[PATCH v3 1/2] ARM: Remove bcmring NAND driver

Christian Daudt csd at broadcom.com
Fri Sep 21 17:40:25 EDT 2012


This driver is being removed as part of the cleanup of the bcmring
SoC from mainline as it is no longer maintained.

Signed-off-by: Christian Daudt <csd at broadcom.com>
Reviewed-by: Jiandong Zheng <jdzheng at broadcom.com>
Acked-by: Will Deacon <will.deacon at arm.com>
---
 MAINTAINERS                     |    9 -
 drivers/mtd/nand/Kconfig        |   16 --
 drivers/mtd/nand/Makefile       |    1 -
 drivers/mtd/nand/bcm_umi_bch.c  |  217 ---------------
 drivers/mtd/nand/bcm_umi_nand.c |  555 ---------------------------------------
 drivers/mtd/nand/nand_bcm_umi.c |  149 -----------
 drivers/mtd/nand/nand_bcm_umi.h |  337 ------------------------
 7 files changed, 1284 deletions(-)
 delete mode 100644 drivers/mtd/nand/bcm_umi_bch.c
 delete mode 100644 drivers/mtd/nand/bcm_umi_nand.c
 delete mode 100644 drivers/mtd/nand/nand_bcm_umi.c
 delete mode 100644 drivers/mtd/nand/nand_bcm_umi.h

diff --git a/MAINTAINERS b/MAINTAINERS
index fdc0119..36da5f9 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -665,15 +665,6 @@ L:	linux-arm-kernel at lists.infradead.org (moderated for non-subscribers)
 S:	Maintained
 F:	arch/arm/mach-bcmring
 
-ARM/BCMRING MTD NAND DRIVER
-M:	Jiandong Zheng <jdzheng at broadcom.com>
-M:	Scott Branden <sbranden at broadcom.com>
-L:	linux-mtd at lists.infradead.org
-S:	Maintained
-F:	drivers/mtd/nand/bcm_umi_nand.c
-F:	drivers/mtd/nand/bcm_umi_bch.c
-F:	drivers/mtd/nand/nand_bcm_umi.h
-
 ARM/CALXEDA HIGHBANK ARCHITECTURE
 M:	Rob Herring <rob.herring at calxeda.com>
 L:	linux-arm-kernel at lists.infradead.org (moderated for non-subscribers)
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 8ca4176..5c60a44 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -267,22 +267,6 @@ config MTD_NAND_S3C2410_CLKSTOP
 	  when the is NAND chip selected or released, but will save
 	  approximately 5mA of power when there is nothing happening.
 
-config MTD_NAND_BCM_UMI
-	tristate "NAND Flash support for BCM Reference Boards"
-	depends on ARCH_BCMRING
-	help
-	  This enables the NAND flash controller on the BCM UMI block.
-
-	  No board specific support is done by this driver, each board
-	  must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_BCM_UMI_HWCS
-	bool "BCM UMI NAND Hardware CS"
-	depends on MTD_NAND_BCM_UMI
-	help
-	  Enable the use of the BCM UMI block's internal CS using NAND.
-	  This should only be used if you know the external NAND CS can toggle.
-
 config MTD_NAND_DISKONCHIP
 	tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
 	depends on EXPERIMENTAL
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index d4b4d87..8b2825a 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -46,7 +46,6 @@ obj-$(CONFIG_MTD_NAND_SOCRATES)		+= socrates_nand.o
 obj-$(CONFIG_MTD_NAND_TXX9NDFMC)	+= txx9ndfmc.o
 obj-$(CONFIG_MTD_NAND_NUC900)		+= nuc900_nand.o
 obj-$(CONFIG_MTD_NAND_NOMADIK)		+= nomadik_nand.o
-obj-$(CONFIG_MTD_NAND_BCM_UMI)		+= bcm_umi_nand.o nand_bcm_umi.o
 obj-$(CONFIG_MTD_NAND_MPC5121_NFC)	+= mpc5121_nfc.o
 obj-$(CONFIG_MTD_NAND_RICOH)		+= r852.o
 obj-$(CONFIG_MTD_NAND_JZ4740)		+= jz4740_nand.o
diff --git a/drivers/mtd/nand/bcm_umi_bch.c b/drivers/mtd/nand/bcm_umi_bch.c
deleted file mode 100644
index 5914bb3..0000000
--- a/drivers/mtd/nand/bcm_umi_bch.c
+++ /dev/null
@@ -1,217 +0,0 @@
-/*****************************************************************************
-* Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
-*
-* Unless you and Broadcom execute a separate written software license
-* agreement governing use of this software, this software is licensed to you
-* under the terms of the GNU General Public License version 2, available at
-* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
-*
-* Notwithstanding the above, under no circumstances may you combine this
-* software in any way with any other Broadcom software provided under a
-* license other than the GPL, without Broadcom's express prior written
-* consent.
-*****************************************************************************/
-
-/* ---- Include Files ---------------------------------------------------- */
-#include "nand_bcm_umi.h"
-
-/* ---- External Variable Declarations ----------------------------------- */
-/* ---- External Function Prototypes ------------------------------------- */
-/* ---- Public Variables ------------------------------------------------- */
-/* ---- Private Constants and Types -------------------------------------- */
-
-/* ---- Private Function Prototypes -------------------------------------- */
-static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd,
-	struct nand_chip *chip, uint8_t *buf, int oob_required, int page);
-static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd,
-	struct nand_chip *chip, const uint8_t *buf, int oob_required);
-
-/* ---- Private Variables ------------------------------------------------ */
-
-/*
-** nand_hw_eccoob
-** New oob placement block for use with hardware ecc generation.
