[PATCH 1/4] Add kernel style linked lists

Richard Weinberger richard at nod.at
Thu Nov 5 15:00:00 PST 2015


From: Daniel Walter <dwalter at sigma-star.at>

Signed-off-by: Daniel Walter <dwalter at sigma-star.at>
Signed-off-by: Richard Weinberger <richard at nod.at>
---
 include/list.h | 611 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 611 insertions(+)
 create mode 100644 include/list.h

diff --git a/include/list.h b/include/list.h
new file mode 100644
index 0000000..e8d58eb
--- /dev/null
+++ b/include/list.h
@@ -0,0 +1,611 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef _LINUX_LIST_H
+#define _LINUX_LIST_H
+
+struct list_head {
+	struct list_head *next, *prev;
+};
+
+#define LIST_POISON1  ((struct list_head *) 0x00100100)
+#define LIST_POISON2  ((struct list_head *) 0x00200200)
+
+#define _offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
+
+#define container_of(ptr, type, member) ({                      \
+        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
+               (type *)( (char *)__mptr - _offsetof(type,member) );})
+
+/*
+ * Simple doubly linked list implementation.
+ *
+ * Some of the internal functions ("__xxx") are useful when
+ * manipulating whole lists rather than single entries, as
+ * sometimes we already know the next/prev entries and we can
+ * generate better code by using them directly rather than
+ * using the generic single-entry routines.
+ */
+
+#define LIST_HEAD_INIT(name) { &(name), &(name) }
+
+#define LIST_HEAD(name) \
+	struct list_head name = LIST_HEAD_INIT(name)
+
+static inline void INIT_LIST_HEAD(struct list_head *list)
+{
+	list->next = list;
+	list->prev = list;
+}
+
+/*
+ * Insert a new entry between two known consecutive entries.
+ *
+ * This is only for internal list manipulation where we know
+ * the prev/next entries already!
+ */
+#ifndef CONFIG_DEBUG_LIST
+static inline void __list_add(struct list_head *new,
+			      struct list_head *prev,
+			      struct list_head *next)
+{
+	next->prev = new;
+	new->next = next;
+	new->prev = prev;
+	prev->next = new;
+}
+#else
+extern void __list_add(struct list_head *new,
+			      struct list_head *prev,
+			      struct list_head *next);
+#endif
+
+/**
+ * list_add - add a new entry
+ * @new: new entry to be added
+ * @head: list head to add it after
+ *
+ * Insert a new entry after the specified head.
+ * This is good for implementing stacks.
+ */
+static inline void list_add(struct list_head *new, struct list_head *head)
+{
+	__list_add(new, head, head->next);
+}
+
+
+/**
+ * list_add_tail - add a new entry
+ * @new: new entry to be added
+ * @head: list head to add it before
+ *
+ * Insert a new entry before the specified head.
+ * This is useful for implementing queues.
+ */
+static inline void list_add_tail(struct list_head *new, struct list_head *head)
+{
+	__list_add(new, head->prev, head);
+}
+
+/*
+ * Delete a list entry by making the prev/next entries
+ * point to each other.
+ *
+ * This is only for internal list manipulation where we know
+ * the prev/next entries already!
+ */
+static inline void __list_del(struct list_head * prev, struct list_head * next)
+{
+	next->prev = prev;
+	prev->next = next;
+}
+
+/**
+ * list_del - deletes entry from list.
+ * @entry: the element to delete from the list.
+ * Note: list_empty() on entry does not return true after this, the entry is
+ * in an undefined state.
+ */
+#ifndef CONFIG_DEBUG_LIST
+static inline void __list_del_entry(struct list_head *entry)
+{
+	__list_del(entry->prev, entry->next);
+}
+
+static inline void list_del(struct list_head *entry)
+{
+	__list_del(entry->prev, entry->next);
+	entry->next = LIST_POISON1;
+	entry->prev = LIST_POISON2;
+}
+#else
+extern void __list_del_entry(struct list_head *entry);
+extern void list_del(struct list_head *entry);
+#endif
+
+/**
+ * list_replace - replace old entry by new one
+ * @old : the element to be replaced
+ * @new : the new element to insert
+ *
+ * If @old was empty, it will be overwritten.
+ */
+static inline void list_replace(struct list_head *old,
+				struct list_head *new)
+{
+	new->next = old->next;
+	new->next->prev = new;
+	new->prev = old->prev;
+	new->prev->next = new;
+}
+
+static inline void list_replace_init(struct list_head *old,
+					struct list_head *new)
+{
+	list_replace(old, new);
+	INIT_LIST_HEAD(old);
+}
+
+/**
+ * list_del_init - deletes entry from list and reinitialize it.
