[RFC PATCH 2/7] mtd: move partition parsers' Kconfig under a sub-menu
Brian Norris
computersforpeace at gmail.com
Fri Dec 4 21:19:18 PST 2015
For better organization.
Signed-off-by: Brian Norris <computersforpeace at gmail.com>
---
drivers/mtd/Kconfig | 134 +----------------------------------------
drivers/mtd/partitions/Kconfig | 131 ++++++++++++++++++++++++++++++++++++++++
2 files changed, 134 insertions(+), 131 deletions(-)
create mode 100644 drivers/mtd/partitions/Kconfig
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
index 42cc953309f1..a06e80d24499 100644
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -23,137 +23,9 @@ config MTD_TESTS
WARNING: some of the tests will ERASE entire MTD device which they
test. Do not use these tests unless you really know what you do.
-config MTD_REDBOOT_PARTS
- tristate "RedBoot partition table parsing"
- ---help---
- RedBoot is a ROM monitor and bootloader which deals with multiple
- 'images' in flash devices by putting a table one of the erase
- blocks on the device, similar to a partition table, which gives
- the offsets, lengths and names of all the images stored in the
- flash.
-
- If you need code which can detect and parse this table, and register
- MTD 'partitions' corresponding to each image in the table, enable
- this option.
-
- You will still need the parsing functions to be called by the driver
- for your particular device. It won't happen automatically. The
- SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
- example.
-
-if MTD_REDBOOT_PARTS
-
-config MTD_REDBOOT_DIRECTORY_BLOCK
- int "Location of RedBoot partition table"
- default "-1"
- ---help---
- This option is the Linux counterpart to the
- CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time
- option.
-
- The option specifies which Flash sectors holds the RedBoot
- partition table. A zero or positive value gives an absolute
- erase block number. A negative value specifies a number of
- sectors before the end of the device.
-
- For example "2" means block number 2, "-1" means the last
- block and "-2" means the penultimate block.
-
-config MTD_REDBOOT_PARTS_UNALLOCATED
- bool "Include unallocated flash regions"
- help
- If you need to register each unallocated flash region as a MTD
- 'partition', enable this option.
-
-config MTD_REDBOOT_PARTS_READONLY
- bool "Force read-only for RedBoot system images"
- help
- If you need to force read-only for 'RedBoot', 'RedBoot Config' and
- 'FIS directory' images, enable this option.
-
-endif # MTD_REDBOOT_PARTS
-
-config MTD_CMDLINE_PARTS
- tristate "Command line partition table parsing"
- depends on MTD
- ---help---
- Allow generic configuration of the MTD partition tables via the kernel
- command line. Multiple flash resources are supported for hardware where
- different kinds of flash memory are available.
-
- You will still need the parsing functions to be called by the driver
- for your particular device. It won't happen automatically. The
- SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
- example.
-
- The format for the command line is as follows:
-
- mtdparts=<mtddef>[;<mtddef]
- <mtddef> := <mtd-id>:<partdef>[,<partdef>]
- <partdef> := <size>[@offset][<name>][ro]
- <mtd-id> := unique id used in mapping driver/device
- <size> := standard linux memsize OR "-" to denote all
- remaining space
- <name> := (NAME)
-
- Due to the way Linux handles the command line, no spaces are
- allowed in the partition definition, including mtd id's and partition
- names.
-
- Examples:
-
- 1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
- mtdparts=sa1100:-
-
- Same flash, but 2 named partitions, the first one being read-only:
- mtdparts=sa1100:256k(ARMboot)ro,-(root)
-
- If unsure, say 'N'.
-
-config MTD_AFS_PARTS
- tristate "ARM Firmware Suite partition parsing"
- depends on (ARM || ARM64)
- ---help---
- The ARM Firmware Suite allows the user to divide flash devices into
- multiple 'images'. Each such image has a header containing its name
- and offset/size etc.
-
- If you need code which can detect and parse these tables, and
- register MTD 'partitions' corresponding to each image detected,
- enable this option.
-
- You will still need the parsing functions to be called by the driver
- for your particular device. It won't happen automatically. The
- 'physmap' map driver (CONFIG_MTD_PHYSMAP) does this, for example.
-
-config MTD_OF_PARTS
- tristate "OpenFirmware partitioning information support"
- default y
- depends on OF
- help
- This provides a partition parsing function which derives
- the partition map from the children of the flash node,
- as described in Documentation/devicetree/bindings/mtd/partition.txt.
-
-config MTD_AR7_PARTS
- tristate "TI AR7 partitioning support"
- ---help---
- TI AR7 partitioning support
-
-config MTD_BCM63XX_PARTS
- tristate "BCM63XX CFE partitioning support"
- depends on BCM63XX
- select CRC32
- help
- This provides partions parsing for BCM63xx devices with CFE
- bootloaders.