-*/
-static struct nand_ecclayout nand_hw_eccoob_512 = {
-	/* Reserve 5 for BI indicator */
-	.oobfree = {
-#if (NAND_ECC_NUM_BYTES > 3)
-		    {.offset = 0, .length = 2}
-#else
-		    {.offset = 0, .length = 5},
-		    {.offset = 6, .length = 7}
-#endif
-		    }
-};
-
-/*
-** We treat the OOB for a 2K page as if it were 4 512 byte oobs,
-** except the BI is at byte 0.
-*/
-static struct nand_ecclayout nand_hw_eccoob_2048 = {
-	/* Reserve 0 as BI indicator */
-	.oobfree = {
-#if (NAND_ECC_NUM_BYTES > 10)
-		    {.offset = 1, .length = 2},
-#elif (NAND_ECC_NUM_BYTES > 7)
-		    {.offset = 1, .length = 5},
-		    {.offset = 16, .length = 6},
-		    {.offset = 32, .length = 6},
-		    {.offset = 48, .length = 6}
-#else
-		    {.offset = 1, .length = 8},
-		    {.offset = 16, .length = 9},
-		    {.offset = 32, .length = 9},
-		    {.offset = 48, .length = 9}
-#endif
-		    }
-};
-
-/* We treat the OOB for a 4K page as if it were 8 512 byte oobs,
- * except the BI is at byte 0. */
-static struct nand_ecclayout nand_hw_eccoob_4096 = {
-	/* Reserve 0 as BI indicator */
-	.oobfree = {
-#if (NAND_ECC_NUM_BYTES > 10)
-		    {.offset = 1, .length = 2},
-		    {.offset = 16, .length = 3},
-		    {.offset = 32, .length = 3},
-		    {.offset = 48, .length = 3},
-		    {.offset = 64, .length = 3},
-		    {.offset = 80, .length = 3},
-		    {.offset = 96, .length = 3},
-		    {.offset = 112, .length = 3}
-#else
-		    {.offset = 1, .length = 5},
-		    {.offset = 16, .length = 6},
-		    {.offset = 32, .length = 6},
-		    {.offset = 48, .length = 6},
-		    {.offset = 64, .length = 6},
-		    {.offset = 80, .length = 6},
-		    {.offset = 96, .length = 6},
-		    {.offset = 112, .length = 6}
-#endif
-		    }
-};
-
-/* ---- Private Functions ------------------------------------------------ */
-/* ==== Public Functions ================================================= */
-
-/****************************************************************************
-*
-*  bcm_umi_bch_read_page_hwecc - hardware ecc based page read function
-*  @mtd:	mtd info structure
-*  @chip:	nand chip info structure
-*  @buf:	buffer to store read data
-*  @oob_required:	caller expects OOB data read to chip->oob_poi
-*
-***************************************************************************/
-static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd,
-				       struct nand_chip *chip, uint8_t * buf,
-				       int oob_required, int page)
-{
-	int sectorIdx = 0;
-	int eccsize = chip->ecc.size;
-	int eccsteps = chip->ecc.steps;
-	uint8_t *datap = buf;
-	uint8_t eccCalc[NAND_ECC_NUM_BYTES];
-	int sectorOobSize = mtd->oobsize / eccsteps;
-	int stat;
-	unsigned int max_bitflips = 0;
-
-	for (sectorIdx = 0; sectorIdx < eccsteps;
-			sectorIdx++, datap += eccsize) {
-		if (sectorIdx > 0) {
-			/* Seek to page location within sector */
-			chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize,
-				      -1);
-		}
-
-		/* Enable hardware ECC before reading the buf */
-		nand_bcm_umi_bch_enable_read_hwecc();
-
-		/* Read in data */
-		bcm_umi_nand_read_buf(mtd, datap, eccsize);
-
-		/* Pause hardware ECC after reading the buf */
-		nand_bcm_umi_bch_pause_read_ecc_calc();
-
-		/* Read the OOB ECC */
-		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
-			      mtd->writesize + sectorIdx * sectorOobSize, -1);
-		nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc,
-					     NAND_ECC_NUM_BYTES,
-					     chip->oob_poi +
-					     sectorIdx * sectorOobSize);
-
-		/* Correct any ECC detected errors */
-		stat =
-		    nand_bcm_umi_bch_correct_page(datap, eccCalc,
-						  NAND_ECC_NUM_BYTES);
-
-		/* Update Stats */
-		if (stat < 0) {
-#if defined(NAND_BCM_UMI_DEBUG)
-			printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n",
-			       __func__, sectorIdx);
-			printk(KERN_WARNING
-			       "%s data %02x %02x %02x %02x "
-					 "%02x %02x %02x %02x\n",
-			       __func__, datap[0], datap[1], datap[2], datap[3],
-			       datap[4], datap[5], datap[6], datap[7]);
-			printk(KERN_WARNING
-			       "%s ecc  %02x %02x %02x %02x "
-					 "%02x %02x %02x %02x %02x %02x "
-					 "%02x %02x %02x\n",
-			       __func__, eccCalc[0], eccCalc[1], eccCalc[2],
-			       eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6],
