[PATCH 04/12] mtd: nand: remove the rtc_from4 driver support

Artem Bityutskiy dedekind1 at gmail.com
Mon Mar 4 11:42:21 EST 2013


From: Artem Bityutskiy <artem.bityutskiy at linux.intel.com>

The AG-AND support is about to be removed from MTD, because this technology is
dead for long time. Thus, remove this the only AG-AND driver we have in the
kernel tree.

Signed-off-by: Artem Bityutskiy <artem.bityutskiy at linux.intel.com>
---
 drivers/mtd/nand/Kconfig     |   10 -
 drivers/mtd/nand/rtc_from4.c |  624 ------------------------------------------
 2 files changed, 634 deletions(-)
 delete mode 100644 drivers/mtd/nand/rtc_from4.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 0f443ef..a626629 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -193,16 +193,6 @@ config MTD_NAND_BF5XX_BOOTROM_ECC
 
 	  If unsure, say N.
 
-config MTD_NAND_RTC_FROM4
-	tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)"
-	depends on SH_SOLUTION_ENGINE
-	select REED_SOLOMON
-	select REED_SOLOMON_DEC8
-	select BITREVERSE
-	help
-	  This enables the driver for the Renesas Technology AG-AND
-	  flash interface board (FROM_BOARD4)
-
 config MTD_NAND_PPCHAMELEONEVB
 	tristate "NAND Flash device on PPChameleonEVB board"
 	depends on PPCHAMELEONEVB && BROKEN
diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c
deleted file mode 100644
index e55b5cf..0000000
--- a/drivers/mtd/nand/rtc_from4.c
+++ /dev/null
@@ -1,624 +0,0 @@
-/*
- *  drivers/mtd/nand/rtc_from4.c
- *
- *  Copyright (C) 2004  Red Hat, Inc.
- *
- *  Derived from drivers/mtd/nand/spia.c
- *       Copyright (C) 2000 Steven J. Hill (sjhill at realitydiluted.com)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * Overview:
- *   This is a device driver for the AG-AND flash device found on the
- *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
- *   which utilizes the Renesas HN29V1G91T-30 part.
- *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
- */
-
-#include <linux/delay.h>
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/slab.h>
-#include <linux/rslib.h>
-#include <linux/bitrev.h>
-#include <linux/module.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/nand.h>
-#include <linux/mtd/partitions.h>
-#include <asm/io.h>
-
-/*
- * MTD structure for Renesas board
- */
-static struct mtd_info *rtc_from4_mtd = NULL;
-
-#define RTC_FROM4_MAX_CHIPS	2
-
-/* HS77x9 processor register defines */
-#define SH77X9_BCR1	((volatile unsigned short *)(0xFFFFFF60))
-#define SH77X9_BCR2	((volatile unsigned short *)(0xFFFFFF62))
-#define SH77X9_WCR1	((volatile unsigned short *)(0xFFFFFF64))
-#define SH77X9_WCR2	((volatile unsigned short *)(0xFFFFFF66))
-#define SH77X9_MCR	((volatile unsigned short *)(0xFFFFFF68))
-#define SH77X9_PCR	((volatile unsigned short *)(0xFFFFFF6C))
-#define SH77X9_FRQCR	((volatile unsigned short *)(0xFFFFFF80))
-
-/*
- * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
- */
-/* Address where flash is mapped */
-#define RTC_FROM4_FIO_BASE	0x14000000
-
-/* CLE and ALE are tied to address lines 5 & 4, respectively */
-#define RTC_FROM4_CLE		(1 << 5)
-#define RTC_FROM4_ALE		(1 << 4)
-
-/* address lines A24-A22 used for chip selection */
-#define RTC_FROM4_NAND_ADDR_SLOT3	(0x00800000)
-#define RTC_FROM4_NAND_ADDR_SLOT4	(0x00C00000)
-#define RTC_FROM4_NAND_ADDR_FPGA	(0x01000000)
-/* mask address lines A24-A22 used for chip selection */
-#define RTC_FROM4_NAND_ADDR_MASK	(RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
-
-/* FPGA status register for checking device ready (bit zero) */
