[PATCH 1/6] mtd: denali.c: clean up all the whitespace in the end =

Chuanxiao Dong chuanxiao.dong at intel.com
Mon Jul 26 04:39:53 EDT 2010


of some lines

Signed-off-by: Chuanxiao Dong <chuanxiao.dong at intel.com>
---
 drivers/mtd/nand/denali.c |  292 ++++++++++++++++++++++-------------------=
---
 1 files changed, 146 insertions(+), 146 deletions(-)

diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index ca03428..93cf8da 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -29,7 +29,7 @@

 MODULE_LICENSE("GPL");

-/* We define a module parameter that allows the user to override
+/* We define a module parameter that allows the user to override
  * the hardware and decide what timing mode should be used.
  */
 #define NAND_DEFAULT_TIMINGS   -1
@@ -54,13 +54,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default O=
NFI setting. -1 indicates
                        INTR_STATUS0__RST_COMP | \
                        INTR_STATUS0__ERASE_COMP)

-/* indicates whether or not the internal value for the flash bank is
+/* indicates whether or not the internal value for the flash bank is
    valid or not */
 #define CHIP_SELECT_INVALID    -1

 #define SUPPORT_8BITECC                1

-/* This macro divides two integers and rounds fractional values up
+/* This macro divides two integers and rounds fractional values up
  * to the nearest integer value. */
 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

@@ -83,7 +83,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONF=
I setting. -1 indicates
 #define ADDR_CYCLE     1
 #define STATUS_CYCLE   2

-/* this is a helper macro that allows us to
+/* this is a helper macro that allows us to
  * format the bank into the proper bits for the controller */
 #define BANK(x) ((x) << 24)

@@ -95,12 +95,12 @@ static const struct pci_device_id denali_pci_ids[] =3D =
{
 };


-/* these are static lookup tables that give us easy access to
-   registers in the NAND controller.
+/* these are static lookup tables that give us easy access to
+   registers in the NAND controller.
  */
-static const uint32_t intr_status_addresses[4] =3D {INTR_STATUS0,
-                                                 INTR_STATUS1,
-                                                 INTR_STATUS2,
+static const uint32_t intr_status_addresses[4] =3D {INTR_STATUS0,
+                                                 INTR_STATUS1,
+                                                 INTR_STATUS2,
                                                  INTR_STATUS3};

 static const uint32_t device_reset_banks[4] =3D {DEVICE_RESET__BANK0,
@@ -131,21 +131,21 @@ static uint32_t read_interrupt_status(struct denali_n=
and_info *denali);

 /* This is a wrapper for writing to the denali registers.
  * this allows us to create debug information so we can
- * observe how the driver is programming the device.
+ * observe how the driver is programming the device.
  * it uses standard linux convention for (val, addr) */
 static void denali_write32(uint32_t value, void *addr)
 {
-       iowrite32(value, addr);
+       iowrite32(value, addr);

 #if DEBUG_DENALI
        printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_=
t)addr & 0x1fff));
 #endif
-}
+}

-/* Certain operations for the denali NAND controller use an indexed mode t=
o read/write
-   data. The operation is performed by writing the address value of the co=
mmand to
-   the device memory followed by the data. This function abstracts this co=
mmon
-   operation.
+/* Certain operations for the denali NAND controller use an indexed mode t=
o read/write
+   data. The operation is performed by writing the address value of the co=
mmand to
+   the device memory followed by the data. This function abstracts this co=
mmon
+   operation.
 */
 static void index_addr(struct denali_nand_info *denali, uint32_t address, =
uint32_t data)
 {
@@ -161,7 +161,7 @@ static void index_addr_read_data(struct denali_nand_inf=
o *denali,
        *pdata =3D ioread32(denali->flash_mem + 0x10);
 }

-/* We need to buffer some data for some of the NAND core routines.
+/* We need to buffer some data for some of the NAND core routines.
  * The operations manage buffering that data. */
 static void reset_buf(struct denali_nand_info *denali)
 {
@@ -183,7 +183,7 @@ static void read_status(struct denali_nand_info *denali=
)
        reset_buf(denali);

