[PATCH v3 2/2] mtd: nand: Add support for Arasan Nand Flash Controller

punnaiah choudary kalluri punnaia at xilinx.com
Mon Jul 13 19:55:56 PDT 2015


Hi Brian,

 Any further review comments on this patch ?
Could you consider this driver for 4.3 version if you think the
changes are fine.?

Regards,
Punnaiah

On Fri, May 22, 2015 at 11:49 PM, Punnaiah Choudary Kalluri
<punnaiah.choudary.kalluri at xilinx.com> wrote:
> Added the basic driver for Arasan Nand Flash Controller used in
> Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
> correction.
>
> Signed-off-by: Punnaiah Choudary Kalluri <punnaia at xilinx.com>
> ---
> Chnages in v3:
> - Removed unused variables
> - Avoided busy loop and used jifies based implementation
> - Fixed compiler warnings "right shift count >= width of type"
> - Removed unneeded codei and improved error reporting
> - Added onfi version check to ensure reading the valid address cycles
> Changes in v2:
> - Added missing of.h to avoid kbuild system report error
> ---
>  drivers/mtd/nand/Kconfig      |    7 +
>  drivers/mtd/nand/Makefile     |    1 +
>  drivers/mtd/nand/arasan_nfc.c |  873 +++++++++++++++++++++++++++++++++++++++++
>  3 files changed, 881 insertions(+), 0 deletions(-)
>  create mode 100644 drivers/mtd/nand/arasan_nfc.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 5897d8d..64e497c 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -530,4 +530,11 @@ config MTD_NAND_HISI504
>         help
>           Enables support for NAND controller on Hisilicon SoC Hip04.
>
> +config MTD_NAND_ARASAN
> +       tristate "Support for Arasan Nand Flash controller"
> +       depends on MTD_NAND
> +       help
> +         Enables the driver for the Arasan Nand Flash controller on
> +         Zynq UltraScale+ MPSoC.
> +
>  endif # MTD_NAND
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 582bbd05..fd863ea 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY)           += xway_nand.o
>  obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)   += bcm47xxnflash/
>  obj-$(CONFIG_MTD_NAND_SUNXI)           += sunxi_nand.o
>  obj-$(CONFIG_MTD_NAND_HISI504)         += hisi504_nand.o
> +obj-$(CONFIG_MTD_NAND_ARASAN)          += arasan_nfc.o
>
>  nand-objs := nand_base.o nand_bbt.o nand_timings.o
> diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
> new file mode 100644
> index 0000000..fbf543c
> --- /dev/null
> +++ b/drivers/mtd/nand/arasan_nfc.c
> @@ -0,0 +1,873 @@
> +/*
> + * Arasan Nand Flash Controller Driver
> + *
> + * Copyright (C) 2014 - 2015 Xilinx, Inc.
> + *
> + * This program is free software; you can redistribute it and/or modify it under
> + * the terms of the GNU General Public License version 2 as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + */
> +
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/interrupt.h>
> +#include <linux/module.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of.h>
> +#include <linux/of_mtd.h>
> +#include <linux/platform_device.h>
> +
> +#define DRIVER_NAME                    "arasan_nfc"
> +#define EVNT_TIMEOUT                   1000
> +#define STATUS_TIMEOUT                 2000
> +
> +#define PKT_OFST                       0x00
> +#define MEM_ADDR1_OFST                 0x04
> +#define MEM_ADDR2_OFST                 0x08
> +#define CMD_OFST                       0x0C
> +#define PROG_OFST                      0x10
> +#define INTR_STS_EN_OFST               0x14
> +#define INTR_SIG_EN_OFST               0x18
> +#define INTR_STS_OFST                  0x1C
> +#define READY_STS_OFST                 0x20
> +#define DMA_ADDR1_OFST                 0x24
> +#define FLASH_STS_OFST                 0x28
> +#define DATA_PORT_OFST                 0x30
> +#define ECC_OFST                       0x34
> +#define ECC_ERR_CNT_OFST               0x38
> +#define ECC_SPR_CMD_OFST               0x3C
> +#define ECC_ERR_CNT_1BIT_OFST          0x40
> +#define ECC_ERR_CNT_2BIT_OFST          0x44
> +#define DMA_ADDR0_OFST                 0x50
