> + return ret;
> +}
> +
> +static int marvell_nfc_remove(struct platform_device *pdev)
> +{
> + struct marvell_nfc *nfc = platform_get_drvdata(pdev);
> +
> + marvell_nand_chips_cleanup(nfc);
> +
> + if (nfc->use_dma) {
> + dmaengine_terminate_all(nfc->dma_chan);
> + dma_release_channel(nfc->dma_chan);
> + }
> +
> + clk_disable_unprepare(nfc->ecc_clk);
> +
> + return 0;
> +}
> +
> +static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
> + .max_cs_nb = 4,
> + .max_rb_nb = 2,
> + .need_system_controller = true,
> + .is_nfcv2 = true,
> +};
> +
> +static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
> + .max_cs_nb = 4,
> + .max_rb_nb = 2,
> + .is_nfcv2 = true,
> +};
> +
> +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
> + .max_cs_nb = 2,
> + .max_rb_nb = 1,
> + .use_dma = true,
> +};
> +
> +static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
> + .max_cs_nb = 4,
> + .max_rb_nb = 2,
> + .need_system_controller = true,
> + .legacy_of_bindings = true,
> + .is_nfcv2 = true,
> +};
> +
> +static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
> + .max_cs_nb = 4,
> + .max_rb_nb = 2,
> + .legacy_of_bindings = true,
> +};
> +
> +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
> + .max_cs_nb = 2,
> + .max_rb_nb = 1,
> + .legacy_of_bindings = true,
> +};
> +
> +static const struct platform_device_id marvell_nfc_platform_ids[] = {
> + {
> + .name = "pxa3xx-nand",
> + .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
> + },
> + { /* sentinel */ },
> +};
> +MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
> +
> +static const struct of_device_id marvell_nfc_of_ids[] = {
> + {
> + .compatible = "marvell,armada-8k-nand-controller",
> + .data = &marvell_armada_8k_nfc_caps,
> + },
> + {
> + .compatible = "marvell,armada370-nand-controller",
> + .data = &marvell_armada370_nfc_caps,
> + },
> + {
> + .compatible = "marvell,pxa3xx-nand-controller",
> + .data = &marvell_pxa3xx_nfc_caps,
> + },
> + /* Support for old/deprecated bindings: */
> + {
> + .compatible = "marvell,armada-8k-nand",
> + .data = &marvell_armada_8k_nfc_legacy_caps,
> + },
> + {
> + .compatible = "marvell,armada370-nand",
> + .data = &marvell_armada370_nfc_legacy_caps,
> + },
> + {
> + .compatible = "marvell,pxa3xx-nand",
> + .data = &marvell_pxa3xx_nfc_legacy_caps,
> + },
> + { /* sentinel */ },
> +};
> +MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
> +
> +static struct platform_driver marvell_nfc_driver = {
> + .driver = {
> + .name = "marvell-nfc",
> + .of_match_table = marvell_nfc_of_ids,
> + },
> + .id_table = marvell_nfc_platform_ids,
> + .probe = marvell_nfc_probe,
> + .remove = marvell_nfc_remove,
> +};
> +module_platform_driver(marvell_nfc_driver);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_DESCRIPTION("Marvell NAND controller driver");
> --
> 2.11.0
>
>
> ______________________________________________________
> Linux MTD discussion mailing list
> http://lists.infradead.org/mailman/listinfo/linux-mtd/
--
Ezequiel García, VanguardiaSur
www.vanguardiasur.com.ar
More information about the linux-mtd
mailing list