[PATCH v3 2/2] mtd: nand: Add support for Arasan Nand Flash Controller
punnaiah choudary kalluri
punnaia at xilinx.com
Sun Jun 14 21:19:07 PDT 2015
Ping.
Regards,
Punnaiah
On Fri, May 22, 2015 at 11:49 PM, Punnaiah Choudary Kalluri
<punnaiah.choudary.kalluri at xilinx.com> wrote:
> Added the basic driver for Arasan Nand Flash Controller used in
> Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
> correction.
>
> Signed-off-by: Punnaiah Choudary Kalluri <punnaia at xilinx.com>
> ---
> Chnages in v3:
> - Removed unused variables
> - Avoided busy loop and used jifies based implementation
> - Fixed compiler warnings "right shift count >= width of type"
> - Removed unneeded codei and improved error reporting
> - Added onfi version check to ensure reading the valid address cycles
> Changes in v2:
> - Added missing of.h to avoid kbuild system report error
> ---
> drivers/mtd/nand/Kconfig | 7 +
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/arasan_nfc.c | 873 +++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 881 insertions(+), 0 deletions(-)
> create mode 100644 drivers/mtd/nand/arasan_nfc.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 5897d8d..64e497c 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -530,4 +530,11 @@ config MTD_NAND_HISI504
> help
> Enables support for NAND controller on Hisilicon SoC Hip04.
>
> +config MTD_NAND_ARASAN
> + tristate "Support for Arasan Nand Flash controller"
> + depends on MTD_NAND
> + help
> + Enables the driver for the Arasan Nand Flash controller on
> + Zynq UltraScale+ MPSoC.
> +
> endif # MTD_NAND
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 582bbd05..fd863ea 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
> obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
> obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
> obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
> +obj-$(CONFIG_MTD_NAND_ARASAN) += arasan_nfc.o
>
> nand-objs := nand_base.o nand_bbt.o nand_timings.o
> diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
> new file mode 100644
> index 0000000..fbf543c
> --- /dev/null
> +++ b/drivers/mtd/nand/arasan_nfc.c
> @@ -0,0 +1,873 @@
> +/*
> + * Arasan Nand Flash Controller Driver
> + *
> + * Copyright (C) 2014 - 2015 Xilinx, Inc.
> + *
> + * This program is free software; you can redistribute it and/or modify it under
> + * the terms of the GNU General Public License version 2 as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + */
> +
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/interrupt.h>
> +#include <linux/module.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of.h>
> +#include <linux/of_mtd.h>
> +#include <linux/platform_device.h>
> +
> +#define DRIVER_NAME "arasan_nfc"
> +#define EVNT_TIMEOUT 1000
> +#define STATUS_TIMEOUT 2000
> +
> +#define PKT_OFST 0x00
> +#define MEM_ADDR1_OFST 0x04
> +#define MEM_ADDR2_OFST 0x08
> +#define CMD_OFST 0x0C
> +#define PROG_OFST 0x10
> +#define INTR_STS_EN_OFST 0x14
> +#define INTR_SIG_EN_OFST 0x18
> +#define INTR_STS_OFST 0x1C
> +#define READY_STS_OFST 0x20
> +#define DMA_ADDR1_OFST 0x24
> +#define FLASH_STS_OFST 0x28
> +#define DATA_PORT_OFST 0x30
> +#define ECC_OFST 0x34
> +#define ECC_ERR_CNT_OFST 0x38
> +#define ECC_SPR_CMD_OFST 0x3C
> +#define ECC_ERR_CNT_1BIT_OFST 0x40
> +#define ECC_ERR_CNT_2BIT_OFST 0x44
