[PATCH v8 1/3] MTD : add the common code for GPMI-NAND controller driver
Huang Shijie
b32955 at freescale.com
Thu Jul 21 02:47:24 EDT 2011
These files contain the common code for the GPMI-NAND driver.
Signed-off-by: Huang Shijie <b32955 at freescale.com>
---
drivers/mtd/nand/gpmi-nand/gpmi-nand.c | 1987 ++++++++++++++++++++++++++++++++
drivers/mtd/nand/gpmi-nand/gpmi-nand.h | 390 +++++++
2 files changed, 2377 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/gpmi-nand/gpmi-nand.c
create mode 100644 drivers/mtd/nand/gpmi-nand/gpmi-nand.h
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
new file mode 100644
index 0000000..1c2cbc5
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
@@ -0,0 +1,1987 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include "gpmi-nand.h"
+
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+/* debug control */
+int gpmi_debug;
+module_param(gpmi_debug, int, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(gpmi_debug, "print out the debug infomation.");
+
+/* enable the gpmi-nand. */
+static bool enable_gpmi_nand;
+
+static ssize_t show_ignorebad(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct gpmi_nand_data *this = dev_get_drvdata(dev);
+ struct mil *mil = &this->mil;
+
+ return sprintf(buf, "%d\n", mil->ignore_bad_block_marks);
+}
+
+static ssize_t
+store_ignorebad(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t size)
+{
+ struct gpmi_nand_data *this = dev_get_drvdata(dev);
+ struct mil *mil = &this->mil;
+ const char *p = buf;
+ unsigned long v;
+
+ if (strict_strtoul(p, 0, &v) < 0)
+ return -EINVAL;
+
+ if (v > 0)
+ v = 1;
+
+ if (v != mil->ignore_bad_block_marks) {
+ if (v) {
+ /*
+ * This will cause the NAND Flash MTD code to believe
+ * that it never created a BBT and force it to call our
+ * block_bad function.
+ *
+ * See mil_block_bad for more details.
+ */
+ mil->saved_bbt = mil->nand.bbt;
+ mil->nand.bbt = NULL;
+ } else {
+ /*
+ * Restore the NAND Flash MTD's pointer
+ * to its in-memory BBT.
+ */
+ mil->nand.bbt = mil->saved_bbt;
+ }
+ mil->ignore_bad_block_marks = v;
+ }
+ return size;
+}
+
+static DEVICE_ATTR(ignorebad, 0644, show_ignorebad, store_ignorebad);
+static struct device_attribute *device_attributes[] = {
+ &dev_attr_ignorebad,
+};
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+ struct gpmi_nand_data *this = cookie;
+
+ gpmi_clear_bch(this);
+ complete(&this->bch_done);
+ return IRQ_HANDLED;
+}
+
+/* calculate the ECC strength by hand */
+static inline int get_ecc_strength(struct gpmi_nand_data *this)
+{
+ struct mtd_info *mtd = &this->mil.mtd;
+ int ecc_strength = 0;
+
+ switch (mtd->writesize) {
+ case 2048:
+ ecc_strength = 8;
+ break;
+ case 4096:
+ switch (mtd->oobsize) {
+ case 128:
+ ecc_strength = 8;
+ break;
+ case 224:
+ case 218:
+ ecc_strength = 16;
+ break;
+ }
+ break;
+ case 8192:
+ ecc_strength = 24;
+ break;
+ }
+
+ return ecc_strength;
+}
+
+bool is_ddr_nand(struct gpmi_nand_data *this)
+{
+ struct nand_chip *chip = &this->mil.nand;
+
+ /* ONFI nand */
+ if (chip->onfi_version != 0)
+ return true;
+
+ /* TOGGLE nand */
+
+ return false;
+}
+
+static inline int get_ecc_chunk_size(struct gpmi_nand_data *this)
+{
+ /* the ONFI/TOGGLE nands use 1k ecc chunk size */
+ if (is_ddr_nand(this))
+ return 1024;
+
+ /* for historical reason */
+ return 512;
+}
+
+int common_nfc_set_geometry(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct mtd_info *mtd = &this->mil.mtd;
+ unsigned int metadata_size;
+ unsigned int status_size;
+ unsigned int chunk_data_size_in_bits;
+ unsigned int chunk_ecc_size_in_bits;
+ unsigned int chunk_total_size_in_bits;
+ unsigned int block_mark_chunk_number;
+ unsigned int block_mark_chunk_bit_offset;
+ unsigned int block_mark_bit_offset;
+
+ /* We only support BCH now. */
+ geo->ecc_algorithm = "BCH";
+
+ /*
+ * We always choose a metadata size of 10. Don't try to make sense of
+ * it -- this is really only for historical compatibility.
+ */
+ geo->metadata_size_in_bytes = 10;
+
+ /* ECC chunks */
+ geo->ecc_chunk_size_in_bytes = get_ecc_chunk_size(this);
+
+ /*
+ * Compute the total number of ECC chunks in a page. This includes the
+ * slightly larger chunk at the beginning of the page, which contains
+ * both data and metadata.
+ */
+ geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size_in_bytes;
+
+ /*
+ * We use the same ECC strength for all chunks, including the first one.
+ */
+ geo->ecc_strength = get_ecc_strength(this);
+ if (!geo->ecc_strength) {
+ pr_info("Page size:%d, OOB:%d\n", mtd->writesize, mtd->oobsize);
+ return -EINVAL;
+ }
+
+ /* Compute the page size, include page and oob. */
+ geo->page_size_in_bytes = mtd->writesize + mtd->oobsize;
+
+ /*
+ * ONFI/TOGGLE nand needs GF14, so re-calculate DMA page size.
+ * The ONFI nand must do the recalculation,
+ * else it will fail in DMA in some platform(such as imx50).
+ */
+ if (is_ddr_nand(this))
+ geo->page_size_in_bytes = mtd->writesize +
+ geo->metadata_size_in_bytes +
+ (geo->ecc_strength * 14 * 8 / geo->ecc_chunk_count);
+
+ geo->payload_size_in_bytes = mtd->writesize;
+ /*
+ * In principle, computing the auxiliary buffer geometry is NFC
+ * version-specific. However, at this writing, all versions share the
+ * same model, so this code can also be shared.
+ *
+ * The auxiliary buffer contains the metadata and the ECC status. The
+ * metadata is padded to the nearest 32-bit boundary. The ECC status
+ * contains one byte for every ECC chunk, and is also padded to the
+ * nearest 32-bit boundary.
+ */
+ metadata_size = ALIGN(geo->metadata_size_in_bytes, 4);
+ status_size = ALIGN(geo->ecc_chunk_count, 4);
+
+ geo->auxiliary_size_in_bytes = metadata_size + status_size;
+ geo->auxiliary_status_offset = metadata_size;
+
+ /* Check if we're going to do block mark swapping. */
+ if (!this->swap_block_mark)
+ return 0;
+
+ /*
+ * If control arrives here, we're doing block mark swapping, so we need
+ * to compute the byte and bit offsets of the physical block mark within
+ * the ECC-based view of the page data. In principle, this isn't a
+ * difficult computation -- but it's very important and it's easy to get
+ * it wrong, so we do it carefully.
+ *
+ * Note that this calculation is simpler because we use the same ECC
+ * strength for all chunks, including the zero'th one, which contains
+ * the metadata. The calculation would be slightly more complicated
+ * otherwise.
+ *
+ * We start by computing the physical bit offset of the block mark. We
+ * then subtract the number of metadata and ECC bits appearing before
+ * the mark to arrive at its bit offset within the data alone.
+ */
+
+ /* Compute some important facts about chunk geometry. */
+ chunk_data_size_in_bits = geo->ecc_chunk_size_in_bytes * 8;
+
+ /* ONFI/TOGGLE nand needs GF14 */
+ if (is_ddr_nand(this))
+ chunk_ecc_size_in_bits = geo->ecc_strength * 14;
+ else
+ chunk_ecc_size_in_bits = geo->ecc_strength * 13;
+
+ chunk_total_size_in_bits =
+ chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+ /* Compute the bit offset of the block mark within the physical page. */
+ block_mark_bit_offset = mtd->writesize * 8;
+
+ /* Subtract the metadata bits. */
+ block_mark_bit_offset -= geo->metadata_size_in_bytes * 8;
+
+ /*
+ * Compute the chunk number (starting at zero) in which the block mark
+ * appears.
+ */
+ block_mark_chunk_number =
+ block_mark_bit_offset / chunk_total_size_in_bits;
+
+ /*
+ * Compute the bit offset of the block mark within its chunk, and
+ * validate it.