-			       eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10],
-			       eccCalc[11], eccCalc[12]);
-			BUG();
-#endif
-			mtd->ecc_stats.failed++;
-		} else {
-#if defined(NAND_BCM_UMI_DEBUG)
-			if (stat > 0) {
-				printk(KERN_INFO
-				       "%s %d correctable_errors detected\n",
-				       __func__, stat);
-			}
-#endif
-			mtd->ecc_stats.corrected += stat;
-			max_bitflips = max_t(unsigned int, max_bitflips, stat);
-		}
-	}
-	return max_bitflips;
-}
-
-/****************************************************************************
-*
-*  bcm_umi_bch_write_page_hwecc - hardware ecc based page write function
-*  @mtd:	mtd info structure
-*  @chip:	nand chip info structure
-*  @buf:	data buffer
-*  @oob_required:	must write chip->oob_poi to OOB
-*
-***************************************************************************/
-static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd,
-	struct nand_chip *chip, const uint8_t *buf, int oob_required)
-{
-	int sectorIdx = 0;
-	int eccsize = chip->ecc.size;
-	int eccsteps = chip->ecc.steps;
-	const uint8_t *datap = buf;
-	uint8_t *oobp = chip->oob_poi;
-	int sectorOobSize = mtd->oobsize / eccsteps;
-
-	for (sectorIdx = 0; sectorIdx < eccsteps;
-	     sectorIdx++, datap += eccsize, oobp += sectorOobSize) {
-		/* Enable hardware ECC before writing the buf */
-		nand_bcm_umi_bch_enable_write_hwecc();
-		bcm_umi_nand_write_buf(mtd, datap, eccsize);
-		nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp,
-					      NAND_ECC_NUM_BYTES);
-	}
-
-	bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-}
diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c
deleted file mode 100644
index c855e7c..0000000
--- a/drivers/mtd/nand/bcm_umi_nand.c
+++ /dev/null
@@ -1,555 +0,0 @@
-/*****************************************************************************
-* Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
-*
-* Unless you and Broadcom execute a separate written software license
-* agreement governing use of this software, this software is licensed to you
-* under the terms of the GNU General Public License version 2, available at
-* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
-*
-* Notwithstanding the above, under no circumstances may you combine this
-* software in any way with any other Broadcom software provided under a
-* license other than the GPL, without Broadcom's express prior written
-* consent.
-*****************************************************************************/
-
-/* ---- Include Files ---------------------------------------------------- */
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/slab.h>
-#include <linux/string.h>
-#include <linux/ioport.h>
-#include <linux/device.h>
-#include <linux/delay.h>
-#include <linux/err.h>
-#include <linux/io.h>
-#include <linux/platform_device.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/partitions.h>
-
-#include <asm/mach-types.h>
-
-#include <mach/reg_nand.h>
-#include <mach/reg_umi.h>
-
-#include "nand_bcm_umi.h"
-
-#include <mach/memory_settings.h>
-
-#define USE_DMA 1
-#include <mach/dma.h>
-#include <linux/dma-mapping.h>
-#include <linux/completion.h>
-
-/* ---- External Variable Declarations ----------------------------------- */
-/* ---- External Function Prototypes ------------------------------------- */
-/* ---- Public Variables ------------------------------------------------- */
-/* ---- Private Constants and Types -------------------------------------- */
-static const __devinitconst char gBanner[] = KERN_INFO \
-	"BCM UMI MTD NAND Driver: 1.00\n";
-
-#if NAND_ECC_BCH
-static uint8_t scan_ff_pattern[] = { 0xff };
-
-static struct nand_bbt_descr largepage_bbt = {
-	.options = 0,
-	.offs = 0,
-	.len = 1,
-	.pattern = scan_ff_pattern
-};
-#endif
-
-/*
-** Preallocate a buffer to avoid having to do this every dma operation.
-** This is the size of the preallocated coherent DMA buffer.
-*/
-#if USE_DMA
-#define DMA_MIN_BUFLEN	512
-#define DMA_MAX_BUFLEN	PAGE_SIZE
-#define USE_DIRECT_IO(len)	(((len) < DMA_MIN_BUFLEN) || \
-	((len) > DMA_MAX_BUFLEN))
-
-/*
- * The current NAND data space goes from 0x80001900 to 0x80001FFF,
- * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
- * size NAND flash. Need to break the DMA down to multiple 1Ks.