> +
> +#define PKT_CNT_SHIFT                  12
> +
> +#define ECC_ENABLE                     BIT(31)
> +#define DMA_EN_MASK                    GENMASK(27, 26)
> +#define DMA_ENABLE                     0x2
> +#define DMA_EN_SHIFT                   26
> +#define PAGE_SIZE_MASK                 GENMASK(25, 23)
> +#define PAGE_SIZE_SHIFT                        23
> +#define PAGE_SIZE_512                  0
> +#define PAGE_SIZE_1K                   5
> +#define PAGE_SIZE_2K                   1
> +#define PAGE_SIZE_4K                   2
> +#define PAGE_SIZE_8K                   3
> +#define PAGE_SIZE_16K                  4
> +#define CMD2_SHIFT                     8
> +#define ADDR_CYCLES_SHIFT              28
> +
> +#define XFER_COMPLETE                  BIT(2)
> +#define READ_READY                     BIT(1)
> +#define WRITE_READY                    BIT(0)
> +#define MBIT_ERROR                     BIT(3)
> +#define ERR_INTRPT                     BIT(4)
> +
> +#define PROG_PGRD                      BIT(0)
> +#define PROG_ERASE                     BIT(2)
> +#define PROG_STATUS                    BIT(3)
> +#define PROG_PGPROG                    BIT(4)
> +#define PROG_RDID                      BIT(6)
> +#define PROG_RDPARAM                   BIT(7)
> +#define PROG_RST                       BIT(8)
> +
> +#define ONFI_STATUS_FAIL               BIT(0)
> +#define ONFI_STATUS_READY              BIT(6)
> +
> +#define PG_ADDR_SHIFT                  16
> +#define BCH_MODE_SHIFT                 25
> +#define BCH_EN_SHIFT                   27
> +#define ECC_SIZE_SHIFT                 16
> +
> +#define MEM_ADDR_MASK                  GENMASK(7, 0)
> +#define BCH_MODE_MASK                  GENMASK(27, 25)
> +
> +#define CS_MASK                                GENMASK(31, 30)
> +#define CS_SHIFT                       30
> +
> +#define PAGE_ERR_CNT_MASK              GENMASK(16, 8)
> +#define PKT_ERR_CNT_MASK               GENMASK(7, 0)
> +
> +#define ONFI_ID_LEN                    8
> +#define TEMP_BUF_SIZE                  512
> +
> +/**
> + * struct anfc_ecc_matrix - Defines ecc information storage format
> + * @pagesize:          Page size in bytes.
> + * @codeword_size:     Code word size information.
> + * @eccbits:           Number of ecc bits.
> + * @bch:               Bch / Hamming mode enable/disable.
> + * @eccsize:           Ecc size information.
> + */
> +struct anfc_ecc_matrix {
> +       u32 pagesize;
> +       u32 codeword_size;
> +       u8 eccbits;
> +       u8 bch;
> +       u16 eccsize;
> +};
> +
> +static const struct anfc_ecc_matrix ecc_matrix[] = {
> +       {512,   512,    1,      0,      0x3},
> +       {512,   512,    4,      1,      0x7},
> +       {512,   512,    8,      1,      0xD},
> +       /* 2K byte page */
> +       {2048,  512,    1,      0,      0xC},
> +       {2048,  512,    4,      1,      0x1A},
> +       {2048,  512,    8,      1,      0x34},
> +       {2048,  512,    12,     1,      0x4E},
> +       {2048,  1024,   24,     1,      0x54},
> +       /* 4K byte page */
> +       {4096,  512,    1,      0,      0x18},
> +       {4096,  512,    4,      1,      0x34},
> +       {4096,  512,    8,      1,      0x68},
> +       {4096,  512,    12,     1,      0x9C},
> +       {4096,  1024,   4,      1,      0xA8},
> +       /* 8K byte page */
> +       {8192,  512,    1,      0,      0x30},
> +       {8192,  512,    4,      1,      0x68},
> +       {8192,  512,    8,      1,      0xD0},
> +       {8192,  512,    12,     1,      0x138},
> +       {8192,  1024,   24,     1,      0x150},
> +       /* 16K byte page */
> +       {16384, 512,    1,      0,      0x60},
> +       {16384, 512,    4,      1,      0xD0},
> +       {16384, 512,    8,      1,      0x1A0},
> +       {16384, 512,    12,     1,      0x270},
> +       {16384, 1024,   24,     1,      0x2A0}
> +};
> +
> +/**
> + * struct anfc - Defines the Arasan NAND flash driver instance
> + * @chip:              NAND chip information structure.