+ */
+ block_mark_chunk_bit_offset =
+ block_mark_bit_offset -
+ (block_mark_chunk_number * chunk_total_size_in_bits);
+
+ if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) {
+ /*
+ * If control arrives here, the block mark actually appears in
+ * the ECC bits of this chunk. This wont' work.
+ */
+ pr_info("Unsupported page geometry : %u:%u\n",
+ mtd->writesize, mtd->oobsize);
+ return -EINVAL;
+ }
+
+ /*
+ * Now that we know the chunk number in which the block mark appears,
+ * we can subtract all the ECC bits that appear before it.
+ */
+ block_mark_bit_offset -=
+ block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+ /*
+ * We now know the absolute bit offset of the block mark within the
+ * ECC-based data. We can now compute the byte offset and the bit
+ * offset within the byte.
+ */
+ geo->block_mark_byte_offset = block_mark_bit_offset / 8;
+ geo->block_mark_bit_offset = block_mark_bit_offset % 8;
+
+ return 0;
+}
+
+struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
+{
+ int chip = this->mil.current_chip;
+
+ BUG_ON(chip < 0);
+ return this->dma_chans[chip];
+}
+
+/* Can we use the upper's buffer directly for DMA? */
+void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
+{
+ struct mil *mil = &this->mil;
+ struct scatterlist *sgl = &mil->data_sgl;
+ int ret;
+
+ mil->direct_dma_map_ok = true;
+
+ /* first try to map the upper buffer directly */
+ sg_init_one(sgl, mil->upper_buf, mil->upper_len);
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ if (ret == 0) {
+ /* We have to use our own DMA buffer. */
+ sg_init_one(sgl, mil->data_buffer_dma, PAGE_SIZE);
+
+ if (dr == DMA_TO_DEVICE)
+ memcpy(mil->data_buffer_dma, mil->upper_buf,
+ mil->upper_len);
+
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ BUG_ON(ret == 0);
+
+ mil->direct_dma_map_ok = false;
+ }
+}
+
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+ struct gpmi_nand_data *this = param;
+ struct mil *mil = &this->mil;
+ struct completion *dma_c = &this->dma_done;
+
+ complete(dma_c);
+
+ switch (this->dma_type) {
+ case DMA_FOR_COMMAND:
+ dma_unmap_sg(this->dev, &mil->cmd_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_DATA:
+ dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_FROM_DEVICE);
+ if (mil->direct_dma_map_ok == false)
+ memcpy(mil->upper_buf, mil->data_buffer_dma,
+ mil->upper_len);
+ break;
+
+ case DMA_FOR_WRITE_DATA:
+ dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_ECC_PAGE:
+ case DMA_FOR_WRITE_ECC_PAGE:
+ /* We have to wait the BCH interrupt to finish. */
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+int start_dma_without_bch_irq(struct gpmi_nand_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct completion *dma_c = &this->dma_done;
+ int err;
+
+ init_completion(dma_c);
+
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ dmaengine_submit(desc);
+
+ /* Wait for the interrupt from the DMA block. */
+ err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
+ err = (!err) ? -ETIMEDOUT : 0;
+ if (err) {
+ pr_info("DMA timeout, last DMA :%d\n", this->last_dma_type);
+ if (gpmi_debug & GPMI_DEBUG_CRAZY) {
+ gpmi_show_regs(this);
+ panic("-----------DMA FAILED------------------");
+ }
+ }
+ return err;
+}
+
+/*
+ * This function is used in BCH reading or BCH writing pages.
+ * It will wait for the BCH interrupt as long as ONE second.
+ * Actually, we must wait for two interrupts :
+ * [1] firstly the DMA interrupt and
+ * [2] secondly the BCH interrupt.
+ *
+ * @this: Per-device data structure.
+ * @desc: DMA channel
+ */
+int start_dma_with_bch_irq(struct gpmi_nand_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ int err;
+
+ /* Prepare to receive an interrupt from the BCH block. */
+ init_completion(&this->bch_done);
+
+ /* start the DMA */
+ start_dma_without_bch_irq(this, desc);
+
+ /* Wait for the interrupt from the BCH block. */
+ err = wait_for_completion_timeout(&this->bch_done,
+ msecs_to_jiffies(1000));
+ err = (!err) ? -ETIMEDOUT : 0;
+ if (err)
+ pr_info("bch timeout!!!\n");
+ return err;
+}
+
+static int __devinit acquire_register_block(struct gpmi_nand_data *this,
+ const char *resource_name, void **reg_block_base)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r;
+ void *p;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_MEM, resource_name);
+ if (!r) {
+ pr_info("Can't get resource for %s\n", resource_name);
+ return -ENXIO;
+ }
+
+ /* remap the register block */
+ p = ioremap(r->start, resource_size(r));
+ if (!p) {
+ pr_info("Can't remap %s\n", resource_name);
+ return -ENOMEM;
+ }
+
+ *reg_block_base = p;
+ return 0;
+}
+
+static void release_register_block(struct gpmi_nand_data *this,
+ void *reg_block_base)
+{
+ iounmap(reg_block_base);
+}
+
+static int __devinit acquire_interrupt(struct gpmi_nand_data *this,
+ const char *resource_name,
+ irq_handler_t interrupt_handler, int *lno, int *hno)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r;
+ int err;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, resource_name);
+ if (!r) {
+ pr_info("Can't get resource for %s\n", resource_name);
+ return -ENXIO;
+ }
+
+ BUG_ON(r->start != r->end);
+ err = request_irq(r->start, interrupt_handler, 0, resource_name, this);
+ if (err) {
+ pr_info("Can't own %s\n", resource_name);
+ return err;
+ }
+
+ *lno = r->start;
+ *hno = r->end;
+ return 0;
+}
+
+static void release_interrupt(struct gpmi_nand_data *this,
+ int low_interrupt_number, int high_interrupt_number)
+{
+ int i;
+ for (i = low_interrupt_number; i <= high_interrupt_number; i++)
+ free_irq(i, this);
+}
+
+static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
+{
+ struct gpmi_nand_data *this = param;
+ struct resource *r = this->private;
+
+ if (!mxs_dma_is_apbh(chan))
+ return false;
+ /*
+ * only catch the GPMI dma channels :
+ * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
+ * (These four channels share the same IRQ!)
+ *
+ * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
+ * (These eight channels share the same IRQ!)
+ */
+ if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
+ chan->private = &this->dma_data;
+ return true;
+ }
+ return false;
+}
+
+static void release_dma_channels(struct gpmi_nand_data *this)
+{
+ unsigned int i;
+ for (i = 0; i < DMA_CHANS; i++)
+ if (this->dma_chans[i]) {
+ dma_release_channel(this->dma_chans[i]);
+ this->dma_chans[i] = NULL;
+ }
+}
+
+static int __devinit acquire_dma_channels(struct gpmi_nand_data *this,
+ const char *resource_name,
+ unsigned *low_channel, unsigned *high_channel)
+{
+ struct platform_device *pdev = this->pdev;
+ struct gpmi_nand_platform_data *pdata = this->pdata;
+ struct resource *r, *r_dma;
+ unsigned int i;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_DMA, resource_name);
+ r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
+ GPMI_NAND_DMA_INTERRUPT_RES_NAME);
+ if (!r || !r_dma) {
+ pr_info("Can't get resource for DMA\n");
+ return -ENXIO;
+ }
+
+ /* used in gpmi_dma_filter() */
+ this->private = r;
+
+ for (i = r->start; i <= r->end; i++) {
+ struct dma_chan *dma_chan;
+ dma_cap_mask_t mask;
+
+ if (i - r->start >= pdata->max_chip_count)
+ break;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ /* get the DMA interrupt */
+ if (r_dma->start == r_dma->end) {
+ /* only register the first. */
+ if (i == r->start)
+ this->dma_data.chan_irq = r_dma->start;
+ else
+ this->dma_data.chan_irq = NO_IRQ;
+ } else
+ this->dma_data.chan_irq = r_dma->start + (i - r->start);
+
+ dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
+ if (!dma_chan)
+ goto acquire_err;
+
+ /* fill the first empty item */
+ this->dma_chans[i - r->start] = dma_chan;
+ }
+
+ *low_channel = r->start;
+ *high_channel = i;
+ return 0;
+
+acquire_err:
+ pr_info("Can't acquire DMA channel %u\n", i);
+ release_dma_channels(this);
+ return -EINVAL;
+}
+
+static int __devinit acquire_resources(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ int error;
+
+ /* Attempt to acquire the GPMI register block. */
+ error = acquire_register_block(this,
+ GPMI_NAND_GPMI_REGS_ADDR_RES_NAME,
+ &r->gpmi_regs);
+ if (error)
+ goto exit_gpmi_regs;
+
+ /* Attempt to acquire the BCH register block. */
+ error = acquire_register_block(this,
+ GPMI_NAND_BCH_REGS_ADDR_RES_NAME,
+ &r->bch_regs);
+ if (error)
+ goto exit_bch_regs;
+
+ /* Attempt to acquire the BCH interrupt. */
+ error = acquire_interrupt(this,
+ GPMI_NAND_BCH_INTERRUPT_RES_NAME,
+ bch_irq,
+ &r->bch_low_interrupt,
+ &r->bch_high_interrupt);
+ if (error)
+ goto exit_bch_interrupt;
+
+ /* Attempt to acquire the DMA channels. */
+ error = acquire_dma_channels(this,
+ GPMI_NAND_DMA_CHANNELS_RES_NAME,
+ &r->dma_low_channel,
+ &r->dma_high_channel);
+ if (error)
+ goto exit_dma_channels;
+
+ /* Attempt to acquire our clock. */
+ r->clock = clk_get(&this->pdev->dev, NULL);
+ if (IS_ERR(r->clock)) {
+ pr_info("can not get the clock\n");
+ error = -ENOENT;
+ goto exit_clock;
+ }
+ return 0;
+
+exit_clock:
+ release_dma_channels(this);
+exit_dma_channels:
+ release_interrupt(this, r->bch_low_interrupt, r->bch_high_interrupt);
+exit_bch_interrupt:
+ release_register_block(this, r->bch_regs);
+exit_bch_regs:
+ release_register_block(this, r->gpmi_regs);
+exit_gpmi_regs:
+ return error;
+}
+
+static void release_resources(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+
+ clk_put(r->clock);
+ release_register_block(this, r->gpmi_regs);
+ release_register_block(this, r->bch_regs);
+ release_interrupt(this, r->bch_low_interrupt, r->bch_low_interrupt);
+ release_dma_channels(this);
+}
+
+static int __devinit init_hardware(struct gpmi_nand_data *this)
+{
+ int error;
+
+ /*
+ * This structure contains the "safe" GPMI timing that should succeed
+ * with any NAND Flash device
+ * (although, with less-than-optimal performance).