- *
- * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
- */
-#define DMA_MAX_LEN             1024
-
-#else /* !USE_DMA */
-#define DMA_MIN_BUFLEN          0
-#define DMA_MAX_BUFLEN          0
-#define USE_DIRECT_IO(len)      1
-#endif
-/* ---- Private Function Prototypes -------------------------------------- */
-static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
-static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
-				   int len);
-
-/* ---- Private Variables ------------------------------------------------ */
-static struct mtd_info *board_mtd;
-static void __iomem *bcm_umi_io_base;
-static void *virtPtr;
-static dma_addr_t physPtr;
-static struct completion nand_comp;
-
-/* ---- Private Functions ------------------------------------------------ */
-#if NAND_ECC_BCH
-#include "bcm_umi_bch.c"
-#else
-#include "bcm_umi_hamming.c"
-#endif
-
-#if USE_DMA
-
-/* Handler called when the DMA finishes. */
-static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
-{
-	complete(&nand_comp);
-}
-
-static int nand_dma_init(void)
-{
-	int rc;
-
-	rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
-		nand_dma_handler, NULL);
-	if (rc != 0) {
-		printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
-		return rc;
-	}
-
-	virtPtr =
-	    dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
-	if (virtPtr == NULL) {
-		printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
-		return -ENOMEM;
-	}
-
-	return 0;
-}
-
-static void nand_dma_term(void)
-{
-	if (virtPtr != NULL)
-		dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
-}
-
-static void nand_dma_read(void *buf, int len)
-{
-	int offset = 0;
-	int tmp_len = 0;
-	int len_left = len;
-	DMA_Handle_t hndl;
-
-	if (virtPtr == NULL)
-		panic("nand_dma_read: virtPtr == NULL\n");
-
-	if ((void *)physPtr == NULL)
-		panic("nand_dma_read: physPtr == NULL\n");
-
-	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
-	if (hndl < 0) {
-		printk(KERN_ERR
-		       "nand_dma_read: unable to allocate dma channel: %d\n",
-		       (int)hndl);
-		panic("\n");
-	}
-
-	while (len_left > 0) {
-		if (len_left > DMA_MAX_LEN) {
-			tmp_len = DMA_MAX_LEN;
-			len_left -= DMA_MAX_LEN;
-		} else {
-			tmp_len = len_left;
-			len_left = 0;
-		}
-
-		init_completion(&nand_comp);
-		dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
-					physPtr + offset, tmp_len);
-		wait_for_completion(&nand_comp);
-
-		offset += tmp_len;
-	}
-
-	dma_free_channel(hndl);
-
-	if (buf != NULL)
-		memcpy(buf, virtPtr, len);
-}
-
-static void nand_dma_write(const void *buf, int len)
-{
-	int offset = 0;
-	int tmp_len = 0;
-	int len_left = len;
-	DMA_Handle_t hndl;
-
-	if (buf == NULL)
-		panic("nand_dma_write: buf == NULL\n");
-
-	if (virtPtr == NULL)
-		panic("nand_dma_write: virtPtr == NULL\n");
-
-	if ((void *)physPtr == NULL)
-		panic("nand_dma_write: physPtr == NULL\n");
-
-	memcpy(virtPtr, buf, len);
-
-
-	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
-	if (hndl < 0) {
-		printk(KERN_ERR
-		       "nand_dma_write: unable to allocate dma channel: %d\n",
-		       (int)hndl);
-		panic("\n");
-	}
-
-	while (len_left > 0) {
-		if (len_left > DMA_MAX_LEN) {
-			tmp_len = DMA_MAX_LEN;
-			len_left -= DMA_MAX_LEN;
-		} else {
-			tmp_len = len_left;
-			len_left = 0;
-		}
-
-		init_completion(&nand_comp);
-		dma_transfer_mem_to_mem(hndl, physPtr + offset,
-					REG_NAND_DATA_PADDR, tmp_len);
-		wait_for_completion(&nand_comp);
-
-		offset += tmp_len;
-	}
-
-	dma_free_channel(hndl);
-}
-
-#endif
-
-static int nand_dev_ready(struct mtd_info *mtd)
-{
-	return nand_bcm_umi_dev_ready();
-}
-
-/****************************************************************************
-*
-*  bcm_umi_nand_inithw
-*
-*   This routine does the necessary hardware (board-specific)
-*   initializations.  This includes setting up the timings, etc.
-*
-***************************************************************************/
-int bcm_umi_nand_inithw(void)
-{
-	/* Configure nand timing parameters */
-	REG_UMI_NAND_TCR &= ~0x7ffff;
-	REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
-
-#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
-	/* enable software control of CS */
-	REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
-#endif
-
-	/* keep NAND chip select asserted */
-	REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
-
-	REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
-	/* enable writes to flash */
-	REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
-
-	writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
-	nand_bcm_umi_wait_till_ready();
-
-#if NAND_ECC_BCH
-	nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
-#endif
-
-	return 0;
-}
-
-/* Used to turn latch the proper register for access. */
-static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
-				   unsigned int ctrl)
-{
-	/* send command to hardware */
-	struct nand_chip *chip = mtd->priv;
-	if (ctrl & NAND_CTRL_CHANGE) {
-		if (ctrl & NAND_CLE) {
-			chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
-			goto CMD;
-		}
-		if (ctrl & NAND_ALE) {
-			chip->IO_ADDR_W =
-			    bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
-			goto CMD;
-		}
-		chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
-	}
-
-CMD:
-	/* Send command to chip directly */
-	if (cmd != NAND_CMD_NONE)
-		writeb(cmd, chip->IO_ADDR_W);
-}
-
-static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
-				   int len)
-{
-	if (USE_DIRECT_IO(len)) {
-		/* Do it the old way if the buffer is small or too large.
-		 * Probably quicker than starting and checking dma. */
-		int i;
-		struct nand_chip *this = mtd->priv;
-
-		for (i = 0; i < len; i++)
-			writeb(buf[i], this->IO_ADDR_W);
-	}
-#if USE_DMA
-	else
-		nand_dma_write(buf, len);
-#endif
-}
-
-static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
-{
-	if (USE_DIRECT_IO(len)) {
-		int i;
-		struct nand_chip *this = mtd->priv;
-
-		for (i = 0; i < len; i++)
-			buf[i] = readb(this->IO_ADDR_R);
-	}
-#if USE_DMA
-	else
-		nand_dma_read(buf, len);
-#endif
-}
-
-static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
-static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
-				   int len)
-{
-	/*
-	 * Try to readback page with ECC correction. This is necessary
-	 * for MLC parts which may have permanently stuck bits.