        /* initiate a device status read */
-       cmd =3D MODE_11 | BANK(denali->flash_bank);
+       cmd =3D MODE_11 | BANK(denali->flash_bank);
        index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
        denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);

@@ -199,7 +199,7 @@ static void read_status(struct denali_nand_info *denali=
)
 static void reset_bank(struct denali_nand_info *denali)
 {
        uint32_t irq_status =3D 0;
-       uint32_t irq_mask =3D reset_complete[denali->flash_bank] |
+       uint32_t irq_mask =3D reset_complete[denali->flash_bank] |
                            operation_timeout[denali->flash_bank];
        int bank =3D 0;

@@ -209,7 +209,7 @@ static void reset_bank(struct denali_nand_info *denali)
        denali_write32(bank, denali->flash_reg + DEVICE_RESET);

        irq_status =3D wait_for_irq(denali, irq_mask);
-
+
        if (irq_status & operation_timeout[denali->flash_bank])
        {
                printk(KERN_ERR "reset bank failed.\n");
@@ -610,7 +610,7 @@ static void get_hynix_nand_para(struct denali_nand_info=
 *denali)
 }

 /* determines how many NAND chips are connected to the controller. Note fo=
r
-   Intel CE4100 devices we don't support more than one device.
+   Intel CE4100 devices we don't support more than one device.
  */
 static void find_valid_banks(struct denali_nand_info *denali)
 {
@@ -641,8 +641,8 @@ static void find_valid_banks(struct denali_nand_info *d=
enali)
        {
                /* Platform limitations of the CE4100 device limit
                 * users to a single chip solution for NAND.
-                 * Multichip support is not enabled.
-                */
+                 * Multichip support is not enabled.
+                */
                if (denali->total_used_banks !=3D 1)
                {
                        printk(KERN_ERR "Sorry, Intel CE4100 only supports =
"
@@ -885,7 +885,7 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_=
info *denali)
        dump_device_info(denali);

        /* If the user specified to override the default timings
-        * with a specific ONFI mode, we apply those changes here.
+        * with a specific ONFI mode, we apply those changes here.
         */
        if (onfi_timing_mode !=3D NAND_DEFAULT_TIMINGS)
        {
@@ -912,7 +912,7 @@ static void NAND_LLD_Enable_Disable_Interrupts(struct d=
enali_nand_info *denali,
  */
 static inline bool is_flash_bank_valid(int flash_bank)
 {
-       return (flash_bank >=3D 0 && flash_bank < 4);
+       return (flash_bank >=3D 0 && flash_bank < 4);
 }

 static void denali_irq_init(struct denali_nand_info *denali)
@@ -948,7 +948,7 @@ static void denali_irq_enable(struct denali_nand_info *=
denali, uint32_t int_mask
 }

 /* This function only returns when an interrupt that this driver cares abo=
ut
- * occurs. This is to reduce the overhead of servicing interrupts
+ * occurs. This is to reduce the overhead of servicing interrupts
  */
 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali=
)
 {
@@ -1003,9 +1003,9 @@ static void print_irq_log(struct denali_nand_info *de=
nali)
 }
 #endif

-/* This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared
- * interrupt.
+/* This is the interrupt service routine. It handles all interrupts
+ * sent to this device. Note that on CE4100, this is a shared
+ * interrupt.
  */
 static irqreturn_t denali_isr(int irq, void *dev_id)
 {
@@ -1015,12 +1015,12 @@ static irqreturn_t denali_isr(int irq, void *dev_id=
)

        spin_lock(&denali->irq_lock);