+ * @entry: the element to delete from the list.
+ */
+static inline void list_del_init(struct list_head *entry)
+{
+	__list_del_entry(entry);
+	INIT_LIST_HEAD(entry);
+}
+
+/**
+ * list_move - delete from one list and add as another's head
+ * @list: the entry to move
+ * @head: the head that will precede our entry
+ */
+static inline void list_move(struct list_head *list, struct list_head *head)
+{
+	__list_del_entry(list);
+	list_add(list, head);
+}
+
+/**
+ * list_move_tail - delete from one list and add as another's tail
+ * @list: the entry to move
+ * @head: the head that will follow our entry
+ */
+static inline void list_move_tail(struct list_head *list,
+				  struct list_head *head)
+{
+	__list_del_entry(list);
+	list_add_tail(list, head);
+}
+
+/**
+ * list_is_last - tests whether @list is the last entry in list @head
+ * @list: the entry to test
+ * @head: the head of the list
+ */
+static inline int list_is_last(const struct list_head *list,
+				const struct list_head *head)
+{
+	return list->next == head;
+}
+
+/**
+ * list_empty - tests whether a list is empty
+ * @head: the list to test.
+ */
+static inline int list_empty(const struct list_head *head)
+{
+	return head->next == head;
+}
+
+/**
+ * list_empty_careful - tests whether a list is empty and not being modified
+ * @head: the list to test
+ *
+ * Description:
+ * tests whether a list is empty _and_ checks that no other CPU might be
+ * in the process of modifying either member (next or prev)
+ *
+ * NOTE: using list_empty_careful() without synchronization
+ * can only be safe if the only activity that can happen
+ * to the list entry is list_del_init(). Eg. it cannot be used
+ * if another CPU could re-list_add() it.
+ */
+static inline int list_empty_careful(const struct list_head *head)
+{
+	struct list_head *next = head->next;
+	return (next == head) && (next == head->prev);
+}
+
+/**
+ * list_rotate_left - rotate the list to the left
+ * @head: the head of the list
+ */
+static inline void list_rotate_left(struct list_head *head)
+{
+	struct list_head *first;
+
+	if (!list_empty(head)) {
+		first = head->next;
+		list_move_tail(first, head);
+	}
+}
+
+/**
+ * list_is_singular - tests whether a list has just one entry.
+ * @head: the list to test.
+ */
+static inline int list_is_singular(const struct list_head *head)
+{
+	return !list_empty(head) && (head->next == head->prev);
+}
+
+static inline void __list_cut_position(struct list_head *list,
+		struct list_head *head, struct list_head *entry)
+{
+	struct list_head *new_first = entry->next;
+	list->next = head->next;
+	list->next->prev = list;
+	list->prev = entry;
+	entry->next = list;
+	head->next = new_first;
+	new_first->prev = head;
+}
+
+/**
+ * list_cut_position - cut a list into two
+ * @list: a new list to add all removed entries
+ * @head: a list with entries
+ * @entry: an entry within head, could be the head itself
+ *	and if so we won't cut the list
+ *
+ * This helper moves the initial part of @head, up to and
+ * including @entry, from @head to @list. You should
+ * pass on @entry an element you know is on @head. @list
+ * should be an empty list or a list you do not care about
+ * losing its data.
+ *
+ */
+static inline void list_cut_position(struct list_head *list,
+		struct list_head *head, struct list_head *entry)
+{
+	if (list_empty(head))
+		return;
+	if (list_is_singular(head) &&
+		(head->next != entry && head != entry))
+		return;
+	if (entry == head)
+		INIT_LIST_HEAD(list);
+	else
+		__list_cut_position(list, head, entry);
+}
+
+static inline void __list_splice(const struct list_head *list,
+				 struct list_head *prev,
+				 struct list_head *next)
+{
+	struct list_head *first = list->next;
+	struct list_head *last = list->prev;
+
+	first->prev = prev;
+	prev->next = first;
+
+	last->next = next;
+	next->prev = last;
+}
+
+/**
+ * list_splice - join two lists, this is designed for stacks
+ * @list: the new list to add.
+ * @head: the place to add it in the first list.
+ */
+static inline void list_splice(const struct list_head *list,
+				struct list_head *head)
+{
+	if (!list_empty(list))
+		__list_splice(list, head, head->next);
+}
+
+/**
+ * list_splice_tail - join two lists, each list being a queue
+ * @list: the new list to add.
+ * @head: the place to add it in the first list.
+ */
+static inline void list_splice_tail(struct list_head *list,
+				struct list_head *head)
+{
+	if (!list_empty(list))
+		__list_splice(list, head->prev, head);
+}
+
+/**
+ * list_splice_init - join two lists and reinitialise the emptied list.