-#define RTC_FROM4_FPGA_SR		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
-#define RTC_FROM4_DEVICE_READY		0x0001
-
-/* FPGA Reed-Solomon ECC Control register */
-
-#define RTC_FROM4_RS_ECC_CTL		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
-#define RTC_FROM4_RS_ECC_CTL_CLR	(1 << 7)
-#define RTC_FROM4_RS_ECC_CTL_GEN	(1 << 6)
-#define RTC_FROM4_RS_ECC_CTL_FD_E	(1 << 5)
-
-/* FPGA Reed-Solomon ECC code base */
-#define RTC_FROM4_RS_ECC		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
-#define RTC_FROM4_RS_ECCN		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
-
-/* FPGA Reed-Solomon ECC check register */
-#define RTC_FROM4_RS_ECC_CHK		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
-#define RTC_FROM4_RS_ECC_CHK_ERROR	(1 << 7)
-
-#define ERR_STAT_ECC_AVAILABLE		0x20
-
-/* Undefine for software ECC */
-#define RTC_FROM4_HWECC	1
-
-/* Define as 1 for no virtual erase blocks (in JFFS2) */
-#define RTC_FROM4_NO_VIRTBLOCKS	0
-
-/*
- * Module stuff
- */
-static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
-
-static const struct mtd_partition partition_info[] = {
-	{
-	 .name = "Renesas flash partition 1",
-	 .offset = 0,
-	 .size = MTDPART_SIZ_FULL},
-};
-
-#define NUM_PARTITIONS 1
-
-/*
- *	hardware specific flash bbt decriptors
- *	Note: this is to allow debugging by disabling
- *		NAND_BBT_CREATE and/or NAND_BBT_WRITE
- *
- */
-static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
-static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
-
-static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
-	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
-		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
-	.offs = 40,
-	.len = 4,
-	.veroffs = 44,
-	.maxblocks = 4,
-	.pattern = bbt_pattern
-};
-
-static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
-	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
-		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
-	.offs = 40,
-	.len = 4,
-	.veroffs = 44,
-	.maxblocks = 4,
-	.pattern = mirror_pattern
-};
-
-#ifdef RTC_FROM4_HWECC
-
-/* the Reed Solomon control structure */
-static struct rs_control *rs_decoder;
-
-/*
- *      hardware specific Out Of Band information
- */
-static struct nand_ecclayout rtc_from4_nand_oobinfo = {
-	.eccbytes = 32,
-	.eccpos = {
-		   0, 1, 2, 3, 4, 5, 6, 7,
-		   8, 9, 10, 11, 12, 13, 14, 15,
-		   16, 17, 18, 19, 20, 21, 22, 23,
-		   24, 25, 26, 27, 28, 29, 30, 31},
-	.oobfree = {{32, 32}}
-};
-
-#endif
-
-/*
- * rtc_from4_hwcontrol - hardware specific access to control-lines
- * @mtd:	MTD device structure
- * @cmd:	hardware control command
- *
- * Address lines (A5 and A4) are used to control Command and Address Latch
- * Enable on this board, so set the read/write address appropriately.
- *
- * Chip Enable is also controlled by the Chip Select (CS5) and
- * Address lines (A24-A22), so no action is required here.
- *
- */
-static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
-				unsigned int ctrl)
-{
-	struct nand_chip *chip = (mtd->priv);
-
-	if (cmd == NAND_CMD_NONE)
-		return;
-
-	if (ctrl & NAND_CLE)
-		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
-	else
-		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
-}
-
-/*
- * rtc_from4_nand_select_chip - hardware specific chip select
- * @mtd:	MTD device structure
- * @chip:	Chip to select (0 == slot 3, 1 == slot 4)
- *
- * The chip select is based on address lines A24-A22.
- * This driver uses flash slots 3 and 4 (A23-A22).