-       /* check to see if a valid NAND chip has
-         * been selected.
+       /* check to see if a valid NAND chip has
+         * been selected.
         */
        if (is_flash_bank_valid(denali->flash_bank))
        {
-               /* check to see if controller generated
+               /* check to see if controller generated
                 * the interrupt, since this is a shared interrupt */
                if ((irq_status =3D denali_irq_detected(denali)) !=3D 0)
                {
@@ -1078,9 +1078,9 @@ static uint32_t wait_for_irq(struct denali_nand_info =
*denali, uint32_t irq_mask)
                        /* our interrupt was detected */
                        break;
                }
-               else
+               else
                {
-                       /* these are not the interrupts you are looking for=
 -
+                       /* these are not the interrupts you are looking for=
 -
                           need to wait again */
                        spin_unlock_irq(&denali->irq_lock);
 #if DEBUG_DENALI
@@ -1095,7 +1095,7 @@ static uint32_t wait_for_irq(struct denali_nand_info =
*denali, uint32_t irq_mask)
        if (comp_res =3D=3D 0)
        {
                /* timeout */
-               printk(KERN_ERR "timeout occurred, status =3D 0x%x, mask =
=3D 0x%x\n",
+               printk(KERN_ERR "timeout occurred, status =3D 0x%x, mask =
=3D 0x%x\n",
                                intr_status, irq_mask);

                intr_status =3D 0;
@@ -1103,12 +1103,12 @@ static uint32_t wait_for_irq(struct denali_nand_inf=
o *denali, uint32_t irq_mask)
        return intr_status;
 }

-/* This helper function setups the registers for ECC and whether or not
+/* This helper function setups the registers for ECC and whether or not
    the spare area will be transfered. */
-static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_e=
n,
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_e=
n,
                                bool transfer_spare)
 {
-       int ecc_en_flag =3D 0, transfer_spare_flag =3D 0;
+       int ecc_en_flag =3D 0, transfer_spare_flag =3D 0;

        /* set ECC, transfer spare bits if needed */
        ecc_en_flag =3D ecc_en ? ECC_ENABLE__FLAG : 0;
@@ -1119,15 +1119,15 @@ static void setup_ecc_for_xfer(struct denali_nand_i=
nfo *denali, bool ecc_en,
        denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SP=
ARE_REG);
 }

-/* sends a pipeline command operation to the controller. See the Denali NA=
ND
-   controller's user guide for more information (section 4.2.3.6).
+/* sends a pipeline command operation to the controller. See the Denali NA=
ND
+   controller's user guide for more information (section 4.2.3.6).
  */
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool =
ecc_en,
-                                       bool transfer_spare, int access_typ=
e,
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool =
ecc_en,
+                                       bool transfer_spare, int access_typ=
e,
                                        int op)
 {
        int status =3D PASS;
-       uint32_t addr =3D 0x0, cmd =3D 0x0, page_count =3D 1, irq_status =
=3D 0,
+       uint32_t addr =3D 0x0, cmd =3D 0x0, page_count =3D 1, irq_status =
=3D 0,
                 irq_mask =3D 0;

        if (op =3D=3D DENALI_READ) irq_mask =3D INTR_STATUS0__LOAD_COMP;
@@ -1145,32 +1145,32 @@ static int denali_send_pipeline_cmd(struct denali_n=
and_info *denali, bool ecc_en


        /* clear interrupts */
-       clear_interrupts(denali);
+       clear_interrupts(denali);

        addr =3D BANK(denali->flash_bank) | denali->page;

        if (op =3D=3D DENALI_WRITE && access_type !=3D SPARE_ACCESS)
        {
-               cmd =3D MODE_01 | addr;
+               cmd =3D MODE_01 | addr;
                denali_write32(cmd, denali->flash_mem);
        }
        else if (op =3D=3D DENALI_WRITE && access_type =3D=3D SPARE_ACCESS)
        {
                /* read spare area */
-               cmd =3D MODE_10 | addr;
+               cmd =3D MODE_10 | addr;
                index_addr(denali, (uint32_t)cmd, access_type);

-               cmd =3D MODE_01 | addr;
+               cmd =3D MODE_01 | addr;
                denali_write32(cmd, denali->flash_mem);
        }
        else if (op =3D=3D DENALI_READ)
        {
                /* setup page read request for access type */
-               cmd =3D MODE_10 | addr;
+               cmd =3D MODE_10 | addr;
                index_addr(denali, (uint32_t)cmd, access_type);