> + * @mtd:               MTD information structure.
> + * @dev:               Pointer to the device structure.
> + * @base:              Virtual address of the NAND flash device.
> + * @curr_cmd:          Current command issued.
> + * @dma:               Dma enable/disable.
> + * @bch:               Bch / Hamming mode enable/disable.
> + * @err:               Error identifier.
> + * @iswriteoob:                Identifies if oob write operation is required.
> + * @buf:               Buffer used for read/write byte operations.
> + * @raddr_cycles:      Row address cycle information.
> + * @caddr_cycles:      Column address cycle information.
> + * @irq:               irq number
> + * @page:              Page address to be use for write oob operations.
> + * @pktsize:           Packet size for read / write operation.
> + * @bufshift:          Variable used for indexing buffer operation
> + * @rdintrmask:                Interrupt mask value for read operation.
> + * @bufrdy:            Completion event for buffer ready.
> + * @xfercomp:          Completion event for transfer complete.
> + * @ecclayout:         Ecc layout object
> + */
> +struct anfc {
> +       struct nand_chip chip;
> +       struct mtd_info mtd;
> +       struct device *dev;
> +
> +       void __iomem *base;
> +       int curr_cmd;
> +
> +       bool dma;
> +       bool bch;
> +       bool err;
> +       bool iswriteoob;
> +
> +       u8 buf[TEMP_BUF_SIZE];
> +
> +       u16 raddr_cycles;
> +       u16 caddr_cycles;
> +
> +       u32 irq;
> +       u32 page;
> +       u32 pktsize;
> +       u32 bufshift;
> +       u32 rdintrmask;
> +
> +       struct completion bufrdy;
> +       struct completion xfercomp;
> +       struct nand_ecclayout ecclayout;
> +};
> +
> +static u8 anfc_page(u32 pagesize)
> +{
> +       switch (pagesize) {
> +       case 512:
> +               return PAGE_SIZE_512;
> +       case 2048:
> +               return PAGE_SIZE_2K;
> +       case 4096:
> +               return PAGE_SIZE_4K;
> +       case 8192:
> +               return PAGE_SIZE_8K;
> +       case 16384:
> +               return PAGE_SIZE_16K;
> +       case 1024:
> +               return PAGE_SIZE_1K;
> +       default:
> +               break;
> +       }
> +
> +       return 0;
> +}
> +
> +static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
> +{
> +       writel(val, nfc->base + INTR_STS_EN_OFST);
> +       writel(val, nfc->base + INTR_SIG_EN_OFST);
> +}
> +
> +static int anfc_wait_for_event(struct anfc *nfc, u32 event)
> +{
> +       struct completion *comp;
> +       int ret;
> +
> +       if (event == XFER_COMPLETE)
> +               comp = &nfc->xfercomp;
> +       else
> +               comp = &nfc->bufrdy;
> +
> +       ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
> +
> +       return ret;
> +}
> +
> +static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
> +                                   u32 pktcount)
> +{
> +       writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
> +}
> +
> +static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
> +{
> +       writel(cmd1 | (cmd2 << CMD2_SHIFT) |
> +              (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
> +              nfc->base + ECC_SPR_CMD_OFST);
> +}
> +
> +static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
> +{
> +       u32 val;
> +
> +       writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
> +
> +       val = readl(nfc->base + MEM_ADDR2_OFST);
> +       val = (val & ~MEM_ADDR_MASK) |
> +             ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
> +       writel(val, nfc->base + MEM_ADDR2_OFST);
> +}
> +
> +static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
> +                            u8 dmamode, u32 pagesize, u8 addrcycles)
> +{
> +       u32 regval;
> +
> +       regval = cmd1 | (cmd2 << CMD2_SHIFT);
> +       if (dmamode && nfc->dma)
> +               regval |= DMA_ENABLE << DMA_EN_SHIFT;
> +       if (addrcycles)
> +               regval |= addrcycles << ADDR_CYCLES_SHIFT;
> +       if (pagesize)
> +               regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
> +       writel(regval, nfc->base + CMD_OFST);
> +}
> +
> +static int anfc_device_ready(struct mtd_info *mtd,