+ */
+ struct nand_timing safe_timing = {
+ .data_setup_in_ns = 80,
+ .data_hold_in_ns = 60,
+ .address_setup_in_ns = 25,
+ .gpmi_sample_delay_in_ns = 6,
+ .tREA_in_ns = -1,
+ .tRLOH_in_ns = -1,
+ .tRHOH_in_ns = -1,
+ };
+
+ /* Initialize the hardwares. */
+ error = gpmi_init(this);
+ if (error)
+ return error;
+
+ this->timing = safe_timing;
+ return 0;
+}
+
+/* Creates/Removes sysfs files for this device.*/
+static void manage_sysfs_files(struct gpmi_nand_data *this, int create)
+{
+ struct device *dev = this->dev;
+ struct device_attribute **attr;
+ unsigned int i;
+ int error;
+
+ for (i = 0, attr = device_attributes;
+ i < ARRAY_SIZE(device_attributes); i++, attr++) {
+
+ if (create) {
+ error = device_create_file(dev, *attr);
+ if (error) {
+ while (--attr >= device_attributes)
+ device_remove_file(dev, *attr);
+ return;
+ }
+ } else {
+ device_remove_file(dev, *attr);
+ }
+ }
+}
+
+static int read_page_prepare(struct gpmi_nand_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void **use_virt, dma_addr_t *use_phys)
+{
+ struct device *dev = this->dev;
+
+ if (virt_addr_valid(destination)) {
+ dma_addr_t dest_phys;
+
+ dest_phys = dma_map_single(dev, destination,
+ length, DMA_FROM_DEVICE);
+ if (dma_mapping_error(dev, dest_phys)) {
+ if (alt_size < length) {
+ pr_info("Alternate buffer is too small\n");
+ return -ENOMEM;
+ }
+ goto map_failed;
+ }
+ *use_virt = destination;
+ *use_phys = dest_phys;
+ this->mil.direct_dma_map_ok = true;
+ return 0;
+ }
+
+map_failed:
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ this->mil.direct_dma_map_ok = false;
+ return 0;
+}
+
+static inline void read_page_end(struct gpmi_nand_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void *used_virt, dma_addr_t used_phys)
+{
+ if (this->mil.direct_dma_map_ok)
+ dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
+}
+
+static inline void read_page_swap_end(struct gpmi_nand_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void *used_virt, dma_addr_t used_phys)
+{
+ if (!this->mil.direct_dma_map_ok)
+ memcpy(destination, alt_virt, length);
+}
+
+static int send_page_prepare(struct gpmi_nand_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void **use_virt, dma_addr_t *use_phys)
+{
+ struct device *dev = this->dev;
+
+ if (virt_addr_valid(source)) {
+ dma_addr_t source_phys;
+
+ source_phys = dma_map_single(dev, (void *)source, length,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(dev, source_phys)) {
+ if (alt_size < length) {
+ pr_info("Alternate buffer is too small\n");
+ return -ENOMEM;
+ }
+ goto map_failed;
+ }
+ *use_virt = source;
+ *use_phys = source_phys;
+ return 0;
+ }
+map_failed:
+ /*
+ * Copy the content of the source buffer into the alternate
+ * buffer and set up the return values accordingly.
+ */
+ memcpy(alt_virt, source, length);
+
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ return 0;
+}
+
+static void send_page_end(struct gpmi_nand_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void *used_virt, dma_addr_t used_phys)
+{
+ struct device *dev = this->dev;
+ if (used_virt == source)
+ dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
+}
+
+static void mil_free_dma_buffer(struct gpmi_nand_data *this)
+{
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+
+ if (mil->page_buffer_virt && virt_addr_valid(mil->page_buffer_virt))
+ dma_free_coherent(dev, mil->page_buffer_size,
+ mil->page_buffer_virt,
+ mil->page_buffer_phys);
+ kfree(mil->cmd_buffer);
+ kfree(mil->data_buffer_dma);
+
+ mil->cmd_buffer = NULL;
+ mil->data_buffer_dma = NULL;
+ mil->page_buffer_virt = NULL;
+ mil->page_buffer_size = 0;
+}
+
+/* Allocate the DMA buffers */
+static int mil_alloc_dma_buffer(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+
+ /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
+ mil->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (mil->cmd_buffer == NULL)
+ goto error_alloc;
+
+ /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
+ mil->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (mil->data_buffer_dma == NULL)
+ goto error_alloc;
+
+ /*
+ * [3] Allocate the page buffer.
+ *
+ * Both the payload buffer and the auxiliary buffer must appear on
+ * 32-bit boundaries. We presume the size of the payload buffer is a
+ * power of two and is much larger than four, which guarantees the
+ * auxiliary buffer will appear on a 32-bit boundary.
+ */
+ mil->page_buffer_size = geo->payload_size_in_bytes +
+ geo->auxiliary_size_in_bytes;
+
+ mil->page_buffer_virt = dma_alloc_coherent(dev, mil->page_buffer_size,
+ &mil->page_buffer_phys, GFP_DMA);
+ if (!mil->page_buffer_virt)
+ goto error_alloc;
+
+
+ /* Slice up the page buffer. */
+ mil->payload_virt = mil->page_buffer_virt;
+ mil->payload_phys = mil->page_buffer_phys;
+ mil->auxiliary_virt = mil->payload_virt + geo->payload_size_in_bytes;
+ mil->auxiliary_phys = mil->payload_phys + geo->payload_size_in_bytes;
+ return 0;
+
+error_alloc:
+ mil_free_dma_buffer(this);
+ pr_info("allocate DMA buffer error!!\n");
+ return -ENOMEM;
+}
+
+static void mil_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+ int error;
+
+ /*
+ * Every operation begins with a command byte and a series of zero or
+ * more address bytes. These are distinguished by either the Address
+ * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+ * asserted. When MTD is ready to execute the command, it will deassert
+ * both latch enables.
+ *
+ * Rather than run a separate DMA operation for every single byte, we
+ * queue them up and run a single DMA operation for the entire series
+ * of command and data bytes. NAND_CMD_NONE means the END of the queue.