> +#define DMA_ADDR0_OFST 0x50
> +
> +#define PKT_CNT_SHIFT 12
> +
> +#define ECC_ENABLE BIT(31)
> +#define DMA_EN_MASK GENMASK(27, 26)
> +#define DMA_ENABLE 0x2
> +#define DMA_EN_SHIFT 26
> +#define PAGE_SIZE_MASK GENMASK(25, 23)
> +#define PAGE_SIZE_SHIFT 23
> +#define PAGE_SIZE_512 0
> +#define PAGE_SIZE_1K 5
> +#define PAGE_SIZE_2K 1
> +#define PAGE_SIZE_4K 2
> +#define PAGE_SIZE_8K 3
> +#define PAGE_SIZE_16K 4
> +#define CMD2_SHIFT 8
> +#define ADDR_CYCLES_SHIFT 28
> +
> +#define XFER_COMPLETE BIT(2)
> +#define READ_READY BIT(1)
> +#define WRITE_READY BIT(0)
> +#define MBIT_ERROR BIT(3)
> +#define ERR_INTRPT BIT(4)
> +
> +#define PROG_PGRD BIT(0)
> +#define PROG_ERASE BIT(2)
> +#define PROG_STATUS BIT(3)
> +#define PROG_PGPROG BIT(4)
> +#define PROG_RDID BIT(6)
> +#define PROG_RDPARAM BIT(7)
> +#define PROG_RST BIT(8)
> +
> +#define ONFI_STATUS_FAIL BIT(0)
> +#define ONFI_STATUS_READY BIT(6)
> +
> +#define PG_ADDR_SHIFT 16
> +#define BCH_MODE_SHIFT 25
> +#define BCH_EN_SHIFT 27
> +#define ECC_SIZE_SHIFT 16
> +
> +#define MEM_ADDR_MASK GENMASK(7, 0)
> +#define BCH_MODE_MASK GENMASK(27, 25)
> +
> +#define CS_MASK GENMASK(31, 30)
> +#define CS_SHIFT 30
> +
> +#define PAGE_ERR_CNT_MASK GENMASK(16, 8)
> +#define PKT_ERR_CNT_MASK GENMASK(7, 0)
> +
> +#define ONFI_ID_LEN 8
> +#define TEMP_BUF_SIZE 512
> +
> +/**
> + * struct anfc_ecc_matrix - Defines ecc information storage format
> + * @pagesize: Page size in bytes.
> + * @codeword_size: Code word size information.
> + * @eccbits: Number of ecc bits.
> + * @bch: Bch / Hamming mode enable/disable.
> + * @eccsize: Ecc size information.
> + */
> +struct anfc_ecc_matrix {
> + u32 pagesize;
> + u32 codeword_size;
> + u8 eccbits;
> + u8 bch;
> + u16 eccsize;
> +};
> +
> +static const struct anfc_ecc_matrix ecc_matrix[] = {
> + {512, 512, 1, 0, 0x3},
> + {512, 512, 4, 1, 0x7},
> + {512, 512, 8, 1, 0xD},
> + /* 2K byte page */
> + {2048, 512, 1, 0, 0xC},
> + {2048, 512, 4, 1, 0x1A},
> + {2048, 512, 8, 1, 0x34},
> + {2048, 512, 12, 1, 0x4E},
> + {2048, 1024, 24, 1, 0x54},
> + /* 4K byte page */
> + {4096, 512, 1, 0, 0x18},
> + {4096, 512, 4, 1, 0x34},
> + {4096, 512, 8, 1, 0x68},
> + {4096, 512, 12, 1, 0x9C},
> + {4096, 1024, 4, 1, 0xA8},
> + /* 8K byte page */
> + {8192, 512, 1, 0, 0x30},
> + {8192, 512, 4, 1, 0x68},
> + {8192, 512, 8, 1, 0xD0},
> + {8192, 512, 12, 1, 0x138},
> + {8192, 1024, 24, 1, 0x150},
> + /* 16K byte page */
> + {16384, 512, 1, 0, 0x60},
> + {16384, 512, 4, 1, 0xD0},
> + {16384, 512, 8, 1, 0x1A0},
> + {16384, 512, 12, 1, 0x270},
> + {16384, 1024, 24, 1, 0x2A0}
> +};
> +
> +/**
> + * struct anfc - Defines the Arasan NAND flash driver instance
> + * @chip: NAND chip information structure.
> + * @mtd: MTD information structure.
> + * @dev: Pointer to the device structure.
> + * @base: Virtual address of the NAND flash device.
> + * @curr_cmd: Current command issued.
> + * @dma: Dma enable/disable.
> + * @bch: Bch / Hamming mode enable/disable.
> + * @err: Error identifier.
> + * @iswriteoob: Identifies if oob write operation is required.
> + * @buf: Buffer used for read/write byte operations.
> + * @raddr_cycles: Row address cycle information.
> + * @caddr_cycles: Column address cycle information.
> + * @irq: irq number
> + * @page: Page address to be use for write oob operations.