> +                            struct nand_chip *chip)
> +{
> +       u8 status;
> +       unsigned long timeout = jiffies + STATUS_TIMEOUT;
> +
> +       do {
> +               chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
> +               status = chip->read_byte(mtd);
> +               if (status & ONFI_STATUS_READY) {
> +                       if (status & ONFI_STATUS_FAIL)
> +                               return NAND_STATUS_FAIL;
> +                       break;
> +               }
> +               cpu_relax();
> +       } while (!time_after_eq(jiffies, timeout));
> +
> +       if (time_after_eq(jiffies, timeout)) {
> +               pr_err("%s timed out\n", __func__);
> +               return -ETIMEDOUT;
> +       }
> +
> +       return 0;
> +}
> +
> +static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> +                        int page)
> +{
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +       chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
> +       if (nfc->dma)
> +               nfc->rdintrmask = XFER_COMPLETE;
> +       else
> +               nfc->rdintrmask = READ_READY;
> +       chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> +       return 0;
> +}
> +
> +static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> +                         int page)
> +{
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +       nfc->iswriteoob = true;
> +       chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
> +       chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +       nfc->iswriteoob = false;
> +
> +       return 0;
> +}
> +
> +static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> +       u32 i, pktcount, buf_rd_cnt = 0, pktsize;
> +       u32 *bufptr = (u32 *)buf;
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +       dma_addr_t paddr = 0;
> +
> +       if (nfc->curr_cmd == NAND_CMD_READ0) {
> +               pktsize = nfc->pktsize;
> +               if (mtd->writesize % pktsize)
> +                       pktcount = mtd->writesize / pktsize + 1;
> +               else
> +                       pktcount = mtd->writesize / pktsize;
> +       } else {
> +               pktsize = len;
> +               pktcount = 1;
> +       }
> +
> +       anfc_setpktszcnt(nfc, pktsize, pktcount);
> +
> +       if (nfc->dma) {
> +               paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
> +               if (dma_mapping_error(nfc->dev, paddr)) {
> +                       dev_err(nfc->dev, "Read buffer mapping error");
> +                       return;
> +               }
> +               writel(lower_32_bits(paddr), nfc->base + DMA_ADDR0_OFST);
> +               writel(upper_32_bits(paddr), nfc->base + DMA_ADDR1_OFST);
> +               anfc_enable_intrs(nfc, nfc->rdintrmask);
> +               writel(PROG_PGRD, nfc->base + PROG_OFST);
> +               anfc_wait_for_event(nfc, XFER_COMPLETE);
> +               dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
> +               return;
> +       }
> +
> +       anfc_enable_intrs(nfc, nfc->rdintrmask);
> +       writel(PROG_PGRD, nfc->base + PROG_OFST);
> +
> +       while (buf_rd_cnt < pktcount) {
> +
> +               anfc_wait_for_event(nfc, READ_READY);
> +               buf_rd_cnt++;
> +
> +               if (buf_rd_cnt == pktcount)
> +                       anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> +               for (i = 0; i < pktsize / 4; i++)
> +                       bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
> +
> +               bufptr += (pktsize / 4);
> +
> +               if (buf_rd_cnt < pktcount)
> +                       anfc_enable_intrs(nfc, nfc->rdintrmask);
> +       }
> +
> +       anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
> +{
> +       u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
> +       u32 *bufptr = (u32 *)buf;
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +       dma_addr_t paddr = 0;
> +
> +       if (nfc->iswriteoob) {
> +               pktsize = len;
> +               pktcount = 1;
> +       } else {
> +               pktsize = nfc->pktsize;
> +               pktcount = mtd->writesize / pktsize;
> +       }