+ */
+ if ((ctrl & (NAND_ALE | NAND_CLE))) {
+ if (data != NAND_CMD_NONE)
+ mil->cmd_buffer[mil->command_length++] = data;
+ return;
+ }
+
+ if (!mil->command_length)
+ return;
+
+ error = gpmi_send_command(this);
+ if (error)
+ pr_info("Chip: %u, Error %d\n", mil->current_chip, error);
+
+ mil->command_length = 0;
+}
+
+static int mil_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+
+ return gpmi_is_ready(this, mil->current_chip);
+}
+
+static void mil_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+
+ if ((mil->current_chip < 0) && (chip >= 0))
+ gpmi_begin(this);
+ else if ((mil->current_chip >= 0) && (chip < 0))
+ gpmi_end(this);
+ else
+ ;
+
+ mil->current_chip = chip;
+}
+
+static void mil_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+
+ logio(GPMI_DEBUG_READ);
+ /* save the info in mil{} for future */
+ mil->upper_buf = buf;
+ mil->upper_len = len;
+
+ gpmi_read_data(this);
+}
+
+static void mil_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+
+ logio(GPMI_DEBUG_WRITE);
+ /* save the info in mil{} for future */
+ mil->upper_buf = (uint8_t *)buf;
+ mil->upper_len = len;
+
+ gpmi_send_data(this);
+}
+
+static uint8_t mil_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+ uint8_t *buf = mil->data_buffer_dma;
+
+ mil_read_buf(mtd, buf, 1);
+ return buf[0];
+}
+
+/**
+ * mil_handle_block_mark_swapping() - Handles block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ *
+ * @this: Per-device data.
+ * @payload: A pointer to the payload buffer.
+ * @auxiliary: A pointer to the auxiliary buffer.
+ */
+static void mil_handle_block_mark_swapping(struct gpmi_nand_data *this,
+ void *payload, void *auxiliary)
+{
+ struct bch_geometry *nfc_geo = &this->bch_geometry;
+ unsigned char *p;
+ unsigned char *a;
+ unsigned int bit;
+ unsigned char mask;
+ unsigned char from_data;
+ unsigned char from_oob;
+
+ /* Check if we're doing block mark swapping. */
+ if (!this->swap_block_mark)
+ return;
+
+ /*
+ * If control arrives here, we're swapping. Make some convenience
+ * variables.
+ */
+ bit = nfc_geo->block_mark_bit_offset;
+ p = payload + nfc_geo->block_mark_byte_offset;
+ a = auxiliary;
+
+ /*
+ * Get the byte from the data area that overlays the block mark. Since
+ * the ECC engine applies its own view to the bits in the page, the
+ * physical block mark won't (in general) appear on a byte boundary in
+ * the data.
+ */
+ from_data = (p[0] >> bit) | (p[1] << (8 - bit));
+
+ /* Get the byte from the OOB. */
+ from_oob = a[0];
+
+ /* Swap them. */
+ a[0] = from_data;
+
+ mask = (0x1 << bit) - 1;
+ p[0] = (p[0] & mask) | (from_oob << bit);
+
+ mask = ~0 << bit;
+ p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
+}
+
+static int mil_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+ uint8_t *buf, int page)
+{
+ struct gpmi_nand_data *this = nand->priv;
+ struct bch_geometry *nfc_geo = &this->bch_geometry;
+ struct mil *mil = &this->mil;
+ void *payload_virt;
+ dma_addr_t payload_phys;
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+ unsigned int i;
+ unsigned char *status;
+ unsigned int failed;
+ unsigned int corrected;
+ int error;
+
+ logio(GPMI_DEBUG_ECC_READ);
+ error = read_page_prepare(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ &payload_virt, &payload_phys);
+ if (error) {
+ pr_info("Inadequate DMA buffer\n");
+ error = -ENOMEM;
+ return error;
+ }
+ auxiliary_virt = mil->auxiliary_virt;
+ auxiliary_phys = mil->auxiliary_phys;
+
+ /* go! */
+ error = gpmi_read_page(this, payload_phys, auxiliary_phys);
+ read_page_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+ if (error) {
+ pr_info("Error in ECC-based read: %d\n", error);
+ goto exit_nfc;
+ }
+
+ /* handle the block mark swapping */
+ mil_handle_block_mark_swapping(this, payload_virt, auxiliary_virt);
+
+ /* Loop over status bytes, accumulating ECC status. */
+ failed = 0;
+ corrected = 0;
+ status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
+
+ for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+ if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
+ continue;
+
+ if (*status == STATUS_UNCORRECTABLE) {
+ failed++;
+ continue;
+ }
+ corrected += *status;
+ }
+
+ /*
+ * Propagate ECC status to the owning MTD only when failed or
+ * corrected times nearly reaches our ECC correction threshold.
+ */
+ if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
+ mtd->ecc_stats.failed += failed;
+ mtd->ecc_stats.corrected += corrected;
+ }
+
+ /*
+ * It's time to deliver the OOB bytes. See mil_ecc_read_oob() for
+ * details about our policy for delivering the OOB.
+ *
+ * We fill the caller's buffer with set bits, and then copy the block
+ * mark to th caller's buffer. Note that, if block mark swapping was
+ * necessary, it has already been done, so we can rely on the first
+ * byte of the auxiliary buffer to contain the block mark.
+ */
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+ nand->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
+
+ read_page_swap_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+exit_nfc:
+ return error;
+}
+
+static void mil_ecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *nand, const uint8_t *buf)
+{
+ struct gpmi_nand_data *this = nand->priv;
+ struct bch_geometry *nfc_geo = &this->bch_geometry;
+ struct mil *mil = &this->mil;
+ const void *payload_virt;
+ dma_addr_t payload_phys;
+ const void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+ int error;
+
+ logio(GPMI_DEBUG_ECC_WRITE);
+ if (this->swap_block_mark) {
+ /*
+ * If control arrives here, we're doing block mark swapping.
+ * Since we can't modify the caller's buffers, we must copy them
+ * into our own.
+ */
+ memcpy(mil->payload_virt, buf, mtd->writesize);
+ payload_virt = mil->payload_virt;
+ payload_phys = mil->payload_phys;
+
+ memcpy(mil->auxiliary_virt, nand->oob_poi,
+ nfc_geo->auxiliary_size_in_bytes);
+ auxiliary_virt = mil->auxiliary_virt;
+ auxiliary_phys = mil->auxiliary_phys;
+
+ /* Handle block mark swapping. */
+ mil_handle_block_mark_swapping(this,
+ (void *) payload_virt, (void *) auxiliary_virt);
+ } else {
+ /*
+ * If control arrives here, we're not doing block mark swapping,
+ * so we can to try and use the caller's buffers.
+ */
+ error = send_page_prepare(this,
+ buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ &payload_virt, &payload_phys);
+ if (error) {
+ pr_info("Inadequate payload DMA buffer\n");
+ return;
+ }
+
+ error = send_page_prepare(this,
+ nand->oob_poi, mtd->oobsize,
+ mil->auxiliary_virt, mil->auxiliary_phys,
+ nfc_geo->auxiliary_size_in_bytes,
+ &auxiliary_virt, &auxiliary_phys);
+ if (error) {
+ pr_info("Inadequate auxiliary DMA buffer\n");
+ goto exit_auxiliary;
+ }
+ }
+
+ /* Ask the NFC. */
+ error = gpmi_send_page(this, payload_phys, auxiliary_phys);
+ if (error)
+ pr_info("Error in ECC-based write: %d\n", error);
+
+ if (!this->swap_block_mark) {
+ send_page_end(this, nand->oob_poi, mtd->oobsize,
+ mil->auxiliary_virt, mil->auxiliary_phys,
+ nfc_geo->auxiliary_size_in_bytes,
+ auxiliary_virt, auxiliary_phys);
+exit_auxiliary:
+ send_page_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+ }
+}
+
+static int mil_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ register struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+ struct mil *mil = &this->mil;
+ int ret;
+
+ mil->marking_a_bad_block = true;
+ ret = mil->hooked_block_markbad(mtd, ofs);
+ mil->marking_a_bad_block = false;
+ return ret;
+}
+
+/**
+ * mil_ecc_read_oob() - MTD Interface ecc.read_oob().
+ *
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ * write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ * true state of the block mark, no matter where that block mark appears in
+ * the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ * return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ * page, using the conventional definition of which bytes are data and which
+ * are OOB. This gives the caller a way to see the actual, physical bytes
+ * in the page, without the distortions applied by our ECC engine.
+ *
+ *
+ * What we do for this specific read operation depends on two questions:
+ *
+ * 1) Are we doing a "raw" read, or an ECC-based read?
+ *
+ * 2) Are we using block mark swapping or transcription?
+ *
+ * There are four cases, illustrated by the following Karnaugh map:
+ *
+ * | Raw | ECC-based |
+ * -------------+-------------------------+-------------------------+
+ * | Read the conventional | |
+ * | OOB at the end of the | |
+ * Swapping | page and return it. It | |
+ * | contains exactly what | |
+ * | we want. | Read the block mark and |
+ * -------------+-------------------------+ return it in a buffer |
+ * | Read the conventional | full of set bits. |
+ * | OOB at the end of the | |
+ * | page and also the block | |
+ * Transcribing | mark in the metadata. | |
+ * | Copy the block mark | |
+ * | into the first byte of | |
+ * | the OOB. | |
+ * -------------+-------------------------+-------------------------+
+ *
+ * Note that we break rule #4 in the Transcribing/Raw case because we're not
+ * giving an accurate view of the actual, physical bytes in the page (we're
+ * overwriting the block mark). That's OK because it's more important to follow
+ * rule #2.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * @mtd: A pointer to the owning MTD.