> + * @pktsize: Packet size for read / write operation.
> + * @bufshift: Variable used for indexing buffer operation
> + * @rdintrmask: Interrupt mask value for read operation.
> + * @bufrdy: Completion event for buffer ready.
> + * @xfercomp: Completion event for transfer complete.
> + * @ecclayout: Ecc layout object
> + */
> +struct anfc {
> + struct nand_chip chip;
> + struct mtd_info mtd;
> + struct device *dev;
> +
> + void __iomem *base;
> + int curr_cmd;
> +
> + bool dma;
> + bool bch;
> + bool err;
> + bool iswriteoob;
> +
> + u8 buf[TEMP_BUF_SIZE];
> +
> + u16 raddr_cycles;
> + u16 caddr_cycles;
> +
> + u32 irq;
> + u32 page;
> + u32 pktsize;
> + u32 bufshift;
> + u32 rdintrmask;
> +
> + struct completion bufrdy;
> + struct completion xfercomp;
> + struct nand_ecclayout ecclayout;
> +};
> +
> +static u8 anfc_page(u32 pagesize)
> +{
> + switch (pagesize) {
> + case 512:
> + return PAGE_SIZE_512;
> + case 2048:
> + return PAGE_SIZE_2K;
> + case 4096:
> + return PAGE_SIZE_4K;
> + case 8192:
> + return PAGE_SIZE_8K;
> + case 16384:
> + return PAGE_SIZE_16K;
> + case 1024:
> + return PAGE_SIZE_1K;
> + default:
> + break;
> + }
> +
> + return 0;
> +}
> +
> +static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
> +{
> + writel(val, nfc->base + INTR_STS_EN_OFST);
> + writel(val, nfc->base + INTR_SIG_EN_OFST);
> +}
> +
> +static int anfc_wait_for_event(struct anfc *nfc, u32 event)
> +{
> + struct completion *comp;
> + int ret;
> +
> + if (event == XFER_COMPLETE)
> + comp = &nfc->xfercomp;
> + else
> + comp = &nfc->bufrdy;
> +
> + ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
> +
> + return ret;
> +}
> +
> +static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
> + u32 pktcount)
> +{
> + writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
> +}
> +
> +static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
> +{
> + writel(cmd1 | (cmd2 << CMD2_SHIFT) |
> + (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
> + nfc->base + ECC_SPR_CMD_OFST);
> +}
> +
> +static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
> +{
> + u32 val;
> +
> + writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
> +
> + val = readl(nfc->base + MEM_ADDR2_OFST);
> + val = (val & ~MEM_ADDR_MASK) |
> + ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
> + writel(val, nfc->base + MEM_ADDR2_OFST);
> +}
> +
> +static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
> + u8 dmamode, u32 pagesize, u8 addrcycles)
> +{
> + u32 regval;
> +
> + regval = cmd1 | (cmd2 << CMD2_SHIFT);
> + if (dmamode && nfc->dma)
> + regval |= DMA_ENABLE << DMA_EN_SHIFT;
> + if (addrcycles)
> + regval |= addrcycles << ADDR_CYCLES_SHIFT;
> + if (pagesize)
> + regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
> + writel(regval, nfc->base + CMD_OFST);
> +}
> +
> +static int anfc_device_ready(struct mtd_info *mtd,
> + struct nand_chip *chip)
> +{
> + u8 status;
> + unsigned long timeout = jiffies + STATUS_TIMEOUT;
> +
> + do {
> + chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
> + status = chip->read_byte(mtd);
> + if (status & ONFI_STATUS_READY) {
> + if (status & ONFI_STATUS_FAIL)
> + return NAND_STATUS_FAIL;
> + break;
> + }
> + cpu_relax();
> + } while (!time_after_eq(jiffies, timeout));
> +
> + if (time_after_eq(jiffies, timeout)) {
> + pr_err("%s timed out\n", __func__);
> + return -ETIMEDOUT;
> + }
> +
> + return 0;
> +}
> +
> +static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
> + if (nfc->dma)
> + nfc->rdintrmask = XFER_COMPLETE;
> + else
> + nfc->rdintrmask = READ_READY;
> + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + return 0;
> +}
> +
> +static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> + int page)
> +{
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> + nfc->iswriteoob = true;
> + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
> + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
> + nfc->iswriteoob = false;
> +
> + return 0;
> +}
> +
> +static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> + u32 i, pktcount, buf_rd_cnt = 0, pktsize;
> + u32 *bufptr = (u32 *)buf;
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> + dma_addr_t paddr = 0;
> +
> + if (nfc->curr_cmd == NAND_CMD_READ0) {
> + pktsize = nfc->pktsize;
> + if (mtd->writesize % pktsize)
> + pktcount = mtd->writesize / pktsize + 1;
> + else
> + pktcount = mtd->writesize / pktsize;
> + } else {
> + pktsize = len;
> + pktcount = 1;
> + }
> +
> + anfc_setpktszcnt(nfc, pktsize, pktcount);
> +
> + if (nfc->dma) {
> + paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
> + if (dma_mapping_error(nfc->dev, paddr)) {
> + dev_err(nfc->dev, "Read buffer mapping error");
> + return;
> + }
> + writel(lower_32_bits(paddr), nfc->base + DMA_ADDR0_OFST);
> + writel(upper_32_bits(paddr), nfc->base + DMA_ADDR1_OFST);
> + anfc_enable_intrs(nfc, nfc->rdintrmask);
> + writel(PROG_PGRD, nfc->base + PROG_OFST);
> + anfc_wait_for_event(nfc, XFER_COMPLETE);
> + dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
> + return;
> + }
> +
> + anfc_enable_intrs(nfc, nfc->rdintrmask);
> + writel(PROG_PGRD, nfc->base + PROG_OFST);
> +
> + while (buf_rd_cnt < pktcount) {
> +
> + anfc_wait_for_event(nfc, READ_READY);
> + buf_rd_cnt++;
> +
> + if (buf_rd_cnt == pktcount)
> + anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> + for (i = 0; i < pktsize / 4; i++)
> + bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
> +
> + bufptr += (pktsize / 4);
> +
> + if (buf_rd_cnt < pktcount)
> + anfc_enable_intrs(nfc, nfc->rdintrmask);
> + }
> +
> + anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
> +{
> + u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
> + u32 *bufptr = (u32 *)buf;
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> + dma_addr_t paddr = 0;
> +
> + if (nfc->iswriteoob) {
> + pktsize = len;
> + pktcount = 1;
> + } else {
> + pktsize = nfc->pktsize;
> + pktcount = mtd->writesize / pktsize;
> + }
> +
> + anfc_setpktszcnt(nfc, pktsize, pktcount);
> +
> + if (nfc->dma) {
> + paddr = dma_map_single(nfc->dev, (void *)buf, len,
> + DMA_TO_DEVICE);
> + if (dma_mapping_error(nfc->dev, paddr)) {
> + dev_err(nfc->dev, "Write buffer mapping error");
> + return;
> + }
> + writel(lower_32_bits(paddr), nfc->base + DMA_ADDR0_OFST);
> + writel(upper_32_bits(paddr), nfc->base + DMA_ADDR1_OFST);
> + anfc_enable_intrs(nfc, XFER_COMPLETE);
> + writel(PROG_PGPROG, nfc->base + PROG_OFST);
> + anfc_wait_for_event(nfc, XFER_COMPLETE);
> + dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
> + return;
> + }
> +
> + anfc_enable_intrs(nfc, WRITE_READY);
> + writel(PROG_PGPROG, nfc->base + PROG_OFST);
> +
> + while (buf_wr_cnt < pktcount) {
> + anfc_wait_for_event(nfc, WRITE_READY);
> +
> + buf_wr_cnt++;
> + if (buf_wr_cnt == pktcount)
> + anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> + for (i = 0; i < (pktsize / 4); i++)
> + writel(bufptr[i], nfc->base + DATA_PORT_OFST);
> +
> + bufptr += (pktsize / 4);
> +
> + if (buf_wr_cnt < pktcount)
> + anfc_enable_intrs(nfc, WRITE_READY);
> + }
> +
> + anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static int anfc_read_page_hwecc(struct mtd_info *mtd,
> + struct nand_chip *chip, uint8_t *buf,
> + int oob_required, int page)
> +{
> + u32 val;
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> + anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
> +
> + val = readl(nfc->base + CMD_OFST);
> + val = val | ECC_ENABLE;
> + writel(val, nfc->base + CMD_OFST);
> +
> + if (nfc->dma)
> + nfc->rdintrmask = XFER_COMPLETE;
> + else
> + nfc->rdintrmask = READ_READY;
> +