> +
> +       anfc_setpktszcnt(nfc, pktsize, pktcount);
> +
> +       if (nfc->dma) {
> +               paddr = dma_map_single(nfc->dev, (void *)buf, len,
> +                                      DMA_TO_DEVICE);
> +               if (dma_mapping_error(nfc->dev, paddr)) {
> +                       dev_err(nfc->dev, "Write buffer mapping error");
> +                       return;
> +               }
> +               writel(lower_32_bits(paddr), nfc->base + DMA_ADDR0_OFST);
> +               writel(upper_32_bits(paddr), nfc->base + DMA_ADDR1_OFST);
> +               anfc_enable_intrs(nfc, XFER_COMPLETE);
> +               writel(PROG_PGPROG, nfc->base + PROG_OFST);
> +               anfc_wait_for_event(nfc, XFER_COMPLETE);
> +               dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
> +               return;
> +       }
> +
> +       anfc_enable_intrs(nfc, WRITE_READY);
> +       writel(PROG_PGPROG, nfc->base + PROG_OFST);
> +
> +       while (buf_wr_cnt < pktcount) {
> +               anfc_wait_for_event(nfc, WRITE_READY);
> +
> +               buf_wr_cnt++;
> +               if (buf_wr_cnt == pktcount)
> +                       anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> +               for (i = 0; i < (pktsize / 4); i++)
> +                       writel(bufptr[i], nfc->base + DATA_PORT_OFST);
> +
> +               bufptr += (pktsize / 4);
> +
> +               if (buf_wr_cnt < pktcount)
> +                       anfc_enable_intrs(nfc, WRITE_READY);
> +       }
> +
> +       anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static int anfc_read_page_hwecc(struct mtd_info *mtd,
> +                               struct nand_chip *chip, uint8_t *buf,
> +                               int oob_required, int page)
> +{
> +       u32 val;
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +       anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
> +
> +       val = readl(nfc->base + CMD_OFST);
> +       val = val | ECC_ENABLE;
> +       writel(val, nfc->base + CMD_OFST);
> +
> +       if (nfc->dma)
> +               nfc->rdintrmask = XFER_COMPLETE;
> +       else
> +               nfc->rdintrmask = READ_READY;
> +
> +       if (!nfc->bch)
> +               nfc->rdintrmask = MBIT_ERROR;
> +
> +       chip->read_buf(mtd, buf, mtd->writesize);
> +
> +       val = readl(nfc->base + ECC_ERR_CNT_OFST);
> +       if (nfc->bch) {
> +               mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
> +       } else {
> +               val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
> +               mtd->ecc_stats.corrected += val;
> +               val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
> +               mtd->ecc_stats.failed += val;
> +               /* Clear ecc error count register 1Bit, 2Bit */
> +               writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
> +               writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
> +       }
> +       nfc->err = false;
> +
> +       if (oob_required)
> +               chip->ecc.read_oob(mtd, chip, page);
> +
> +       return 0;
> +}
> +
> +static int anfc_write_page_hwecc(struct mtd_info *mtd,
> +                                struct nand_chip *chip, const uint8_t *buf,
> +                                int oob_required)
> +{
> +       u32 val, i;
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +       uint8_t *ecc_calc = chip->buffers->ecccalc;
> +       uint32_t *eccpos = chip->ecc.layout->eccpos;
> +
> +       anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
> +
> +       val = readl(nfc->base + CMD_OFST);
> +       val = val | ECC_ENABLE;
> +       writel(val, nfc->base + CMD_OFST);
> +
> +       chip->write_buf(mtd, buf, mtd->writesize);
> +
> +       if (oob_required) {
> +               anfc_device_ready(mtd, chip);
> +               chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
> +               if (nfc->dma)
> +                       nfc->rdintrmask = XFER_COMPLETE;
> +               else
> +                       nfc->rdintrmask = READ_READY;
> +               chip->read_buf(mtd, ecc_calc, mtd->oobsize);
> +               for (i = 0; i < chip->ecc.total; i++)