+ * @nand: A pointer to the owning NAND Flash MTD.
+ * @page: The page number to read.
+ * @sndcmd: Indicates this function should send a command to the chip before
+ * reading the out-of-band bytes. This is only false for small page
+ * chips that support auto-increment.
+ */
+static int mil_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page, int sndcmd)
+{
+ struct gpmi_nand_data *this = nand->priv;
+
+ /* clear the OOB buffer */
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+
+ /* Read out the conventional OOB. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+
+ /*
+ * Now, we want to make sure the block mark is correct. In the
+ * Swapping/Raw case, we already have it. Otherwise, we need to
+ * explicitly read it.
+ */
+ if (!this->swap_block_mark) {
+ /* Read the block mark into the first byte of the OOB buffer. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+ nand->oob_poi[0] = nand->read_byte(mtd);
+ }
+
+ /*
+ * Return true, indicating that the next call to this function must send
+ * a command.
+ */
+ return true;
+}
+
+static int mil_ecc_write_oob(struct mtd_info *mtd,
+ struct nand_chip *nand, int page)
+{
+ struct gpmi_nand_data *this = nand->priv;
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+ uint8_t *block_mark;
+ int block_mark_column;
+ int status;
+ int error = 0;
+
+ /* Only marking a block bad is permitted to write the OOB. */
+ if (!mil->marking_a_bad_block) {
+ dev_emerg(dev, "This driver doesn't support writing the OOB\n");
+ WARN_ON(1);
+ error = -EIO;
+ goto exit;
+ }
+
+ if (this->swap_block_mark)
+ block_mark_column = mtd->writesize;
+ else
+ block_mark_column = 0;
+
+ /* Write the block mark. */
+ block_mark = mil->data_buffer_dma;
+ block_mark[0] = 0; /* bad block marker */
+
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, block_mark_column, page);
+ nand->write_buf(mtd, block_mark, 1);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = nand->waitfunc(mtd, nand);
+
+ /* Check if it worked. */
+ if (status & NAND_STATUS_FAIL)
+ error = -EIO;
+exit:
+ return error;
+}
+
+/**
+ * mil_block_bad - Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * We take away the in-memory BBT when the user sets the "ignorebad" parameter,
+ * which indicates that all blocks should be reported good.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ *
+ * @mtd: Ignored.
+ * @ofs: Ignored.
+ * @getchip: Ignored.
+ */
+static int mil_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this)
+{
+ struct boot_rom_geometry *geometry = &this->rom_geometry;
+
+ /*
+ * Set the boot block stride size.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->stride_size_in_pages = 64;
+
+ /*
+ * Set the search area stride exponent.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->search_area_stride_exponent = 2;
+
+ if (gpmi_debug & GPMI_DEBUG_INIT)
+ pr_info("stride size in page : %d, search areas : %d\n",
+ geometry->stride_size_in_pages,
+ geometry->search_area_stride_exponent);
+ return 0;
+}
+
+static const char *fingerprint = "STMP";
+static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this)
+{
+ struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ unsigned int search_area_size_in_strides;
+ unsigned int stride;
+ unsigned int page;
+ loff_t byte;
+ uint8_t *buffer = nand->buffers->databuf;
+ int saved_chip_number;
+ int found_an_ncb_fingerprint = false;
+
+ /* Compute the number of strides in a search area. */
+ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+
+ /* Select chip 0. */
+ saved_chip_number = mil->current_chip;
+ nand->select_chip(mtd, 0);
+
+ /*
+ * Loop through the first search area, looking for the NCB fingerprint.
+ */
+ pr_info("Scanning for an NCB fingerprint...\n");
+
+ for (stride = 0; stride < search_area_size_in_strides; stride++) {
+ /* Compute the page and byte addresses. */
+ page = stride * rom_geo->stride_size_in_pages;
+ byte = page * mtd->writesize;
+
+ pr_info(" Looking for a fingerprint in page 0x%x\n", page);
+
+ /*
+ * Read the NCB fingerprint. The fingerprint is four bytes long
+ * and starts in the 12th byte of the page.
+ */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
+ nand->read_buf(mtd, buffer, strlen(fingerprint));
+
+ /* Look for the fingerprint. */
+ if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
+ found_an_ncb_fingerprint = true;
+ break;
+ }
+
+ }
+
+ /* Deselect chip 0. */
+ nand->select_chip(mtd, saved_chip_number);
+
+ if (found_an_ncb_fingerprint)
+ pr_info(" Found a fingerprint\n");
+ else
+ pr_info(" No fingerprint found\n");
+ return found_an_ncb_fingerprint;
+}
+
+/* Writes a transcription stamp. */
+static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this)
+{
+ struct device *dev = this->dev;
+ struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ unsigned int block_size_in_pages;
+ unsigned int search_area_size_in_strides;
+ unsigned int search_area_size_in_pages;
+ unsigned int search_area_size_in_blocks;
+ unsigned int block;
+ unsigned int stride;
+ unsigned int page;
+ loff_t byte;
+ uint8_t *buffer = nand->buffers->databuf;
+ int saved_chip_number;
+ int status;
+
+ /* Compute the search area geometry. */
+ block_size_in_pages = mtd->erasesize / mtd->writesize;
+ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+ search_area_size_in_pages = search_area_size_in_strides *
+ rom_geo->stride_size_in_pages;
+ search_area_size_in_blocks =
+ (search_area_size_in_pages + (block_size_in_pages - 1)) /
+ block_size_in_pages;
+
+ pr_info("-------------------------------------------\n");
+ pr_info("Search Area Geometry\n");
+ pr_info("-------------------------------------------\n");
+ pr_info("Search Area in Blocks : %u\n", search_area_size_in_blocks);
+ pr_info("Search Area in Strides: %u\n", search_area_size_in_strides);
+ pr_info("Search Area in Pages : %u\n", search_area_size_in_pages);
+
+ /* Select chip 0. */
+ saved_chip_number = mil->current_chip;
+ nand->select_chip(mtd, 0);
+
+ /* Loop over blocks in the first search area, erasing them. */
+ pr_info("Erasing the search area...\n");
+
+ for (block = 0; block < search_area_size_in_blocks; block++) {
+ /* Compute the page address. */
+ page = block * block_size_in_pages;
+
+ /* Erase this block. */
+ pr_info(" Erasing block 0x%x\n", block);
+ nand->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+ nand->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+ /* Wait for the erase to finish. */
+ status = nand->waitfunc(mtd, nand);
+ if (status & NAND_STATUS_FAIL)
+ dev_err(dev, "[%s] Erase failed.\n", __func__);
+ }
+
+ /* Write the NCB fingerprint into the page buffer. */
+ memset(buffer, ~0, mtd->writesize);
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+ memcpy(buffer + 12, fingerprint, strlen(fingerprint));
+
+ /* Loop through the first search area, writing NCB fingerprints. */
+ pr_info("Writing NCB fingerprints...\n");
+ for (stride = 0; stride < search_area_size_in_strides; stride++) {
+ /* Compute the page and byte addresses. */
+ page = stride * rom_geo->stride_size_in_pages;
+ byte = page * mtd->writesize;
+
+ /* Write the first page of the current stride. */
+ pr_info(" Writing an NCB fingerprint in page 0x%x\n", page);
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+ nand->ecc.write_page_raw(mtd, nand, buffer);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ /* Wait for the write to finish. */
+ status = nand->waitfunc(mtd, nand);
+ if (status & NAND_STATUS_FAIL)
+ dev_err(dev, "[%s] Write failed.\n", __func__);
+ }
+
+ /* Deselect chip 0. */
+ nand->select_chip(mtd, saved_chip_number);
+ return 0;
+}
+
+static int __devinit mx23_boot_init(struct gpmi_nand_data *this)
+{
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+ struct nand_chip *nand = &mil->nand;
+ struct mtd_info *mtd = &mil->mtd;
+ unsigned int block_count;
+ unsigned int block;
+ int chip;
+ int page;
+ loff_t byte;
+ uint8_t block_mark;
+ int error = 0;
+
+ /*
+ * If control arrives here, we can't use block mark swapping, which
+ * means we're forced to use transcription. First, scan for the
+ * transcription stamp. If we find it, then we don't have to do
+ * anything -- the block marks are already transcribed.
+ */
+ if (mx23_check_transcription_stamp(this))
+ return 0;
+
+ /*
+ * If control arrives here, we couldn't find a transcription stamp, so
+ * so we presume the block marks are in the conventional location.