> + if (!nfc->bch)
> + nfc->rdintrmask = MBIT_ERROR;
> +
> + chip->read_buf(mtd, buf, mtd->writesize);
> +
> + val = readl(nfc->base + ECC_ERR_CNT_OFST);
> + if (nfc->bch) {
> + mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
> + } else {
> + val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
> + mtd->ecc_stats.corrected += val;
> + val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
> + mtd->ecc_stats.failed += val;
> + /* Clear ecc error count register 1Bit, 2Bit */
> + writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
> + writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
> + }
> + nfc->err = false;
> +
> + if (oob_required)
> + chip->ecc.read_oob(mtd, chip, page);
> +
> + return 0;
> +}
> +
> +static int anfc_write_page_hwecc(struct mtd_info *mtd,
> + struct nand_chip *chip, const uint8_t *buf,
> + int oob_required)
> +{
> + u32 val, i;
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> + uint8_t *ecc_calc = chip->buffers->ecccalc;
> + uint32_t *eccpos = chip->ecc.layout->eccpos;
> +
> + anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
> +
> + val = readl(nfc->base + CMD_OFST);
> + val = val | ECC_ENABLE;
> + writel(val, nfc->base + CMD_OFST);
> +
> + chip->write_buf(mtd, buf, mtd->writesize);
> +
> + if (oob_required) {
> + anfc_device_ready(mtd, chip);
> + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
> + if (nfc->dma)
> + nfc->rdintrmask = XFER_COMPLETE;
> + else
> + nfc->rdintrmask = READ_READY;
> + chip->read_buf(mtd, ecc_calc, mtd->oobsize);
> + for (i = 0; i < chip->ecc.total; i++)
> + chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
> + chip->ecc.write_oob(mtd, chip, nfc->page);
> + }
> +
> + return 0;
> +}
> +
> +static u8 anfc_read_byte(struct mtd_info *mtd)
> +{
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> + return nfc->buf[nfc->bufshift++];
> +}
> +
> +static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
> +{
> + u32 i, *bufptr = (u32 *)&nfc->buf[0];
> +
> + anfc_enable_intrs(nfc, READ_READY);
> +
> + writel(prog, nfc->base + PROG_OFST);
> + anfc_wait_for_event(nfc, READ_READY);
> +
> + anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> + for (i = 0; i < size / 4; i++)
> + bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
> +
> + anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static int anfc_ecc_init(struct mtd_info *mtd,
> + struct nand_ecc_ctrl *ecc)
> +{
> + u32 oob_index, i, ecc_addr, regval, bchmode = 0;
> + struct nand_chip *nand_chip = mtd->priv;
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> + int found = -1;
> +
> + nand_chip->ecc.mode = NAND_ECC_HW;
> + nand_chip->ecc.read_page = anfc_read_page_hwecc;
> + nand_chip->ecc.write_page = anfc_write_page_hwecc;
> + nand_chip->ecc.write_oob = anfc_write_oob;
> + nand_chip->ecc.read_oob = anfc_read_oob;
> +
> + for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
> + i++) {
> + if ((ecc_matrix[i].pagesize == mtd->writesize) &&
> + (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
> + if (ecc_matrix[i].eccbits >=
> + nand_chip->ecc_strength_ds) {
> + found = i;
> + break;
> + }
> + found = i;
> + }
> + }
> +
> + if (found < 0) {
> + dev_err(nfc->dev, "ECC scheme not supported");
> + return 1;
> + }
> + if (ecc_matrix[found].bch) {
> + switch (ecc_matrix[found].eccbits) {
> + case 12:
> + bchmode = 0x1;
> + break;
> + case 8:
> + bchmode = 0x2;
> + break;
> + case 4:
> + bchmode = 0x3;
> + break;
> + case 24:
> + bchmode = 0x4;
> + break;
> + default:
> + bchmode = 0x0;
> + }
> + }
> +
> + nand_chip->ecc.strength = ecc_matrix[found].eccbits;
> + nand_chip->ecc.size = ecc_matrix[found].codeword_size;
> + nand_chip->ecc.steps = ecc_matrix[found].pagesize /
> + ecc_matrix[found].codeword_size;
> + nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