+ * @list: the new list to add.
+ * @head: the place to add it in the first list.
+ *
+ * The list at @list is reinitialised
+ */
+static inline void list_splice_init(struct list_head *list,
+				    struct list_head *head)
+{
+	if (!list_empty(list)) {
+		__list_splice(list, head, head->next);
+		INIT_LIST_HEAD(list);
+	}
+}
+
+/**
+ * list_splice_tail_init - join two lists and reinitialise the emptied list
+ * @list: the new list to add.
+ * @head: the place to add it in the first list.
+ *
+ * Each of the lists is a queue.
+ * The list at @list is reinitialised
+ */
+static inline void list_splice_tail_init(struct list_head *list,
+					 struct list_head *head)
+{
+	if (!list_empty(list)) {
+		__list_splice(list, head->prev, head);
+		INIT_LIST_HEAD(list);
+	}
+}
+
+/**
+ * list_entry - get the struct for this entry
+ * @ptr:	the &struct list_head pointer.
+ * @type:	the type of the struct this is embedded in.
+ * @member:	the name of the list_head within the struct.
+ */
+#define list_entry(ptr, type, member) \
+	container_of(ptr, type, member)
+
+/**
+ * list_first_entry - get the first element from a list
+ * @ptr:	the list head to take the element from.
+ * @type:	the type of the struct this is embedded in.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Note, that list is expected to be not empty.
+ */
+#define list_first_entry(ptr, type, member) \
+	list_entry((ptr)->next, type, member)
+
+/**
+ * list_last_entry - get the last element from a list
+ * @ptr:	the list head to take the element from.
+ * @type:	the type of the struct this is embedded in.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Note, that list is expected to be not empty.
+ */
+#define list_last_entry(ptr, type, member) \
+	list_entry((ptr)->prev, type, member)
+
+/**
+ * list_first_entry_or_null - get the first element from a list
+ * @ptr:	the list head to take the element from.
+ * @type:	the type of the struct this is embedded in.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Note that if the list is empty, it returns NULL.
+ */
+#define list_first_entry_or_null(ptr, type, member) \
+	(!list_empty(ptr) ? list_first_entry(ptr, type, member) : NULL)
+
+/**
+ * list_next_entry - get the next element in list
+ * @pos:	the type * to cursor
+ * @member:	the name of the list_head within the struct.
+ */
+#define list_next_entry(pos, member) \
+	list_entry((pos)->member.next, typeof(*(pos)), member)
+
+/**
+ * list_prev_entry - get the prev element in list
+ * @pos:	the type * to cursor
+ * @member:	the name of the list_head within the struct.
+ */
+#define list_prev_entry(pos, member) \
+	list_entry((pos)->member.prev, typeof(*(pos)), member)
+
+/**
+ * list_for_each	-	iterate over a list
+ * @pos:	the &struct list_head to use as a loop cursor.
+ * @head:	the head for your list.
+ */
+#define list_for_each(pos, head) \
+	for (pos = (head)->next; pos != (head); pos = pos->next)
+
+/**
+ * list_for_each_prev	-	iterate over a list backwards
+ * @pos:	the &struct list_head to use as a loop cursor.
+ * @head:	the head for your list.
+ */
+#define list_for_each_prev(pos, head) \
+	for (pos = (head)->prev; pos != (head); pos = pos->prev)
+
+/**
+ * list_for_each_safe - iterate over a list safe against removal of list entry
+ * @pos:	the &struct list_head to use as a loop cursor.
+ * @n:		another &struct list_head to use as temporary storage
+ * @head:	the head for your list.
+ */
+#define list_for_each_safe(pos, n, head) \
+	for (pos = (head)->next, n = pos->next; pos != (head); \
+		pos = n, n = pos->next)
+
+/**
+ * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
+ * @pos:	the &struct list_head to use as a loop cursor.
+ * @n:		another &struct list_head to use as temporary storage
+ * @head:	the head for your list.
+ */
+#define list_for_each_prev_safe(pos, n, head) \
+	for (pos = (head)->prev, n = pos->prev; \
+	     pos != (head); \
+	     pos = n, n = pos->prev)
+
+/**
+ * list_for_each_entry	-	iterate over list of given type
+ * @pos:	the type * to use as a loop cursor.
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ */
+#define list_for_each_entry(pos, head, member)				\
+	for (pos = list_first_entry(head, typeof(*pos), member);	\
+	     &pos->member != (head);					\
+	     pos = list_next_entry(pos, member))
+
+/**
+ * list_for_each_entry_reverse - iterate backwards over list of given type.