-	 */
-	struct nand_chip *chip = mtd->priv;
-	int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0, 0);
-	if (ret < 0)
-		return -EFAULT;
-	else {
-		if (memcmp(readbackbuf, buf, len) == 0)
-			return 0;
-
-		return -EFAULT;
-	}
-	return 0;
-}
-
-static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
-{
-	struct nand_chip *this;
-	struct resource *r;
-	int err = 0;
-
-	printk(gBanner);
-
-	/* Allocate memory for MTD device structure and private data */
-	board_mtd =
-	    kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
-		    GFP_KERNEL);
-	if (!board_mtd) {
-		printk(KERN_WARNING
-		       "Unable to allocate NAND MTD device structure.\n");
-		return -ENOMEM;
-	}
-
-	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-
-	if (!r) {
-		err = -ENXIO;
-		goto out_free;
-	}
-
-	/* map physical address */
-	bcm_umi_io_base = ioremap(r->start, resource_size(r));
-
-	if (!bcm_umi_io_base) {
-		printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
-		err = -EIO;
-		goto out_free;
-	}
-
-	/* Get pointer to private data */
-	this = (struct nand_chip *)(&board_mtd[1]);
-
-	/* Initialize structures */
-	memset((char *)board_mtd, 0, sizeof(struct mtd_info));
-	memset((char *)this, 0, sizeof(struct nand_chip));
-
-	/* Link the private data with the MTD structure */
-	board_mtd->priv = this;
-
-	/* Initialize the NAND hardware.  */
-	if (bcm_umi_nand_inithw() < 0) {
-		printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
-		err = -EIO;
-		goto out_unmap;
-	}
-
-	/* Set address of NAND IO lines */
-	this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
-	this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
-
-	/* Set command delay time, see datasheet for correct value */
-	this->chip_delay = 0;
-	/* Assign the device ready function, if available */
-	this->dev_ready = nand_dev_ready;
-	this->options = 0;
-
-	this->write_buf = bcm_umi_nand_write_buf;
-	this->read_buf = bcm_umi_nand_read_buf;
-	this->verify_buf = bcm_umi_nand_verify_buf;
-
-	this->cmd_ctrl = bcm_umi_nand_hwcontrol;
-	this->ecc.mode = NAND_ECC_HW;
-	this->ecc.size = 512;
-	this->ecc.bytes = NAND_ECC_NUM_BYTES;
-#if NAND_ECC_BCH
-	this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
-	this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
-#else
-	this->ecc.correct = nand_correct_data512;
-	this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
-	this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
-#endif
-
-#if USE_DMA
-	err = nand_dma_init();
-	if (err != 0)
-		goto out_unmap;
-#endif
-
-	/* Figure out the size of the device that we have.
-	 * We need to do this to figure out which ECC
-	 * layout we'll be using.
-	 */
-
-	err = nand_scan_ident(board_mtd, 1, NULL);
-	if (err) {
-		printk(KERN_ERR "nand_scan failed: %d\n", err);
-		goto out_unmap;
-	}
-
-	/* Now that we know the nand size, we can setup the ECC layout */
-
-	switch (board_mtd->writesize) {	/* writesize is the pagesize */
-	case 4096:
-		this->ecc.layout = &nand_hw_eccoob_4096;
-		break;
-	case 2048:
-		this->ecc.layout = &nand_hw_eccoob_2048;
-		break;
-	case 512:
-		this->ecc.layout = &nand_hw_eccoob_512;
-		break;
-	default:
-		{
-			printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
-					 board_mtd->writesize);
-			err = -EINVAL;
-			goto out_unmap;
-		}
-	}
-
-#if NAND_ECC_BCH
-	if (board_mtd->writesize > 512) {
-		if (this->bbt_options & NAND_BBT_USE_FLASH)
-			largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
-		this->badblock_pattern = &largepage_bbt;
-	}
-
-	this->ecc.strength = 8;
-
-#endif
-
-	/* Now finish off the scan, now that ecc.layout has been initialized. */
-
-	err = nand_scan_tail(board_mtd);
-	if (err) {
-		printk(KERN_ERR "nand_scan failed: %d\n", err);
-		goto out_unmap;
-	}
-
-	/* Register the partitions */
-	board_mtd->name = "bcm_umi-nand";
-	mtd_device_parse_register(board_mtd, NULL, NULL, NULL, 0);
-
-	/* Return happy */
-	return 0;
-out_unmap:
-	iounmap(bcm_umi_io_base);
-out_free:
-	kfree(board_mtd);
-	return err;
-}
-
-static int bcm_umi_nand_remove(struct platform_device *pdev)
-{
-#if USE_DMA
-	nand_dma_term();
-#endif
-
-	/* Release resources, unregister device */
-	nand_release(board_mtd);
-
-	/* unmap physical address */
-	iounmap(bcm_umi_io_base);
-
-	/* Free the MTD device structure */
-	kfree(board_mtd);
-
-	return 0;
-}
-
-#ifdef CONFIG_PM
-static int bcm_umi_nand_suspend(struct platform_device *pdev,
-				pm_message_t state)
-{
-	printk(KERN_ERR "MTD NAND suspend is being called\n");
-	return 0;
-}
-
-static int bcm_umi_nand_resume(struct platform_device *pdev)
-{
-	printk(KERN_ERR "MTD NAND resume is being called\n");
-	return 0;
-}
-#else
-#define bcm_umi_nand_suspend   NULL
-#define bcm_umi_nand_resume    NULL
-#endif
-
-static struct platform_driver nand_driver = {
-	.driver = {
-		   .name = "bcm-nand",
-		   .owner = THIS_MODULE,
-		   },
-	.probe = bcm_umi_nand_probe,
-	.remove = bcm_umi_nand_remove,
-	.suspend = bcm_umi_nand_suspend,
-	.resume = bcm_umi_nand_resume,
-};
-
-module_platform_driver(nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Broadcom");
-MODULE_DESCRIPTION("BCM UMI MTD NAND driver");
diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c
deleted file mode 100644
index 46a6bc9..0000000
--- a/drivers/mtd/nand/nand_bcm_umi.c
+++ /dev/null
@@ -1,149 +0,0 @@
-/*****************************************************************************
-* Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
-*
-* Unless you and Broadcom execute a separate written software license
-* agreement governing use of this software, this software is licensed to you
-* under the terms of the GNU General Public License version 2, available at
-* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
-*
-* Notwithstanding the above, under no circumstances may you combine this
-* software in any way with any other Broadcom software provided under a
-* license other than the GPL, without Broadcom's express prior written
-* consent.
-*****************************************************************************/
-
-/* ---- Include Files ---------------------------------------------------- */
-#include <mach/reg_umi.h>
-#include "nand_bcm_umi.h"
-#ifdef BOOT0_BUILD
-#include <uart.h>
-#endif
-
-/* ---- External Variable Declarations ----------------------------------- */
-/* ---- External Function Prototypes ------------------------------------- */
-/* ---- Public Variables ------------------------------------------------- */
-/* ---- Private Constants and Types -------------------------------------- */
-/* ---- Private Function Prototypes -------------------------------------- */
-/* ---- Private Variables ------------------------------------------------ */
-/* ---- Private Functions ------------------------------------------------ */
-
-#if NAND_ECC_BCH
-/****************************************************************************
-*  nand_bch_ecc_flip_bit - Routine to flip an errored bit
-*
-*  PURPOSE:
-*     This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the
-*     errored bit specified
-*
-*  PARAMETERS:
-*     datap - Container that holds the 512 byte data
-*     errorLocation - Location of the bit that needs to be flipped
-*
-*  RETURNS:
-*     None
-****************************************************************************/
-static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation)
-{
-	int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0;
-	int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3;
-	int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5;
-
-	uint8_t errorByte = 0;
-	uint8_t byteMask = 1 << locWithinAByte;
-
-	/* BCH uses big endian, need to change the location
-	 * bits to little endian */
-	locWithinAWord = 3 - locWithinAWord;
-
-	errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord];
-
-#ifdef BOOT0_BUILD
-	puthexs("\nECC Correct Offset: ",
-		locWithinAPage * sizeof(uint32_t) + locWithinAWord);
-	puthexs(" errorByte:", errorByte);
-	puthex8(" Bit: ", locWithinAByte);
-#endif
-
-	if (errorByte & byteMask) {
-		/* bit needs to be cleared */
-		errorByte &= ~byteMask;
-	} else {
-		/* bit needs to be set */
-		errorByte |= byteMask;
-	}
-
-	/* write back the value with the fixed bit */
-	datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte;
-}
-
-/****************************************************************************
-*  nand_correct_page_bch - Routine to correct bit errors when reading NAND
-*
-*  PURPOSE:
-*     This routine reads the BCH registers to determine if there are any bit
-*     errors during the read of the last 512 bytes of data + ECC bytes.  If
-*     errors exists, the routine fixes it.
-*
-*  PARAMETERS:
-*     datap - Container that holds the 512 byte data
-*
-*  RETURNS:
-*     0 or greater = Number of errors corrected
-*                    (No errors are found or errors have been fixed)
-*    -1 = Error(s) cannot be fixed
-****************************************************************************/
-int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
-				  int numEccBytes)
-{
-	int numErrors;
-	int errorLocation;
-	int idx;
-	uint32_t regValue;
-
-	/* wait for read ECC to be valid */
-	regValue = nand_bcm_umi_bch_poll_read_ecc_calc();
-
-	/*
-	 * read the control status register to determine if there
-	 * are error'ed bits
-	 * see if errors are correctible
-	 */
-	if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) {
-		int i;
-
-		for (i = 0; i < numEccBytes; i++) {
-			if (readEccData[i] != 0xff) {
-				/* errors cannot be fixed, return -1 */
-				return -1;
-			}
-		}
-		/* If ECC is unprogrammed then we can't correct,
-		 * assume everything OK */
-		return 0;
-	}
-
-	if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) {
-		/* no errors */
-		return 0;
-	}
-
-	/*
-	 * Fix errored bits by doing the following:
-	 * 1. Read the number of errors in the control and status register
-	 * 2. Read the error location registers that corresponds to the number
-	 *    of errors reported
-	 * 3. Invert the bit in the data
-	 */
-	numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20;
-
-	for (idx = 0; idx < numErrors; idx++) {
-		errorLocation =
-		    REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK;
-
-		/* Flip bit */
-		nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation);
-	}
-	/* Errors corrected */
-	return numErrors;
-}
-#endif
diff --git a/drivers/mtd/nand/nand_bcm_umi.h b/drivers/mtd/nand/nand_bcm_umi.h
deleted file mode 100644
index 198b304..0000000
--- a/drivers/mtd/nand/nand_bcm_umi.h
+++ /dev/null
@@ -1,337 +0,0 @@
-/*****************************************************************************
-* Copyright 2003 - 2009 Broadcom Corporation.  All rights reserved.