> + nand_chip->ecc.steps;
> + nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
> + nfc->bch = ecc_matrix[found].bch;
> + oob_index = mtd->oobsize - nfc->ecclayout.eccbytes;
> + ecc_addr = mtd->writesize + oob_index;
> +
> + for (i = 0; i < nand_chip->ecc.size; i++)
> + nfc->ecclayout.eccpos[i] = oob_index + i;
> +
> + nfc->ecclayout.oobfree->offset = 2;
> + nfc->ecclayout.oobfree->length = oob_index -
> + nfc->ecclayout.oobfree->offset;
> +
> + nand_chip->ecc.layout = &nfc->ecclayout;
> + regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
> + (ecc_matrix[found].bch << BCH_EN_SHIFT);
> + writel(regval, nfc->base + ECC_OFST);
> +
> + regval = readl(nfc->base + MEM_ADDR2_OFST);
> + regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
> + writel(regval, nfc->base + MEM_ADDR2_OFST);
> +
> + if (nand_chip->ecc_step_ds >= 1024)
> + nfc->pktsize = 1024;
> + else
> + nfc->pktsize = 512;
> +
> + return 0;
> +}
> +
> +static void anfc_cmd_function(struct mtd_info *mtd,
> + unsigned int cmd, int column, int page_addr)
> +{
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> + bool wait = false, read = false;
> + u32 addrcycles, prog;
> + u32 *bufptr = (u32 *)&nfc->buf[0];
> +
> + nfc->bufshift = 0;
> + nfc->curr_cmd = cmd;
> +
> + if (page_addr == -1)
> + page_addr = 0;
> + if (column == -1)
> + column = 0;
> +
> + switch (cmd) {
> + case NAND_CMD_RESET:
> + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
> + prog = PROG_RST;
> + wait = true;
> + break;
> + case NAND_CMD_SEQIN:
> + addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
> + nfc->page = page_addr;
> + anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
> + mtd->writesize, addrcycles);
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + break;
> + case NAND_CMD_READOOB:
> + column += mtd->writesize;
> + case NAND_CMD_READ0:
> + case NAND_CMD_READ1:
> + addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
> + anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
> + mtd->writesize, addrcycles);
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + break;
> + case NAND_CMD_RNDOUT:
> + anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
> + mtd->writesize, 2);
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + if (nfc->dma)
> + nfc->rdintrmask = XFER_COMPLETE;
> + else
> + nfc->rdintrmask = READ_READY;
> + break;
> + case NAND_CMD_PARAM:
> + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
> + anfc_readfifo(nfc, PROG_RDPARAM,
> + sizeof(struct nand_onfi_params));
> + break;
> + case NAND_CMD_READID:
> + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
> + anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
> + break;
> + case NAND_CMD_ERASE1:
> + addrcycles = nfc->raddr_cycles;
> + prog = PROG_ERASE;
> + anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
> + column = page_addr & 0xffff;
> + page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + wait = true;
> + break;
> + case NAND_CMD_STATUS:
> + anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
> + anfc_setpktszcnt(nfc, 1, 1);
> + anfc_setpagecoladdr(nfc, page_addr, column);
> + prog = PROG_STATUS;
> + wait = read = true;
> + break;
> + default:
> + return;
> + }
> +
> + if (wait) {
> + anfc_enable_intrs(nfc, XFER_COMPLETE);
> + writel(prog, nfc->base + PROG_OFST);
> + anfc_wait_for_event(nfc, XFER_COMPLETE);
> + }
> +
> + if (read)
> + bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
> +}
> +
> +static void anfc_select_chip(struct mtd_info *mtd, int num)
> +{
> + u32 val;
> + struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> + if (num == -1)
> + return;
> +
> + val = readl(nfc->base + MEM_ADDR2_OFST);
> + val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
> + writel(val, nfc->base + MEM_ADDR2_OFST);
> +}
> +