- *
- */
-static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
-{
-	struct nand_chip *this = mtd->priv;
-
-	this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
-	this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
-
-	switch (chip) {
-
-	case 0:		/* select slot 3 chip */
-		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
-		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
-		break;
-	case 1:		/* select slot 4 chip */
-		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
-		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
-		break;
-
-	}
-}
-
-/*
- * rtc_from4_nand_device_ready - hardware specific ready/busy check
- * @mtd:	MTD device structure
- *
- * This board provides the Ready/Busy state in the status register
- * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal.
- *
- */
-static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
-{
-	unsigned short status;
-
-	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
-
-	return (status & RTC_FROM4_DEVICE_READY);
-
-}
-
-/*
- * deplete - code to perform device recovery in case there was a power loss
- * @mtd:	MTD device structure
- * @chip:	Chip to select (0 == slot 3, 1 == slot 4)
- *
- * If there was a sudden loss of power during an erase operation, a
- * "device recovery" operation must be performed when power is restored
- * to ensure correct operation.  This routine performs the required steps
- * for the requested chip.
- *
- * See page 86 of the data sheet for details.
- *
- */
-static void deplete(struct mtd_info *mtd, int chip)
-{
-	struct nand_chip *this = mtd->priv;
-
-	/* wait until device is ready */
-	while (!this->dev_ready(mtd)) ;
-
-	this->select_chip(mtd, chip);
-
-	/* Send the commands for device recovery, phase 1 */
-	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
-	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
-
-	/* Send the commands for device recovery, phase 2 */
-	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
-	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
-
-}
-
-#ifdef RTC_FROM4_HWECC
-/*
- * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
- * @mtd:	MTD device structure
- * @mode:	I/O mode; read or write
- *
- * enable hardware ECC for data read or write
- *
- */
-static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
-{
-	volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
-	unsigned short status;
-
-	switch (mode) {
-	case NAND_ECC_READ:
-		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
-
-		*rs_ecc_ctl = status;
-		break;
-
-	case NAND_ECC_READSYN:
-		status = 0x00;
-
-		*rs_ecc_ctl = status;
-		break;
-
-	case NAND_ECC_WRITE:
-		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
-
-		*rs_ecc_ctl = status;
-		break;
-
-	default:
-		BUG();
-		break;
-	}
-
-}
-
-/*
- * rtc_from4_calculate_ecc - hardware specific code to read ECC code
- * @mtd:	MTD device structure
- * @dat:	buffer containing the data to generate ECC codes
- * @ecc_code	ECC codes calculated
- *
- * The ECC code is calculated by the FPGA.  All we have to do is read the values
- * from the FPGA registers.
- *
- * Note: We read from the inverted registers, since data is inverted before
- * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
- *
- */
-static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
-{
-	volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
-	unsigned short value;
-	int i;
-
-	for (i = 0; i < 8; i++) {
-		value = *rs_eccn;
-		ecc_code[i] = (unsigned char)value;
-		rs_eccn++;
-	}
-	ecc_code[7] |= 0x0f;	/* set the last four bits (not used) */
-}
-
-/*
- * rtc_from4_correct_data - hardware specific code to correct data using ECC code
- * @mtd:	MTD device structure
- * @buf:	buffer containing the data to generate ECC codes
- * @ecc1	ECC codes read
- * @ecc2	ECC codes calculated
- *
- * The FPGA tells us fast, if there's an error or not. If no, we go back happy
- * else we read the ecc results from the fpga and call the rs library to decode
- * and hopefully correct the error.