+ */
+ pr_info("Transcribing bad block marks...\n");
+
+ /* Compute the number of blocks in the entire medium. */
+ block_count = nand->chipsize >> nand->phys_erase_shift;
+
+ /*
+ * Loop over all the blocks in the medium, transcribing block marks as
+ * we go.
+ */
+ for (block = 0; block < block_count; block++) {
+ /*
+ * Compute the chip, page and byte addresses for this block's
+ * conventional mark.
+ */
+ chip = block >> (nand->chip_shift - nand->phys_erase_shift);
+ page = block << (nand->phys_erase_shift - nand->page_shift);
+ byte = block << nand->phys_erase_shift;
+
+ /* Select the chip. */
+ nand->select_chip(mtd, chip);
+
+ /* Send the command to read the conventional block mark. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+
+ /* Read the conventional block mark. */
+ block_mark = nand->read_byte(mtd);
+
+ /*
+ * Check if the block is marked bad. If so, we need to mark it
+ * again, but this time the result will be a mark in the
+ * location where we transcribe block marks.
+ *
+ * Notice that we have to explicitly set the marking_a_bad_block
+ * member before we call through the block_markbad function
+ * pointer in the owning struct nand_chip. If we could call
+ * though the block_markbad function pointer in the owning
+ * struct mtd_info, which we have hooked, then this would be
+ * taken care of for us. Unfortunately, we can't because that
+ * higher-level code path will do things like consulting the
+ * in-memory bad block table -- which doesn't even exist yet!
+ * So, we have to call at a lower level and handle some details
+ * ourselves.
+ */
+ if (block_mark != 0xff) {
+ pr_info("Transcribing mark in block %u\n", block);
+ mil->marking_a_bad_block = true;
+ error = nand->block_markbad(mtd, byte);
+ mil->marking_a_bad_block = false;
+ if (error)
+ dev_err(dev, "Failed to mark block bad with "
+ "error %d\n", error);
+ }
+
+ /* Deselect the chip. */
+ nand->select_chip(mtd, -1);
+ }
+
+ /* Write the stamp that indicates we've transcribed the block marks. */
+ mx23_write_transcription_stamp(this);
+ return 0;
+}
+
+static int __devinit nand_boot_init(struct gpmi_nand_data *this)
+{
+ nand_boot_set_geometry(this);
+
+ /* This is ROM arch-specific initilization before the BBT scanning. */
+ if (GPMI_IS_MX23(this))
+ return mx23_boot_init(this);
+ return 0;
+}
+
+static void show_bch_geometry(struct bch_geometry *geo)
+{
+ pr_info("---------------------------------------\n");
+ pr_info(" BCH Geometry\n");
+ pr_info("---------------------------------------\n");
+ pr_info("ECC Algorithm : %s\n", geo->ecc_algorithm);
+ pr_info("ECC Strength : %u\n", geo->ecc_strength);
+ pr_info("Page Size in Bytes : %u\n", geo->page_size_in_bytes);
+ pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
+ pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
+ pr_info("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
+ pr_info("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes);
+ pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
+ pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
+ pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
+ pr_info("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
+}
+
+static int __devinit mil_set_geometry(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ int error;
+
+ /* Free the temporary DMA memory for reading ID. */
+ mil_free_dma_buffer(this);
+
+ /* Set up the NFC geometry which is used by BCH. */
+ error = bch_set_geometry(this);
+ if (error) {
+ pr_info("set geometry error : %d\n", error);
+ return error;
+ }
+ if (gpmi_debug & GPMI_DEBUG_INIT)
+ show_bch_geometry(geo);
+
+ /* Alloc the new DMA buffers according to the pagesize and oobsize */
+ return mil_alloc_dma_buffer(this);
+}
+
+static int mil_pre_bbt_scan(struct gpmi_nand_data *this)
+{
+ struct nand_chip *nand = &this->mil.nand;
+ struct mtd_info *mtd = &this->mil.mtd;
+ struct nand_ecclayout *layout = nand->ecc.layout;
+ int error;
+
+ /* fix the ECC layout before the scanning */
+ layout->eccbytes = 0;
+ layout->oobavail = mtd->oobsize;
+ layout->oobfree[0].offset = 0;
+ layout->oobfree[0].length = mtd->oobsize;
+
+ mtd->oobavail = nand->ecc.layout->oobavail;
+
+ /* Set up swap block-mark, must be set before the mil_set_geometry() */
+ if (GPMI_IS_MX23(this))
+ this->swap_block_mark = false;
+ else
+ this->swap_block_mark = true;
+
+ /* Set up the medium geometry */
+ error = mil_set_geometry(this);
+ if (error)
+ return error;
+
+ /* extra init : enable the TOGGLE or ONFI. */
+
+ /* NAND boot init, depends on the mil_set_geometry(). */
+ return nand_boot_init(this);
+}
+
+static int mil_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nand_data *this = nand->priv;
+ int error;
+
+ /* Prepare for the BBT scan. */
+ error = mil_pre_bbt_scan(this);
+ if (error)
+ return error;
+
+ /* use the default BBT implementation */
+ return nand_default_bbt(mtd);
+}
+
+static const char *cmd_parse[] = {"cmdlinepart", NULL};
+static int __devinit mil_partitions_init(struct gpmi_nand_data *this)
+{
+ struct gpmi_nand_platform_data *pdata = this->pdata;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+
+ /* use the command line for simple partitions layout */
+ mil->partition_count = parse_mtd_partitions(mtd, cmd_parse,
+ &mil->partitions, 0);
+ if (mil->partition_count)
+ return mtd_device_register(mtd, mil->partitions,
+ mil->partition_count);
+
+ /* The complicated partitions layout uses this. */
+ if (pdata->partitions && pdata->partition_count > 0)
+ return mtd_device_register(mtd, pdata->partitions,
+ pdata->partition_count);
+ return mtd_device_register(mtd, NULL, 0);
+}
+
+static void mil_partitions_exit(struct gpmi_nand_data *this)
+{
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+
+ mtd_device_unregister(mtd);
+ kfree(mil->partitions);
+ mil->partition_count = 0;
+}
+
+/* Initializes the MTD Interface Layer */
+static int __devinit gpmi_nfc_mil_init(struct gpmi_nand_data *this)
+{
+ struct gpmi_nand_platform_data *pdata = this->pdata;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ int error;
+
+ /* Initialize MIL data */
+ mil->current_chip = -1;
+ mil->command_length = 0;
+ mil->page_buffer_virt = NULL;
+ mil->page_buffer_size = 0;
+
+ /* Initialize the MTD data structures */
+ mtd->priv = nand;
+ mtd->name = "gpmi-nand";
+ mtd->owner = THIS_MODULE;
+ nand->priv = this;
+
+ /* Controls */
+ nand->select_chip = mil_select_chip;
+ nand->cmd_ctrl = mil_cmd_ctrl;
+ nand->dev_ready = mil_dev_ready;
+
+ /*
+ * Low-level I/O :
+ * We don't support a 16-bit NAND Flash bus,
+ * so we don't implement read_word.
+ */
+ nand->read_byte = mil_read_byte;
+ nand->read_buf = mil_read_buf;
+ nand->write_buf = mil_write_buf;
+
+ /* ECC-aware I/O */
+ nand->ecc.read_page = mil_ecc_read_page;
+ nand->ecc.write_page = mil_ecc_write_page;
+
+ /* High-level I/O */
+ nand->ecc.read_oob = mil_ecc_read_oob;
+ nand->ecc.write_oob = mil_ecc_write_oob;
+
+ /* Bad Block Management */
+ nand->block_bad = mil_block_bad;
+ nand->scan_bbt = mil_scan_bbt;
+ nand->badblock_pattern = &gpmi_bbt_descr;
+
+ /* Disallow partial page writes */
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+ /*
+ * Tell the NAND Flash MTD system that we'll be handling ECC with our
+ * own hardware. It turns out that we still have to fill in the ECC size
+ * because the MTD code will divide by it -- even though it doesn't
+ * actually care.