> +static irqreturn_t anfc_irq_handler(int irq, void *ptr)
> +{
> + struct anfc *nfc = ptr;
> + u32 regval = 0, status;
> +
> + status = readl(nfc->base + INTR_STS_OFST);
> + if (status & XFER_COMPLETE) {
> + complete(&nfc->xfercomp);
> + regval |= XFER_COMPLETE;
> + }
> +
> + if (status & READ_READY) {
> + complete(&nfc->bufrdy);
> + regval |= READ_READY;
> + }
> +
> + if (status & WRITE_READY) {
> + complete(&nfc->bufrdy);
> + regval |= WRITE_READY;
> + }
> +
> + if (status & MBIT_ERROR) {
> + nfc->err = true;
> + complete(&nfc->bufrdy);
> + regval |= MBIT_ERROR;
> + }
> +
> + if (regval) {
> + writel(regval, nfc->base + INTR_STS_OFST);
> + writel(0, nfc->base + INTR_STS_EN_OFST);
> + writel(0, nfc->base + INTR_SIG_EN_OFST);
> +
> + return IRQ_HANDLED;
> + }
> +
> + return IRQ_NONE;
> +}
> +
> +static int anfc_probe(struct platform_device *pdev)
> +{
> + struct anfc *nfc;
> + struct mtd_info *mtd;
> + struct nand_chip *nand_chip;
> + struct resource *res;
> + struct mtd_part_parser_data ppdata;
> + int err;
> +
> + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
> + if (!nfc)
> + return -ENOMEM;
> +
> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> + nfc->base = devm_ioremap_resource(&pdev->dev, res);
> + if (IS_ERR(nfc->base))
> + return PTR_ERR(nfc->base);
> +
> + mtd = &nfc->mtd;
> + nand_chip = &nfc->chip;
> + nand_chip->priv = nfc;
> + mtd->priv = nand_chip;
> + mtd->owner = THIS_MODULE;
> + mtd->name = DRIVER_NAME;
> + nfc->dev = &pdev->dev;
> + mtd->dev.parent = &pdev->dev;
> +
> + nand_chip->cmdfunc = anfc_cmd_function;
> + nand_chip->waitfunc = anfc_device_ready;
> + nand_chip->chip_delay = 30;
> + nand_chip->read_buf = anfc_read_buf;
> + nand_chip->write_buf = anfc_write_buf;
> + nand_chip->read_byte = anfc_read_byte;
> + nand_chip->bbt_options = NAND_BBT_USE_FLASH;
> + nand_chip->select_chip = anfc_select_chip;
> + nfc->dma = of_property_read_bool(pdev->dev.of_node,
> + "arasan,has-mdma");
> + platform_set_drvdata(pdev, nfc);
> + init_completion(&nfc->bufrdy);
> + init_completion(&nfc->xfercomp);
> + nfc->irq = platform_get_irq(pdev, 0);
> + if (nfc->irq < 0) {
> + dev_err(&pdev->dev, "request_irq failed\n");
> + return -ENXIO;
> + }
> + err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
> + 0, "arasannfc", nfc);
> + if (err)
> + return err;
> +
> + if (nand_scan_ident(mtd, 1, NULL)) {
> + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
> + return -ENXIO;
> + }
> + if (nand_chip->onfi_version) {
> + nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
> + nfc->caddr_cycles =
> + (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
> + } else {
> + /*For non-ONFI devices, configuring the address cyles as 5 */
> + nfc->raddr_cycles = nfc->caddr_cycles = 5;
> + }
> +
> + if (anfc_ecc_init(mtd, &nand_chip->ecc))
> + return -ENXIO;
> +
> + if (nand_scan_tail(mtd)) {
> + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
> + return -ENXIO;
> + }
> +
> + ppdata.of_node = pdev->dev.of_node;
> +
> + return mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
> +}
> +
> +static int anfc_remove(struct platform_device *pdev)
> +{
> + struct anfc *nfc = platform_get_drvdata(pdev);
> +
> + nand_release(&nfc->mtd);
> +
> + return 0;
> +}
> +
> +static const struct of_device_id anfc_ids[] = {
> + { .compatible = "arasan,nfc-v3p10" },
> + { }
> +};
> +MODULE_DEVICE_TABLE(of, anfc_ids);
> +
> +static struct platform_driver anfc_driver = {
> + .driver = {
> + .name = DRIVER_NAME,
> + .of_match_table = anfc_ids,
> + },
> + .probe = anfc_probe,
> + .remove = anfc_remove,
> +};
> +module_platform_driver(anfc_driver);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Xilinx, Inc");
> +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
> --
> 1.7.4
>
More information about the linux-mtd
mailing list