                /* page 33 of the NAND controller spec indicates we should =
not
-                  use the pipeline commands in Spare area only mode. So we
+                  use the pipeline commands in Spare area only mode. So we
                   don't.
                 */
                if (access_type =3D=3D SPARE_ACCESS)
@@ -1181,8 +1181,8 @@ static int denali_send_pipeline_cmd(struct denali_nan=
d_info *denali, bool ecc_en
                else
                {
                        index_addr(denali, (uint32_t)cmd, 0x2000 | op | pag=
e_count);
-
-                       /* wait for command to be accepted
+
+                       /* wait for command to be accepted
                         * can always use status0 bit as the mask is identi=
cal for each
                         * bank. */
                        irq_status =3D wait_for_irq(denali, irq_mask);
@@ -1204,13 +1204,13 @@ static int denali_send_pipeline_cmd(struct denali_n=
and_info *denali, bool ecc_en
 }

 /* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali, const =
uint8_t *buf,
-                                       int len)
+static int write_data_to_flash_mem(struct denali_nand_info *denali, const =
uint8_t *buf,
+                                       int len)
 {
        uint32_t i =3D 0, *buf32;

-       /* verify that the len is a multiple of 4. see comment in
-        * read_data_from_flash_mem() */
+       /* verify that the len is a multiple of 4. see comment in
+        * read_data_from_flash_mem() */
        BUG_ON((len % 4) !=3D 0);

        /* write the data to the flash memory */
@@ -1219,21 +1219,21 @@ static int write_data_to_flash_mem(struct denali_na=
nd_info *denali, const uint8_
        {
                denali_write32(*buf32++, denali->flash_mem + 0x10);
        }
-       return i*4; /* intent is to return the number of bytes read */
+       return i*4; /* intent is to return the number of bytes read */
 }

 /* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8=
_t *buf,
+static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8=
_t *buf,
                                        int len)
 {
        uint32_t i =3D 0, *buf32;

        /* we assume that len will be a multiple of 4, if not
         * it would be nice to know about it ASAP rather than
-        * have random failures...
-         *
-        * This assumption is based on the fact that this
-        * function is designed to be used to read flash pages,
+        * have random failures...
+         *
+        * This assumption is based on the fact that this
+        * function is designed to be used to read flash pages,
         * which are typically multiples of 4...
         */

@@ -1245,7 +1245,7 @@ static int read_data_from_flash_mem(struct denali_nan=
d_info *denali, uint8_t *bu
        {
                *buf32++ =3D ioread32(denali->flash_mem + 0x10);
        }
-       return i*4; /* intent is to return the number of bytes read */
+       return i*4; /* intent is to return the number of bytes read */
 }

 /* writes OOB data to the device */
@@ -1253,14 +1253,14 @@ static int write_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
 {
        struct denali_nand_info *denali =3D mtd_to_denali(mtd);
        uint32_t irq_status =3D 0;
-       uint32_t irq_mask =3D INTR_STATUS0__PROGRAM_COMP |
+       uint32_t irq_mask =3D INTR_STATUS0__PROGRAM_COMP |
                                                INTR_STATUS0__PROGRAM_FAIL;
        int status =3D 0;

        denali->page =3D page;

-       if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
-                                                       DENALI_WRITE) =3D=
=3D PASS)
+       if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
+                                                       DENALI_WRITE) =3D=
=3D PASS)
        {
                write_data_to_flash_mem(denali, buf, mtd->oobsize);

@@ -1271,7 +1271,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8=
_t *buf, int page)
                spin_unlock_irq(&denali->irq_lock);
 #endif

-
+
                /* wait for operation to complete */
                irq_status =3D wait_for_irq(denali, irq_mask);

@@ -1281,10 +1281,10 @@ static int write_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
                        status =3D -EIO;
                }
        }
-       else
-       {
+       else
+       {
                printk(KERN_ERR "unable to send pipeline command\n");
-               status =3D -EIO;
+               status =3D -EIO;
        }
        return status;
 }
@@ -1300,12 +1300,12 @@ static void read_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
 #if DEBUG_DENALI
        printk("read_oob %d\n", page);
 #endif
-       if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
-                                                       DENALI_READ) =3D=3D=
 PASS)
+       if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+                                                       DENALI_READ) =3D=3D=
 PASS)
        {
-               read_data_from_flash_mem(denali, buf, mtd->oobsize);
+               read_data_from_flash_mem(denali, buf, mtd->oobsize);