-
-config MTD_BCM47XX_PARTS
- tristate "BCM47XX partitioning support"
- depends on BCM47XX || ARCH_BCM_5301X
- help
- This provides partitions parser for devices based on BCM47xx
- boards.
+menu "Partition Parsers"
+source "drivers/mtd/partitions/Kconfig"
+endmenu
comment "User Modules And Translation Layers"
diff --git a/drivers/mtd/partitions/Kconfig b/drivers/mtd/partitions/Kconfig
new file mode 100644
index 000000000000..0827d7a8be4e
--- /dev/null
+++ b/drivers/mtd/partitions/Kconfig
@@ -0,0 +1,131 @@
+config MTD_REDBOOT_PARTS
+ tristate "RedBoot partition table parsing"
+ ---help---
+ RedBoot is a ROM monitor and bootloader which deals with multiple
+ 'images' in flash devices by putting a table one of the erase
+ blocks on the device, similar to a partition table, which gives
+ the offsets, lengths and names of all the images stored in the
+ flash.
+
+ If you need code which can detect and parse this table, and register
+ MTD 'partitions' corresponding to each image in the table, enable
+ this option.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
+ example.
+
+if MTD_REDBOOT_PARTS
+
+config MTD_REDBOOT_DIRECTORY_BLOCK
+ int "Location of RedBoot partition table"
+ default "-1"
+ ---help---
+ This option is the Linux counterpart to the
+ CYGNUM_REDBOOT_FIS_DIRECTORY_BLOCK RedBoot compile time
+ option.
+
+ The option specifies which Flash sectors holds the RedBoot
+ partition table. A zero or positive value gives an absolute
+ erase block number. A negative value specifies a number of
+ sectors before the end of the device.
+
+ For example "2" means block number 2, "-1" means the last
+ block and "-2" means the penultimate block.
+
+config MTD_REDBOOT_PARTS_UNALLOCATED
+ bool "Include unallocated flash regions"
+ help
+ If you need to register each unallocated flash region as a MTD
+ 'partition', enable this option.
+
+config MTD_REDBOOT_PARTS_READONLY
+ bool "Force read-only for RedBoot system images"
+ help
+ If you need to force read-only for 'RedBoot', 'RedBoot Config' and
+ 'FIS directory' images, enable this option.
+
+endif # MTD_REDBOOT_PARTS
+
+config MTD_CMDLINE_PARTS
+ tristate "Command line partition table parsing"
+ depends on MTD
+ ---help---
+ Allow generic configuration of the MTD partition tables via the kernel
+ command line. Multiple flash resources are supported for hardware where
+ different kinds of flash memory are available.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
+ example.
+
+ The format for the command line is as follows:
+
+ mtdparts=<mtddef>[;<mtddef]
+ <mtddef> := <mtd-id>:<partdef>[,<partdef>]
+ <partdef> := <size>[@offset][<name>][ro]
+ <mtd-id> := unique id used in mapping driver/device
+ <size> := standard linux memsize OR "-" to denote all
+ remaining space
+ <name> := (NAME)
+
+ Due to the way Linux handles the command line, no spaces are
+ allowed in the partition definition, including mtd id's and partition
+ names.
+
+ Examples:
+
+ 1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
+ mtdparts=sa1100:-
+
+ Same flash, but 2 named partitions, the first one being read-only:
+ mtdparts=sa1100:256k(ARMboot)ro,-(root)
+
+ If unsure, say 'N'.
+
+config MTD_AFS_PARTS
+ tristate "ARM Firmware Suite partition parsing"
+ depends on (ARM || ARM64)
+ ---help---
+ The ARM Firmware Suite allows the user to divide flash devices into
+ multiple 'images'. Each such image has a header containing its name
+ and offset/size etc.
+
+ If you need code which can detect and parse these tables, and
+ register MTD 'partitions' corresponding to each image detected,
+ enable this option.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ 'physmap' map driver (CONFIG_MTD_PHYSMAP) does this, for example.
+
+config MTD_OF_PARTS
+ tristate "OpenFirmware partitioning information support"
+ default y
+ depends on OF
+ help
+ This provides a partition parsing function which derives
+ the partition map from the children of the flash node,
+ as described in Documentation/devicetree/bindings/mtd/partition.txt.
+
+config MTD_AR7_PARTS
+ tristate "TI AR7 partitioning support"
+ ---help---
+ TI AR7 partitioning support
+
+config MTD_BCM63XX_PARTS
+ tristate "BCM63XX CFE partitioning support"
+ depends on BCM63XX
+ select CRC32
+ help
+ This provides partions parsing for BCM63xx devices with CFE
+ bootloaders.
+
+config MTD_BCM47XX_PARTS
+ tristate "BCM47XX partitioning support"
+ depends on BCM47XX || ARCH_BCM_5301X
+ help
+ This provides partitions parser for devices based on BCM47xx
+ boards.
--
2.6.0.rc2.230.g3dd15c0
More information about the linux-mtd
mailing list