+ */
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.size = 1;
+
+ /* use our layout */
+ nand->ecc.layout = &mil->oob_layout;
+
+ /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
+ this->bch_geometry.payload_size_in_bytes = 1024;
+ this->bch_geometry.auxiliary_size_in_bytes = 128;
+ error = mil_alloc_dma_buffer(this);
+ if (error)
+ goto exit_dma_allocation;
+
+ printk(KERN_INFO "GPMI-NFC : Scanning for NAND Flash chips...\n");
+ error = nand_scan(mtd, pdata->max_chip_count);
+ if (error) {
+ pr_info("Chip scan failed\n");
+ goto exit_nand_scan;
+ }
+
+ /* Take over the management of the OOB */
+ mil->hooked_block_markbad = mtd->block_markbad;
+ mtd->block_markbad = mil_hook_block_markbad;
+
+ /* Construct partitions as necessary. */
+ error = mil_partitions_init(this);
+ if (error)
+ goto exit_partitions;
+ return 0;
+
+exit_partitions:
+ nand_release(&mil->mtd);
+exit_nand_scan:
+ mil_free_dma_buffer(this);
+exit_dma_allocation:
+ return error;
+}
+
+void gpmi_nand_mil_exit(struct gpmi_nand_data *this)
+{
+ struct mil *mil = &this->mil;
+
+ mil_partitions_exit(this);
+ nand_release(&mil->mtd);
+ mil_free_dma_buffer(this);
+}
+
+static int __devinit gpmi_nand_probe(struct platform_device *pdev)
+{
+ struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
+ struct gpmi_nand_data *this;
+ int error;
+
+ this = kzalloc(sizeof(*this), GFP_KERNEL);
+ if (!this) {
+ pr_info("Failed to allocate per-device memory\n");
+ return -ENOMEM;
+ }
+
+ /* Set up our data structures. */
+ platform_set_drvdata(pdev, this);
+ this->pdev = pdev;
+ this->dev = &pdev->dev;
+ this->pdata = pdata;
+
+ /* setup the platform */
+ if (pdata->platform_init) {
+ error = pdata->platform_init();
+ if (error)
+ goto platform_init_error;
+ }
+
+ /* Acquire the resources we need. */
+ error = acquire_resources(this);
+ if (error)
+ goto exit_acquire_resources;
+
+ /* Set up the GPMI/BCH hardware. */
+ error = init_hardware(this);
+ if (error)
+ goto exit_nfc_init;
+
+ /* Initialize the MTD Interface Layer. */
+ error = gpmi_nfc_mil_init(this);
+ if (error)
+ goto exit_mil_init;
+
+ manage_sysfs_files(this, true);
+ return 0;
+
+exit_mil_init:
+exit_nfc_init:
+ release_resources(this);
+platform_init_error:
+exit_acquire_resources:
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return error;
+}
+
+static int __exit gpmi_nand_remove(struct platform_device *pdev)
+{
+ struct gpmi_nand_data *this = platform_get_drvdata(pdev);
+
+ manage_sysfs_files(this, false);
+ gpmi_nand_mil_exit(this);
+ release_resources(this);
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return 0;
+}
+
+static const struct platform_device_id gpmi_ids[] = {
+ {
+ .name = "imx23-gpmi-nand",
+ .driver_data = IS_MX23,
+ }, {
+ .name = "imx28-gpmi-nand",
+ .driver_data = IS_MX28,
+ }, {},
+};
+
+/* This structure represents this driver to the platform management system. */
+static struct platform_driver gpmi_nand_driver = {
+ .driver = {
+ .name = "gpmi-nand",
+ },
+ .probe = gpmi_nand_probe,
+ .remove = __exit_p(gpmi_nand_remove),
+ .id_table = gpmi_ids,
+};
+
+static int __init gpmi_nand_init(void)
+{
+ int err;
+
+ if (!enable_gpmi_nand)
+ return 0;
+
+ err = platform_driver_register(&gpmi_nand_driver);
+ if (err == 0)
+ printk(KERN_INFO "GPMI NFC driver registered. (IMX)\n");
+ else
+ pr_err("i.MX GPMI NFC driver registration failed\n");
+ return err;
+}
+
+static void __exit gpmi_nand_exit(void)
+{
+ platform_driver_unregister(&gpmi_nand_driver);
+}
+
+static int __init gpmi_nand_setup(char *__unused)
+{
+ enable_gpmi_nand = true;
+ return 1;
+}
+__setup("gpmi_nand", gpmi_nand_setup);
+
+static int __init gpmi_debug_setup(char *__unused)
+{
+ gpmi_debug = GPMI_DEBUG_INIT;
+ enable_gpmi_nand = true;
+ return 1;
+}
+__setup("gpmi_debug_init", gpmi_debug_setup);
+
+module_init(gpmi_nand_init);
+module_exit(gpmi_nand_exit);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
new file mode 100644
index 0000000..cc1aee1
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
@@ -0,0 +1,390 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H
+#define __DRIVERS_MTD_NAND_GPMI_NAND_H
+
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/concat.h>
+#include <linux/dmaengine.h>
+#include <asm/sizes.h>
+
+#include <mach/common.h>
+#include <mach/dma.h>
+#include <linux/mtd/gpmi-nand.h>
+#include <mach/system.h>
+#include <mach/clock.h>
+
+/* The collection of resources the driver needs. */
+struct resources {
+ void *gpmi_regs;
+ void *bch_regs;
+ unsigned int bch_low_interrupt;
+ unsigned int bch_high_interrupt;
+ unsigned int dma_low_channel;
+ unsigned int dma_high_channel;
+ struct clk *clock;
+};
+
+/**
+ * struct mil - State for the MTD Interface Layer.
+ *
+ * @nand: The NAND Flash MTD data structure that represents
+ * the NAND Flash medium.
+ * @mtd: The MTD data structure that represents the NAND
+ * Flash medium.
+ * @oob_layout: A structure that describes how bytes are laid out
+ * in the OOB.
+ * @partitions: A pointer to a set of partitions.
+ * @partition_count: The number of partitions.
+ * @current_chip: The chip currently selected by the NAND Fash MTD
+ * code. A negative value indicates that no chip is
+ * selected.
+ * @command_length: The length of the command that appears in the
+ * command buffer (see cmd_virt, below).
+ * @ignore_bad_block_marks: Indicates we are ignoring bad block marks.
+ * @saved_bbt: A saved pointer to the in-memory NAND Flash MTD bad
+ * block table. See show_device_ignorebad() for more
+ * details.
+ * @marking_a_bad_block: Indicates the caller is marking a bad block. See
+ * mil_ecc_write_oob() for details.
+ * @hooked_block_markbad: A pointer to the block_markbad() function we
+ * we "hooked." See mil_ecc_write_oob() for details.
+ * @upper_buf: The buffer passed from upper layer.
+ * @upper_len: The buffer len passed from upper layer.
+ * @direct_dma_map_ok: Is the direct DMA map is good for the upper_buf?
+ * @cmd_sgl/cmd_buffer: For NAND command.
+ * @data_sgl/data_buffer_dma:For NAND DATA ops.
+ * @page_buffer_virt: A pointer to a DMA-coherent buffer we use for
+ * reading and writing pages. This buffer includes
+ * space for both the payload data and the auxiliary
+ * data (including status bytes, but not syndrome
+ * bytes).
+ * @page_buffer_phys: The physical address for the page_buffer_virt
+ * buffer.
+ * @page_buffer_size: The size of the page buffer.
+ * @payload_virt: A pointer to a location in the page buffer used
+ * for payload bytes. The size of this buffer is
+ * determined by struct bch_geometry.
+ * @payload_phys: The physical address for payload_virt.
+ * @auxiliary_virt: A pointer to a location in the page buffer used
+ * for auxiliary bytes. The size of this buffer is
+ * determined by struct bch_geometry.
+ * @auxiliary_phys: The physical address for auxiliary_virt.
+ */
+struct mil {
+ /* MTD Data Structures */
+ struct nand_chip nand;
+ struct mtd_info mtd;
+ struct nand_ecclayout oob_layout;
+
+ /* Partitions*/
+ struct mtd_partition *partitions;
+ unsigned int partition_count;
+
+ /* General-use Variables */
+ int current_chip;
+ unsigned int command_length;
+ int ignore_bad_block_marks;
+ void *saved_bbt;
+
+ /* MTD Function Pointer Hooks */
+ int marking_a_bad_block;
+ int (*hooked_block_markbad)(struct mtd_info *mtd,
+ loff_t ofs);
+
+ /* from upper layer */
+ uint8_t *upper_buf;
+ int upper_len;
+
+ /* DMA */
+ bool direct_dma_map_ok;
+
+ struct scatterlist cmd_sgl;
+ char *cmd_buffer;
+
+ struct scatterlist data_sgl;
+ char *data_buffer_dma;
+
+ void *page_buffer_virt;
+ dma_addr_t page_buffer_phys;
+ unsigned int page_buffer_size;
+
+ void *payload_virt;
+ dma_addr_t payload_phys;
+
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+};
+
+/**
+ * struct bch_geometry - NFC geometry description.
+ *
+ * This structure describes the NFC's view of the medium geometry.
+ *
+ * @ecc_algorithm: The human-readable name of the ECC algorithm
+ * (e.g., "Reed-Solomon" or "BCH").
+ * @ecc_strength: A number that describes the strength of the ECC
+ * algorithm.