> +                       chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
> +               chip->ecc.write_oob(mtd, chip, nfc->page);
> +       }
> +
> +       return 0;
> +}
> +
> +static u8 anfc_read_byte(struct mtd_info *mtd)
> +{
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +       return nfc->buf[nfc->bufshift++];
> +}
> +
> +static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
> +{
> +       u32 i, *bufptr = (u32 *)&nfc->buf[0];
> +
> +       anfc_enable_intrs(nfc, READ_READY);
> +
> +       writel(prog, nfc->base + PROG_OFST);
> +       anfc_wait_for_event(nfc, READ_READY);
> +
> +       anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> +       for (i = 0; i < size / 4; i++)
> +               bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
> +
> +       anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static int anfc_ecc_init(struct mtd_info *mtd,
> +                        struct nand_ecc_ctrl *ecc)
> +{
> +       u32 oob_index, i, ecc_addr, regval, bchmode = 0;
> +       struct nand_chip *nand_chip = mtd->priv;
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +       int found = -1;
> +
> +       nand_chip->ecc.mode = NAND_ECC_HW;
> +       nand_chip->ecc.read_page = anfc_read_page_hwecc;
> +       nand_chip->ecc.write_page = anfc_write_page_hwecc;
> +       nand_chip->ecc.write_oob = anfc_write_oob;
> +       nand_chip->ecc.read_oob = anfc_read_oob;
> +
> +       for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
> +            i++) {
> +               if ((ecc_matrix[i].pagesize == mtd->writesize) &&
> +                   (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
> +                       if (ecc_matrix[i].eccbits >=
> +                           nand_chip->ecc_strength_ds) {
> +                               found = i;
> +                               break;
> +                       }
> +                       found = i;
> +               }
> +       }
> +
> +       if (found < 0) {
> +               dev_err(nfc->dev, "ECC scheme not supported");
> +               return 1;
> +       }
> +       if (ecc_matrix[found].bch) {
> +               switch (ecc_matrix[found].eccbits) {
> +               case 12:
> +                       bchmode = 0x1;
> +                       break;
> +               case 8:
> +                       bchmode = 0x2;
> +                       break;
> +               case 4:
> +                       bchmode = 0x3;
> +                       break;
> +               case 24:
> +                       bchmode = 0x4;
> +                       break;
> +               default:
> +                       bchmode = 0x0;
> +               }
> +       }
> +
> +       nand_chip->ecc.strength = ecc_matrix[found].eccbits;
> +       nand_chip->ecc.size = ecc_matrix[found].codeword_size;
> +       nand_chip->ecc.steps = ecc_matrix[found].pagesize /
> +                              ecc_matrix[found].codeword_size;
> +       nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
> +                              nand_chip->ecc.steps;
> +       nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
> +       nfc->bch = ecc_matrix[found].bch;
> +       oob_index = mtd->oobsize - nfc->ecclayout.eccbytes;
> +       ecc_addr = mtd->writesize + oob_index;
> +
> +       for (i = 0; i < nand_chip->ecc.size; i++)
> +               nfc->ecclayout.eccpos[i] = oob_index + i;
> +
> +       nfc->ecclayout.oobfree->offset = 2;
> +       nfc->ecclayout.oobfree->length = oob_index -
> +                                        nfc->ecclayout.oobfree->offset;
> +
> +       nand_chip->ecc.layout = &nfc->ecclayout;
> +       regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
> +                (ecc_matrix[found].bch << BCH_EN_SHIFT);
> +       writel(regval, nfc->base + ECC_OFST);
> +
> +       regval = readl(nfc->base + MEM_ADDR2_OFST);
> +       regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
> +       writel(regval, nfc->base + MEM_ADDR2_OFST);
> +
> +       if (nand_chip->ecc_step_ds >= 1024)
> +               nfc->pktsize = 1024;
> +       else
> +               nfc->pktsize = 512;
> +
> +       return 0;
> +}
> +
> +static void anfc_cmd_function(struct mtd_info *mtd,