- *
- */
-static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
-{
-	int i, j, res;
-	unsigned short status;
-	uint16_t par[6], syn[6];
-	uint8_t ecc[8];
-	volatile unsigned short *rs_ecc;
-
-	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
-
-	if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
-		return 0;
-	}
-
-	/* Read the syndrome pattern from the FPGA and correct the bitorder */
-	rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
-	for (i = 0; i < 8; i++) {
-		ecc[i] = bitrev8(*rs_ecc);
-		rs_ecc++;
-	}
-
-	/* convert into 6 10bit syndrome fields */
-	par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
-	par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
-	par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
-	par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
-	par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
-	par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
-
-	/* Convert to computable syndrome */
-	for (i = 0; i < 6; i++) {
-		syn[i] = par[0];
-		for (j = 1; j < 6; j++)
-			if (par[j] != rs_decoder->nn)
-				syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
-
-		/* Convert to index form */
-		syn[i] = rs_decoder->index_of[syn[i]];
-	}
-
-	/* Let the library code do its magic. */
-	res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
-	if (res > 0) {
-		pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
-	}
-	return res;
-}
-
-/**
- * rtc_from4_errstat - perform additional error status checks
- * @mtd:	MTD device structure
- * @this:	NAND chip structure
- * @state:	state or the operation
- * @status:	status code returned from read status
- * @page:	startpage inside the chip, must be called with (page & this->pagemask)
- *
- * Perform additional error status checks on erase and write failures
- * to determine if errors are correctable.  For this device, correctable
- * 1-bit errors on erase and write are considered acceptable.
- *
- * note: see pages 34..37 of data sheet for details.
- *
- */
-static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
-			     int state, int status, int page)
-{
-	int er_stat = 0;
-	int rtn, retlen;
-	size_t len;
-	uint8_t *buf;
-	int i;
-
-	this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
-
-	if (state == FL_ERASING) {
-
-		for (i = 0; i < 4; i++) {
-			if (!(status & 1 << (i + 1)))
-				continue;
-			this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
-				      -1, -1);
-			rtn = this->read_byte(mtd);
-			this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
-
-			/* err_ecc_not_avail */
-			if (!(rtn & ERR_STAT_ECC_AVAILABLE))
-				er_stat |= 1 << (i + 1);
-		}
-
-	} else if (state == FL_WRITING) {
-
-		unsigned long corrected = mtd->ecc_stats.corrected;
-
-		/* single bank write logic */
-		this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
-		rtn = this->read_byte(mtd);
-		this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
-
-		if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
-			/* err_ecc_not_avail */
-			er_stat |= 1 << 1;
-			goto out;
-		}
-
-		len = mtd->writesize;
-		buf = kmalloc(len, GFP_KERNEL);
-		if (!buf) {
-			er_stat = 1;
-			goto out;
-		}
-
-		/* recovery read */
-		rtn = nand_do_read(mtd, page, len, &retlen, buf);
-
-		/* if read failed or > 1-bit error corrected */
-		if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
-			er_stat |= 1 << 1;
-		kfree(buf);
-	}
-out:
-	rtn = status;
-	if (er_stat == 0) {	/* if ECC is available   */
-		rtn = (status & ~NAND_STATUS_FAIL);	/*   clear the error bit */
-	}
-
-	return rtn;
-}
-#endif
-
-/*
- * Main initialization routine
- */
-static int __init rtc_from4_init(void)
-{
-	struct nand_chip *this;
-	unsigned short bcr1, bcr2, wcr2;
-	int i;
-	int ret;
-
-	/* Allocate memory for MTD device structure and private data */
-	rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
-	if (!rtc_from4_mtd) {
-		printk("Unable to allocate Renesas NAND MTD device structure.\n");