-               /* wait for command to be accepted
+               /* wait for command to be accepted
                 * can always use status0 bit as the mask is identical for =
each
                 * bank. */
                irq_status =3D wait_for_irq(denali, irq_mask);
@@ -1319,10 +1319,10 @@ static void read_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
                 * instability with the controller if you do a block erase
                 * and the last transaction was a SPARE_ACCESS. Block erase
                 * is reliable (according to the MTD test infrastructure)
-                * if you are in MAIN_ACCESS.
+                * if you are in MAIN_ACCESS.
                 */
                addr =3D BANK(denali->flash_bank) | denali->page;
-               cmd =3D MODE_10 | addr;
+               cmd =3D MODE_10 | addr;
                index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);

 #if DEBUG_DENALI
@@ -1334,14 +1334,14 @@ static void read_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
        }
 }

-/* this function examines buffers to see if they contain data that
+/* this function examines buffers to see if they contain data that
  * indicate that the buffer is part of an erased region of flash.
  */
 bool is_erased(uint8_t *buf, int len)
 {
        int i =3D 0;
        for (i =3D 0; i < len; i++)
-       {
+       {
                if (buf[i] !=3D 0xFF)
                {
                        return false;
@@ -1358,7 +1358,7 @@ bool is_erased(uint8_t *buf, int len)
 #define ECC_ERR_DEVICE(x)      ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
 #define ECC_LAST_ERR(x)                ((x) & ERR_CORRECTION_INFO__LAST_ER=
R_INFO)

-static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
                        uint8_t *oobbuf, uint32_t irq_status)
 {
        bool check_erased_page =3D false;
@@ -1370,27 +1370,27 @@ static bool handle_ecc(struct denali_nand_info *den=
ali, uint8_t *buf,
                uint32_t err_byte =3D 0, err_sector =3D 0, err_device =3D 0=
;
                uint32_t err_correction_value =3D 0;

-               do
+               do
                {
-                       err_address =3D ioread32(denali->flash_reg +
+                       err_address =3D ioread32(denali->flash_reg +
                                                ECC_ERROR_ADDRESS);
                        err_sector =3D ECC_SECTOR(err_address);
                        err_byte =3D ECC_BYTE(err_address);


-                       err_correction_info =3D ioread32(denali->flash_reg =
+
+                       err_correction_info =3D ioread32(denali->flash_reg =
+
                                                ERR_CORRECTION_INFO);
-                       err_correction_value =3D
+                       err_correction_value =3D
                                ECC_CORRECTION_VALUE(err_correction_info);
                        err_device =3D ECC_ERR_DEVICE(err_correction_info);

                        if (ECC_ERROR_CORRECTABLE(err_correction_info))
                        {
                                /* offset in our buffer is computed as:
-                                  sector number * sector size + offset in
+                                  sector number * sector size + offset in
                                   sector
                                 */
-                               int offset =3D err_sector * ECC_SECTOR_SIZE=
 +
+                               int offset =3D err_sector * ECC_SECTOR_SIZE=
 +
                                                                err_byte;
                                if (offset < denali->mtd.writesize)
                                {
@@ -1407,15 +1407,15 @@ static bool handle_ecc(struct denali_nand_info *den=
ali, uint8_t *buf,
                        }
                        else
                        {
-                               /* if the error is not correctable, need to
+                               /* if the error is not correctable, need to
                                 * look at the page to see if it is an eras=
ed page.
-                                * if so, then it's not a real ECC error */
+                                * if so, then it's not a real ECC error */
                                check_erased_page =3D true;
                        }

-#if DEBUG_DENALI
+#if DEBUG_DENALI
                        printk("Detected ECC error in page %d: err_addr =3D=
 0x%08x,"
-                               " info to fix is 0x%08x\n", denali->page, e=
rr_address,
+                               " info to fix is 0x%08x\n", denali->page, e=
rr_address,
                                err_correction_info);
 #endif
                } while (!ECC_LAST_ERR(err_correction_info));
@@ -1458,9 +1458,9 @@ static void denali_setup_dma(struct denali_nand_info =
*denali, int op)
        index_addr(denali, mode | 0x14000, 0x2400);
 }