> +                             unsigned int cmd, int column, int page_addr)
> +{
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +       bool wait = false, read = false;
> +       u32 addrcycles, prog;
> +       u32 *bufptr = (u32 *)&nfc->buf[0];
> +
> +       nfc->bufshift = 0;
> +       nfc->curr_cmd = cmd;
> +
> +       if (page_addr == -1)
> +               page_addr = 0;
> +       if (column == -1)
> +               column = 0;
> +
> +       switch (cmd) {
> +       case NAND_CMD_RESET:
> +               anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
> +               prog = PROG_RST;
> +               wait = true;
> +               break;
> +       case NAND_CMD_SEQIN:
> +               addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
> +               nfc->page = page_addr;
> +               anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
> +                                mtd->writesize, addrcycles);
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               break;
> +       case NAND_CMD_READOOB:
> +               column += mtd->writesize;
> +       case NAND_CMD_READ0:
> +       case NAND_CMD_READ1:
> +               addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
> +               anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
> +                                mtd->writesize, addrcycles);
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               break;
> +       case NAND_CMD_RNDOUT:
> +               anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
> +                                mtd->writesize, 2);
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               if (nfc->dma)
> +                       nfc->rdintrmask = XFER_COMPLETE;
> +               else
> +                       nfc->rdintrmask = READ_READY;
> +               break;
> +       case NAND_CMD_PARAM:
> +               anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
> +               anfc_readfifo(nfc, PROG_RDPARAM,
> +                               sizeof(struct nand_onfi_params));
> +               break;
> +       case NAND_CMD_READID:
> +               anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
> +               anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
> +               break;
> +       case NAND_CMD_ERASE1:
> +               addrcycles = nfc->raddr_cycles;
> +               prog = PROG_ERASE;
> +               anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
> +               column = page_addr & 0xffff;
> +               page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               wait = true;
> +               break;
> +       case NAND_CMD_STATUS:
> +               anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
> +               anfc_setpktszcnt(nfc, 1, 1);
> +               anfc_setpagecoladdr(nfc, page_addr, column);
> +               prog = PROG_STATUS;
> +               wait = read = true;
> +               break;
> +       default:
> +               return;
> +       }
> +
> +       if (wait) {
> +               anfc_enable_intrs(nfc, XFER_COMPLETE);
> +               writel(prog, nfc->base + PROG_OFST);
> +               anfc_wait_for_event(nfc, XFER_COMPLETE);
> +       }
> +
> +       if (read)
> +               bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
> +}
> +
> +static void anfc_select_chip(struct mtd_info *mtd, int num)
> +{
> +       u32 val;
> +       struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +       if (num == -1)
> +               return;
> +
> +       val = readl(nfc->base + MEM_ADDR2_OFST);
> +       val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
> +       writel(val, nfc->base + MEM_ADDR2_OFST);
> +}
> +
> +static irqreturn_t anfc_irq_handler(int irq, void *ptr)
> +{
> +       struct anfc *nfc = ptr;
> +       u32 regval = 0, status;
> +
> +       status = readl(nfc->base + INTR_STS_OFST);
> +       if (status & XFER_COMPLETE) {
> +               complete(&nfc->xfercomp);
> +               regval |= XFER_COMPLETE;
> +       }
> +
> +       if (status & READ_READY) {
> +               complete(&nfc->bufrdy);
> +               regval |= READ_READY;
> +       }
> +
> +       if (status & WRITE_READY) {