-		return -ENOMEM;
-	}
-
-	/* Get pointer to private data */
-	this = (struct nand_chip *)(&rtc_from4_mtd[1]);
-
-	/* Initialize structures */
-	memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
-	memset(this, 0, sizeof(struct nand_chip));
-
-	/* Link the private data with the MTD structure */
-	rtc_from4_mtd->priv = this;
-	rtc_from4_mtd->owner = THIS_MODULE;
-
-	/* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
-	bcr1 = *SH77X9_BCR1 & ~0x0002;
-	bcr1 |= 0x0002;
-	*SH77X9_BCR1 = bcr1;
-
-	/* set */
-	bcr2 = *SH77X9_BCR2 & ~0x0c00;
-	bcr2 |= 0x0800;
-	*SH77X9_BCR2 = bcr2;
-
-	/* set area 5 wait states */
-	wcr2 = *SH77X9_WCR2 & ~0x1c00;
-	wcr2 |= 0x1c00;
-	*SH77X9_WCR2 = wcr2;
-
-	/* Set address of NAND IO lines */
-	this->IO_ADDR_R = rtc_from4_fio_base;
-	this->IO_ADDR_W = rtc_from4_fio_base;
-	/* Set address of hardware control function */
-	this->cmd_ctrl = rtc_from4_hwcontrol;
-	/* Set address of chip select function */
-	this->select_chip = rtc_from4_nand_select_chip;
-	/* command delay time (in us) */
-	this->chip_delay = 100;
-	/* return the status of the Ready/Busy line */
-	this->dev_ready = rtc_from4_nand_device_ready;
-
-#ifdef RTC_FROM4_HWECC
-	printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
-
-	this->ecc.mode = NAND_ECC_HW_SYNDROME;
-	this->ecc.size = 512;
-	this->ecc.bytes = 8;
-	this->ecc.strength = 3;
-	/* return the status of extra status and ECC checks */
-	this->errstat = rtc_from4_errstat;
-	/* set the nand_oobinfo to support FPGA H/W error detection */
-	this->ecc.layout = &rtc_from4_nand_oobinfo;
-	this->ecc.hwctl = rtc_from4_enable_hwecc;
-	this->ecc.calculate = rtc_from4_calculate_ecc;
-	this->ecc.correct = rtc_from4_correct_data;
-
-	/* We could create the decoder on demand, if memory is a concern.
-	 * This way we have it handy, if an error happens
-	 *
-	 * Symbolsize is 10 (bits)
-	 * Primitve polynomial is x^10+x^3+1
-	 * first consecutive root is 0
-	 * primitve element to generate roots = 1
-	 * generator polinomial degree = 6
-	 */
-	rs_decoder = init_rs(10, 0x409, 0, 1, 6);
-	if (!rs_decoder) {
-		printk(KERN_ERR "Could not create a RS decoder\n");
-		ret = -ENOMEM;
-		goto err_1;
-	}
-#else
-	printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
-
-	this->ecc.mode = NAND_ECC_SOFT;
-#endif
-
-	/* set the bad block tables to support debugging */
-	this->bbt_td = &rtc_from4_bbt_main_descr;
-	this->bbt_md = &rtc_from4_bbt_mirror_descr;
-
-	/* Scan to find existence of the device */
-	if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
-		ret = -ENXIO;
-		goto err_2;
-	}
-
-	/* Perform 'device recovery' for each chip in case there was a power loss. */
-	for (i = 0; i < this->numchips; i++) {
-		deplete(rtc_from4_mtd, i);
-	}
-
-#if RTC_FROM4_NO_VIRTBLOCKS
-	/* use a smaller erase block to minimize wasted space when a block is bad */
-	/* note: this uses eight times as much RAM as using the default and makes */
-	/*       mounts take four times as long. */
-	rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
-#endif
-
-	/* Register the partitions */
-	ret = mtd_device_register(rtc_from4_mtd, partition_info,
-				  NUM_PARTITIONS);
-	if (ret)
-		goto err_3;
-
-	/* Return happy */
-	return 0;
-err_3:
-	nand_release(rtc_from4_mtd);
-err_2:
-	free_rs(rs_decoder);
-err_1:
-	kfree(rtc_from4_mtd);
-	return ret;
-}
-
-module_init(rtc_from4_init);
-
-/*
- * Clean up routine
- */
-static void __exit rtc_from4_cleanup(void)
-{
-	/* Release resource, unregister partitions */
-	nand_release(rtc_from4_mtd);
-
-	/* Free the MTD device structure */
-	kfree(rtc_from4_mtd);
-
-#ifdef RTC_FROM4_HWECC
-	/* Free the reed solomon resources */
-	if (rs_decoder) {
-		free_rs(rs_decoder);
-	}
-#endif
-}
-
-module_exit(rtc_from4_cleanup);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("d.marlin <dmarlin at redhat.com");
-MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
-- 
1.7.10.4




More information about the linux-mtd mailing list