+ * @page_size_in_bytes: The size, in bytes, of a physical page, including
+ * both data and OOB.
+ * @metadata_size_in_bytes: The size, in bytes, of the metadata.
+ * @ecc_chunk_size_in_bytes: The size, in bytes, of a single ECC chunk. Note
+ * the first chunk in the page includes both data and
+ * metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count: The number of ECC chunks in the page,
+ * @payload_size_in_bytes: The size, in bytes, of the payload buffer.
+ * @auxiliary_size_in_bytes: The size, in bytes, of the auxiliary buffer.
+ * @auxiliary_status_offset: The offset into the auxiliary buffer at which
+ * the ECC status appears.
+ * @block_mark_byte_offset: The byte offset in the ECC-based page view at
+ * which the underlying physical block mark appears.
+ * @block_mark_bit_offset: The bit offset into the ECC-based page view at
+ * which the underlying physical block mark appears.
+ */
+struct bch_geometry {
+ char *ecc_algorithm;
+ unsigned int ecc_strength;
+ unsigned int page_size_in_bytes;
+ unsigned int metadata_size_in_bytes;
+ unsigned int ecc_chunk_size_in_bytes;
+ unsigned int ecc_chunk_count;
+ unsigned int payload_size_in_bytes;
+ unsigned int auxiliary_size_in_bytes;
+ unsigned int auxiliary_status_offset;
+ unsigned int block_mark_byte_offset;
+ unsigned int block_mark_bit_offset;
+};
+
+/**
+ * struct boot_rom_geometry - Boot ROM geometry description.
+ *
+ * @stride_size_in_pages: The size of a boot block stride, in pages.
+ * @search_area_stride_exponent: The logarithm to base 2 of the size of a
+ * search area in boot block strides.
+ */
+struct boot_rom_geometry {
+ unsigned int stride_size_in_pages;
+ unsigned int search_area_stride_exponent;
+};
+
+/* DMA operations types */
+enum dma_ops_type {
+ DMA_FOR_COMMAND = 1,
+ DMA_FOR_READ_DATA,
+ DMA_FOR_WRITE_DATA,
+ DMA_FOR_READ_ECC_PAGE,
+ DMA_FOR_WRITE_ECC_PAGE
+};
+
+/**
+ * This structure contains the fundamental timing attributes for NAND.
+ *
+ * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the
+ * maximum of tDS and tWP. A negative value
+ * indicates this characteristic isn't known.
+ * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the
+ * maximum of tDH, tWH and tREH. A negative value
+ * indicates this characteristic isn't known.
+ * @address_setup_in_ns: The address setup time, in nanoseconds. Usually
+ * the maximum of tCLS, tCS and tALS. A negative
+ * value indicates this characteristic isn't known.
+ * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value
+ * indicates this characteristic isn't known.
+ * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ */
+struct nand_timing {
+ int8_t data_setup_in_ns;
+ int8_t data_hold_in_ns;
+ int8_t address_setup_in_ns;
+ int8_t gpmi_sample_delay_in_ns;
+ int8_t tREA_in_ns;
+ int8_t tRLOH_in_ns;
+ int8_t tRHOH_in_ns;
+};
+
+struct gpmi_nand_data {
+ /* System Interface */
+ struct device *dev;
+ struct platform_device *pdev;
+ struct gpmi_nand_platform_data *pdata;
+
+ /* Resources */
+ struct resources resources;
+
+ /* Flash Hardware */
+ struct nand_timing timing;
+
+ /* BCH */
+ struct bch_geometry bch_geometry;
+ struct completion bch_done;
+
+ /* NAND Boot issue */
+ bool swap_block_mark;
+ struct boot_rom_geometry rom_geometry;
+
+ /* MTD Interface Layer */
+ struct mil mil;
+
+ /* DMA channels */
+#define DMA_CHANS 8
+ struct dma_chan *dma_chans[DMA_CHANS];
+ struct mxs_dma_data dma_data;
+ enum dma_ops_type last_dma_type;
+ enum dma_ops_type dma_type;
+ struct completion dma_done;
+
+ /* private */
+ void *private;
+};
+
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
+ *
+ * This structure contains timing information expressed in a form directly
+ * usable by the GPMI hardware.
+ *
+ * @data_setup_in_cycles: The data setup time, in cycles.
+ * @data_hold_in_cycles: The data hold time, in cycles.
+ * @address_setup_in_cycles: The address setup time, in cycles.
+ * @use_half_periods: Indicates the clock is running slowly, so the
+ * NFC DLL should use half-periods.
+ * @sample_delay_factor: The sample delay factor.
+ */
+struct gpmi_nfc_hardware_timing {
+ uint8_t data_setup_in_cycles;
+ uint8_t data_hold_in_cycles;
+ uint8_t address_setup_in_cycles;
+ bool use_half_periods;
+ uint8_t sample_delay_factor;
+};
+
+/**
+ * struct timing_threshod - timing threshold
+ *
+ * @max_data_setup_cycles: The maximum number of data setup cycles that
+ * can be expressed in the hardware.
+ * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires
+ * for data read internal setup. In the Reference
+ * Manual, see the chapter "High-Speed NAND
+ * Timing" for more details.
+ * @max_sample_delay_factor: The maximum sample delay factor that can be
+ * expressed in the hardware.
+ * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the
+ * sample delay DLL hardware can possibly work
+ * with (the DLL is unusable with longer periods).
+ * If the full-cycle period is greater than HALF
+ * this value, the DLL must be configured to use
+ * half-periods.
+ * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the
+ * DLL can implement.
+ * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
+ * I/O transaction. If no I/O transaction is in
+ * progress, this is the clock frequency during
+ * the most recent I/O transaction.
+ */
+struct timing_threshod {
+ const unsigned int max_chip_count;
+ const unsigned int max_data_setup_cycles;
+ const unsigned int internal_data_setup_in_ns;
+ const unsigned int max_sample_delay_factor;
+ const unsigned int max_dll_clock_period_in_ns;
+ const unsigned int max_dll_delay_in_ns;
+ unsigned long clock_frequency_in_hz;
+
+};
+
+/* Common Services */
+extern int common_nfc_set_geometry(struct gpmi_nand_data *);
+extern struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
+extern void prepare_data_dma(struct gpmi_nand_data *,
+ enum dma_data_direction dr);
+extern int start_dma_without_bch_irq(struct gpmi_nand_data *,
+ struct dma_async_tx_descriptor *);
+extern int start_dma_with_bch_irq(struct gpmi_nand_data *,
+ struct dma_async_tx_descriptor *);
+
+/* GPMI-NAND helper function library */
+extern int gpmi_init(struct gpmi_nand_data *);
+extern void gpmi_clear_bch(struct gpmi_nand_data *);
+extern void gpmi_show_regs(struct gpmi_nand_data *);
+extern int bch_set_geometry(struct gpmi_nand_data *);
+extern int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
+extern int gpmi_send_command(struct gpmi_nand_data *);
+extern void gpmi_begin(struct gpmi_nand_data *);
+extern void gpmi_end(struct gpmi_nand_data *);
+extern int gpmi_read_data(struct gpmi_nand_data *);
+extern int gpmi_send_data(struct gpmi_nand_data *);
+extern int gpmi_send_page(struct gpmi_nand_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+extern int gpmi_read_page(struct gpmi_nand_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+
+/* ONFI or TOGGLE nand */
+bool is_ddr_nand(struct gpmi_nand_data *);
+
+/* for log */
+extern int gpmi_debug;
+#define GPMI_DEBUG_INIT 0x0001
+#define GPMI_DEBUG_READ 0x0002
+#define GPMI_DEBUG_WRITE 0x0004
+#define GPMI_DEBUG_ECC_READ 0x0008
+#define GPMI_DEBUG_ECC_WRITE 0x0010
+#define GPMI_DEBUG_CRAZY 0x0020
+
+#ifdef pr_fmt
+#undef pr_fmt
+#endif
+
+#define pr_fmt(fmt) "[ %s : %.3d ] " fmt, __func__, __LINE__
+
+#define logio(level) \
+ do { \
+ if (gpmi_debug & level) \
+ pr_info("\n"); \
+ } while (0)
+
+/* BCH : Status Block Completion Codes */
+#define STATUS_GOOD 0x00
+#define STATUS_ERASED 0xff
+#define STATUS_UNCORRECTABLE 0xfe
+
+/* Use the platform_id to distinguish different Archs. */
+#define IS_MX23 0x1
+#define IS_MX28 0x2
+#define GPMI_IS_MX23(x) ((x)->pdev->id_entry->driver_data == IS_MX23)
+#define GPMI_IS_MX28(x) ((x)->pdev->id_entry->driver_data == IS_MX28)
+#endif
--
1.7.0.4
More information about the linux-mtd
mailing list