> +               complete(&nfc->bufrdy);
> +               regval |= WRITE_READY;
> +       }
> +
> +       if (status & MBIT_ERROR) {
> +               nfc->err = true;
> +               complete(&nfc->bufrdy);
> +               regval |= MBIT_ERROR;
> +       }
> +
> +       if (regval) {
> +               writel(regval, nfc->base + INTR_STS_OFST);
> +               writel(0, nfc->base + INTR_STS_EN_OFST);
> +               writel(0, nfc->base + INTR_SIG_EN_OFST);
> +
> +               return IRQ_HANDLED;
> +       }
> +
> +       return IRQ_NONE;
> +}
> +
> +static int anfc_probe(struct platform_device *pdev)
> +{
> +       struct anfc *nfc;
> +       struct mtd_info *mtd;
> +       struct nand_chip *nand_chip;
> +       struct resource *res;
> +       struct mtd_part_parser_data ppdata;
> +       int err;
> +
> +       nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
> +       if (!nfc)
> +               return -ENOMEM;
> +
> +       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +       nfc->base = devm_ioremap_resource(&pdev->dev, res);
> +       if (IS_ERR(nfc->base))
> +               return PTR_ERR(nfc->base);
> +
> +       mtd = &nfc->mtd;
> +       nand_chip = &nfc->chip;
> +       nand_chip->priv = nfc;
> +       mtd->priv = nand_chip;
> +       mtd->owner = THIS_MODULE;
> +       mtd->name = DRIVER_NAME;
> +       nfc->dev = &pdev->dev;
> +       mtd->dev.parent = &pdev->dev;
> +
> +       nand_chip->cmdfunc = anfc_cmd_function;
> +       nand_chip->waitfunc = anfc_device_ready;
> +       nand_chip->chip_delay = 30;
> +       nand_chip->read_buf = anfc_read_buf;
> +       nand_chip->write_buf = anfc_write_buf;
> +       nand_chip->read_byte = anfc_read_byte;
> +       nand_chip->bbt_options = NAND_BBT_USE_FLASH;
> +       nand_chip->select_chip = anfc_select_chip;
> +       nfc->dma = of_property_read_bool(pdev->dev.of_node,
> +                                        "arasan,has-mdma");
> +       platform_set_drvdata(pdev, nfc);
> +       init_completion(&nfc->bufrdy);
> +       init_completion(&nfc->xfercomp);
> +       nfc->irq = platform_get_irq(pdev, 0);
> +       if (nfc->irq < 0) {
> +               dev_err(&pdev->dev, "request_irq failed\n");
> +               return -ENXIO;
> +       }
> +       err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
> +                              0, "arasannfc", nfc);
> +       if (err)
> +               return err;
> +
> +       if (nand_scan_ident(mtd, 1, NULL)) {
> +               dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
> +               return -ENXIO;
> +       }
> +       if (nand_chip->onfi_version) {
> +               nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
> +               nfc->caddr_cycles =
> +                               (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
> +       } else {
> +               /*For non-ONFI devices, configuring the address cyles as 5 */
> +               nfc->raddr_cycles = nfc->caddr_cycles = 5;
> +       }
> +
> +       if (anfc_ecc_init(mtd, &nand_chip->ecc))
> +               return -ENXIO;
> +
> +       if (nand_scan_tail(mtd)) {
> +               dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
> +               return -ENXIO;
> +       }
> +
> +       ppdata.of_node = pdev->dev.of_node;
> +
> +       return mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
> +}
> +
> +static int anfc_remove(struct platform_device *pdev)
> +{
> +       struct anfc *nfc = platform_get_drvdata(pdev);
> +
> +       nand_release(&nfc->mtd);
> +
> +       return 0;
> +}
> +
> +static const struct of_device_id anfc_ids[] = {
> +       { .compatible = "arasan,nfc-v3p10" },
> +       {  }
> +};
> +MODULE_DEVICE_TABLE(of, anfc_ids);
> +
> +static struct platform_driver anfc_driver = {
> +       .driver = {
> +               .name = DRIVER_NAME,
> +               .of_match_table = anfc_ids,
> +       },
> +       .probe = anfc_probe,
> +       .remove = anfc_remove,
> +};
> +module_platform_driver(anfc_driver);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Xilinx, Inc");
> +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
> --
> 1.7.4
>



More information about the linux-mtd mailing list