+ * @pos:	the type * to use as a loop cursor.
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ */
+#define list_for_each_entry_reverse(pos, head, member)			\
+	for (pos = list_last_entry(head, typeof(*pos), member);		\
+	     &pos->member != (head); 					\
+	     pos = list_prev_entry(pos, member))
+
+/**
+ * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
+ * @pos:	the type * to use as a start point
+ * @head:	the head of the list
+ * @member:	the name of the list_head within the struct.
+ *
+ * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
+ */
+#define list_prepare_entry(pos, head, member) \
+	((pos) ? : list_entry(head, typeof(*pos), member))
+
+/**
+ * list_for_each_entry_continue - continue iteration over list of given type
+ * @pos:	the type * to use as a loop cursor.
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Continue to iterate over list of given type, continuing after
+ * the current position.
+ */
+#define list_for_each_entry_continue(pos, head, member) 		\
+	for (pos = list_next_entry(pos, member);			\
+	     &pos->member != (head);					\
+	     pos = list_next_entry(pos, member))
+
+/**
+ * list_for_each_entry_continue_reverse - iterate backwards from the given point
+ * @pos:	the type * to use as a loop cursor.
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Start to iterate over list of given type backwards, continuing after
+ * the current position.
+ */
+#define list_for_each_entry_continue_reverse(pos, head, member)		\
+	for (pos = list_prev_entry(pos, member);			\
+	     &pos->member != (head);					\
+	     pos = list_prev_entry(pos, member))
+
+/**
+ * list_for_each_entry_from - iterate over list of given type from the current point
+ * @pos:	the type * to use as a loop cursor.
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Iterate over list of given type, continuing from current position.
+ */
+#define list_for_each_entry_from(pos, head, member) 			\
+	for (; &pos->member != (head);					\
+	     pos = list_next_entry(pos, member))
+
+/**
+ * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
+ * @pos:	the type * to use as a loop cursor.
+ * @n:		another type * to use as temporary storage
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ */
+#define list_for_each_entry_safe(pos, n, head, member)			\
+	for (pos = list_first_entry(head, typeof(*pos), member),	\
+		n = list_next_entry(pos, member);			\
+	     &pos->member != (head); 					\
+	     pos = n, n = list_next_entry(n, member))
+
+/**
+ * list_for_each_entry_safe_continue - continue list iteration safe against removal
+ * @pos:	the type * to use as a loop cursor.
+ * @n:		another type * to use as temporary storage
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Iterate over list of given type, continuing after current point,
+ * safe against removal of list entry.
+ */
+#define list_for_each_entry_safe_continue(pos, n, head, member) 		\
+	for (pos = list_next_entry(pos, member), 				\
+		n = list_next_entry(pos, member);				\
+	     &pos->member != (head);						\
+	     pos = n, n = list_next_entry(n, member))
+
+/**
+ * list_for_each_entry_safe_from - iterate over list from current point safe against removal
+ * @pos:	the type * to use as a loop cursor.
+ * @n:		another type * to use as temporary storage
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Iterate over list of given type from current point, safe against
+ * removal of list entry.
+ */
+#define list_for_each_entry_safe_from(pos, n, head, member) 			\
+	for (n = list_next_entry(pos, member);					\
+	     &pos->member != (head);						\
+	     pos = n, n = list_next_entry(n, member))
+
+/**
+ * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
+ * @pos:	the type * to use as a loop cursor.
+ * @n:		another type * to use as temporary storage
+ * @head:	the head for your list.
+ * @member:	the name of the list_head within the struct.
+ *
+ * Iterate backwards over list of given type, safe against removal
+ * of list entry.
+ */
+#define list_for_each_entry_safe_reverse(pos, n, head, member)		\
+	for (pos = list_last_entry(head, typeof(*pos), member),		\
+		n = list_prev_entry(pos, member);			\
+	     &pos->member != (head); 					\
+	     pos = n, n = list_prev_entry(n, member))
+
+/**
+ * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
+ * @pos:	the loop cursor used in the list_for_each_entry_safe loop
+ * @n:		temporary storage used in list_for_each_entry_safe
+ * @member:	the name of the list_head within the struct.
+ *
+ * list_safe_reset_next is not safe to use in general if the list may be
+ * modified concurrently (eg. the lock is dropped in the loop body). An
+ * exception to this is if the cursor element (pos) is pinned in the list,
+ * and list_safe_reset_next is called after re-taking the lock and before
+ * completing the current iteration of the loop body.
+ */
+#define list_safe_reset_next(pos, n, member)				\
+	n = list_next_entry(pos, member)
+
+#endif
-- 
2.5.0




More information about the linux-mtd mailing list