-*
-* Unless you and Broadcom execute a separate written software license
-* agreement governing use of this software, this software is licensed to you
-* under the terms of the GNU General Public License version 2, available at
-* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
-*
-* Notwithstanding the above, under no circumstances may you combine this
-* software in any way with any other Broadcom software provided under a
-* license other than the GPL, without Broadcom's express prior written
-* consent.
-*****************************************************************************/
-#ifndef NAND_BCM_UMI_H
-#define NAND_BCM_UMI_H
-
-/* ---- Include Files ---------------------------------------------------- */
-#include <mach/reg_umi.h>
-#include <mach/reg_nand.h>
-#include <cfg_global.h>
-
-/* ---- Constants and Types ---------------------------------------------- */
-#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
-#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
-#else
-#define NAND_ECC_BCH 0
-#endif
-
-#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES	13
-
-#if NAND_ECC_BCH
-#ifdef BOOT0_BUILD
-#define NAND_ECC_NUM_BYTES 13
-#else
-#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES
-#endif
-#else
-#define NAND_ECC_NUM_BYTES 3
-#endif
-
-#define NAND_DATA_ACCESS_SIZE 512
-
-/* ---- Variable Externs ------------------------------------------ */
-/* ---- Function Prototypes --------------------------------------- */
-int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
-				  int numEccBytes);
-
-/* Check in device is ready */
-static inline int nand_bcm_umi_dev_ready(void)
-{
-	return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY;
-}
-
-/* Wait until device is ready */
-static inline void nand_bcm_umi_wait_till_ready(void)
-{
-	while (nand_bcm_umi_dev_ready() == 0)
-		;
-}
-
-/* Enable Hamming ECC */
-static inline void nand_bcm_umi_hamming_enable_hwecc(void)
-{
-	/* disable and reset ECC, 512 byte page */
-	REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
-		REG_UMI_NAND_ECC_CSR_256BYTE);
-	/* enable ECC */
-	REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE;
-}
-
-#if NAND_ECC_BCH
-/* BCH ECC specifics */
-#define ECC_BITS_PER_CORRECTABLE_BIT 13
-
-/* Enable BCH Read ECC */
-static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
-{
-	/* disable and reset ECC */
-	REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
-	/* Turn on ECC */
-	REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
-}
-
-/* Enable BCH Write ECC */
-static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
-{
-	/* disable and reset ECC */
-	REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
-	/* Turn on ECC */
-	REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
-}
-
-/* Config number of BCH ECC bytes */
-static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
-{
-	uint32_t nValue;
-	uint32_t tValue;
-	uint32_t kValue;
-	uint32_t numBits = numEccBytes * 8;
-
-	/* disable and reset ECC */
-	REG_UMI_BCH_CTRL_STATUS =
-	    REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
-	    REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
-
-	/* Every correctible bit requires 13 ECC bits */
-	tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);
-
-	/* Total data in number of bits for generating and computing BCH ECC */
-	nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
-
-	/* K parameter is used internally.  K = N - (T * 13) */
-	kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);
-
-	/* Write the settings */
-	REG_UMI_BCH_N = nValue;
-	REG_UMI_BCH_T = tValue;
-	REG_UMI_BCH_K = kValue;
-}
-
-/* Pause during ECC read calculation to skip bytes in OOB */
-static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
-{
-	REG_UMI_BCH_CTRL_STATUS =
-	    REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
-	    REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
-}
-
-/* Resume during ECC read calculation after skipping bytes in OOB */
-static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
-{
-	REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
-}
-
-/* Poll read ECC calc to check when hardware completes */
-static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
-{
-	uint32_t regVal;
-
-	do {
-		/* wait for ECC to be valid */
-		regVal = REG_UMI_BCH_CTRL_STATUS;
-	} while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
-
-	return regVal;
-}
-
-/* Poll write ECC calc to check when hardware completes */
-static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
-{
-	/* wait for ECC to be valid */
-	while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
-	       == 0)
-		;
-}
-
-/* Read the OOB and ECC, for kernel write OOB to a buffer */
-#if defined(__KERNEL__) && !defined(STANDALONE)
-static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
-	uint8_t *eccCalc, int numEccBytes, uint8_t *oobp)
-#else
-static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
-	uint8_t *eccCalc, int numEccBytes)
-#endif
-{
-	int eccPos = 0;
-	int numToRead = 16;	/* There are 16 bytes per sector in the OOB */
-
-	/* ECC is already paused when this function is called */
-	if (pageSize != NAND_DATA_ACCESS_SIZE) {
-		/* skip BI */
-#if defined(__KERNEL__) && !defined(STANDALONE)
-		*oobp++ = REG_NAND_DATA8;
-#else
-		REG_NAND_DATA8;
-#endif
-		numToRead--;
-	}
-
-	while (numToRead > numEccBytes) {
-		/* skip free oob region */
-#if defined(__KERNEL__) && !defined(STANDALONE)
-		*oobp++ = REG_NAND_DATA8;
-#else
-		REG_NAND_DATA8;
-#endif
-		numToRead--;
-	}
-
-	if (pageSize == NAND_DATA_ACCESS_SIZE) {
-		/* read ECC bytes before BI */
-		nand_bcm_umi_bch_resume_read_ecc_calc();
-
-		while (numToRead > 11) {
-#if defined(__KERNEL__) && !defined(STANDALONE)
-			*oobp = REG_NAND_DATA8;
-			eccCalc[eccPos++] = *oobp;
-			oobp++;
-#else
-			eccCalc[eccPos++] = REG_NAND_DATA8;
-#endif
-			numToRead--;
-		}
-
-		nand_bcm_umi_bch_pause_read_ecc_calc();
-
-		if (numToRead == 11) {
-			/* read BI */
-#if defined(__KERNEL__) && !defined(STANDALONE)
-			*oobp++ = REG_NAND_DATA8;
-#else
-			REG_NAND_DATA8;
-#endif
-			numToRead--;
-		}
-
-	}
-	/* read ECC bytes */
-	nand_bcm_umi_bch_resume_read_ecc_calc();
-	while (numToRead) {
-#if defined(__KERNEL__) && !defined(STANDALONE)
-		*oobp = REG_NAND_DATA8;
-		eccCalc[eccPos++] = *oobp;
-		oobp++;
-#else
-		eccCalc[eccPos++] = REG_NAND_DATA8;
-#endif
-		numToRead--;
-	}
-}
-
-/* Helper function to write ECC */
-static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos,
-					  uint8_t *oobp, uint8_t eccVal)
-{
-	if (eccBytePos <= numEccBytes)
-		*oobp = eccVal;
-}
-
-/* Write OOB with ECC */
-static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
-						 uint8_t *oobp, int numEccBytes)
-{
-	uint32_t eccVal = 0xffffffff;
-
-	/* wait for write ECC to be valid */
-	nand_bcm_umi_bch_poll_write_ecc_calc();
-
-	/*
-	 ** Get the hardware ecc from the 32-bit result registers.
-	 ** Read after 512 byte accesses. Format B3B2B1B0
-	 ** where B3 = ecc3, etc.
-	 */
-
-	if (pageSize == NAND_DATA_ACCESS_SIZE) {
-		/* Now fill in the ECC bytes */
-		if (numEccBytes >= 13)
-			eccVal = REG_UMI_BCH_WR_ECC_3;
-
-		/* Usually we skip CM in oob[0,1] */
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
-			(eccVal >> 16) & 0xff);
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1],
-			(eccVal >> 8) & 0xff);
-
-		/* Write ECC in oob[2,3,4] */
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2],
-			eccVal & 0xff);	/* ECC 12 */
-
-		if (numEccBytes >= 9)
-			eccVal = REG_UMI_BCH_WR_ECC_2;
-
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
-			(eccVal >> 24) & 0xff);	/* ECC11 */
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4],
-			(eccVal >> 16) & 0xff);	/* ECC10 */
-
-		/* Always Skip BI in oob[5] */
-	} else {
-		/* Always Skip BI in oob[0] */
-
-		/* Now fill in the ECC bytes */
-		if (numEccBytes >= 13)
-			eccVal = REG_UMI_BCH_WR_ECC_3;
-
-		/* Usually skip CM in oob[1,2] */
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
-			(eccVal >> 16) & 0xff);
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2],
-			(eccVal >> 8) & 0xff);
-
-		/* Write ECC in oob[3-15] */
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3],
-			eccVal & 0xff);	/* ECC12 */
-
-		if (numEccBytes >= 9)
-			eccVal = REG_UMI_BCH_WR_ECC_2;
-
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
-			(eccVal >> 24) & 0xff);	/* ECC11 */
-		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5],
-			(eccVal >> 16) & 0xff);	/* ECC10 */
-	}
-
-	/* Fill in the remainder of ECC locations */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6],
-		(eccVal >> 8) & 0xff);	/* ECC9 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7],
-		eccVal & 0xff);	/* ECC8 */
-
-	if (numEccBytes >= 5)
-		eccVal = REG_UMI_BCH_WR_ECC_1;
-
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
-		(eccVal >> 24) & 0xff);	/* ECC7 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9],
-		(eccVal >> 16) & 0xff);	/* ECC6 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10],
-		(eccVal >> 8) & 0xff);	/* ECC5 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11],
-		eccVal & 0xff);	/* ECC4 */
-
-	if (numEccBytes >= 1)
-		eccVal = REG_UMI_BCH_WR_ECC_0;
-
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
-		(eccVal >> 24) & 0xff);	/* ECC3 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13],
-		(eccVal >> 16) & 0xff);	/* ECC2 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14],
-		(eccVal >> 8) & 0xff);	/* ECC1 */
-	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15],
-		eccVal & 0xff);	/* ECC0 */
-}
-#endif
-
-#endif /* NAND_BCM_UMI_H */
-- 
1.7.9.5





More information about the linux-mtd mailing list