-/* writes a page. user specifies type, and this function handles the
+/* writes a page. user specifies type, and this function handles the
    configuration details. */
-static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
                        const uint8_t *buf, bool raw_xfer)
 {
        struct denali_nand_info *denali =3D mtd_to_denali(mtd);
@@ -1470,7 +1470,7 @@ static void write_page(struct mtd_info *mtd, struct n=
and_chip *chip,
        size_t size =3D denali->mtd.writesize + denali->mtd.oobsize;

        uint32_t irq_status =3D 0;
-       uint32_t irq_mask =3D INTR_STATUS0__DMA_CMD_COMP |
+       uint32_t irq_mask =3D INTR_STATUS0__DMA_CMD_COMP |
                                                INTR_STATUS0__PROGRAM_FAIL;

        /* if it is a raw xfer, we want to disable ecc, and send
@@ -1486,15 +1486,15 @@ static void write_page(struct mtd_info *mtd, struct=
 nand_chip *chip,
        if (raw_xfer)
        {
                /* transfer the data to the spare area */
-               memcpy(denali->buf.buf + mtd->writesize,
-                       chip->oob_poi,
-                       mtd->oobsize);
+               memcpy(denali->buf.buf + mtd->writesize,
+                       chip->oob_poi,
+                       mtd->oobsize);
        }

        pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVIC=
E);

        clear_interrupts(denali);
-       denali_enable_dma(denali, true);
+       denali_enable_dma(denali, true);

        denali_setup_dma(denali, DENALI_WRITE);

@@ -1504,21 +1504,21 @@ static void write_page(struct mtd_info *mtd, struct=
 nand_chip *chip,
        if (irq_status =3D=3D 0)
        {
                printk(KERN_ERR "timeout on write_page (type =3D %d)\n", ra=
w_xfer);
-               denali->status =3D
-                  (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_=
FAIL :
+               denali->status =3D
+                  (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_=
FAIL :
                                                             PASS;
        }

-       denali_enable_dma(denali, false);
+       denali_enable_dma(denali, false);
        pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
 }

 /* NAND core entry points */

-/* this is the callback that the NAND core calls to write a page. Since
-   writing a page with ECC or without is similar, all the work is done
+/* this is the callback that the NAND core calls to write a page. Since
+   writing a page with ECC or without is similar, all the work is done
    by write_page above.   */
-static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip=
,
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip=
,
                                const uint8_t *buf)
 {
        /* for regular page writes, we let HW handle all the ECC
@@ -1526,30 +1526,30 @@ static void denali_write_page(struct mtd_info *mtd,=
 struct nand_chip *chip,
        write_page(mtd, chip, buf, false);
 }

-/* This is the callback that the NAND core calls to write a page without E=
CC.
+/* This is the callback that the NAND core calls to write a page without E=
CC.
    raw access is similiar to ECC page writes, so all the work is done in t=
he
-   write_page() function above.
+   write_page() function above.
  */
-static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *=
chip,
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *=
chip,
                                        const uint8_t *buf)
 {
-       /* for raw page writes, we want to disable ECC and simply write
+       /* for raw page writes, we want to disable ECC and simply write
           whatever data is in the buffer. */
        write_page(mtd, chip, buf, true);
 }

-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
                            int page)
 {
-       return write_oob_data(mtd, chip->oob_poi, page);
+       return write_oob_data(mtd, chip->oob_poi, page);
 }

-static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
                           int page, int sndcmd)
 {
        read_oob_data(mtd, chip->oob_poi, page);

-       return 0; /* notify NAND core to send command to
+       return 0; /* notify NAND core to send command to
                    * NAND device. */
 }

@@ -1563,7 +1563,7 @@ static int denali_read_page(struct mtd_info *mtd, str=
uct nand_chip *chip,
        size_t size =3D denali->mtd.writesize + denali->mtd.oobsize;

        uint32_t irq_status =3D 0;
-       uint32_t irq_mask =3D INTR_STATUS0__ECC_TRANSACTION_DONE |
+       uint32_t irq_mask =3D INTR_STATUS0__ECC_TRANSACTION_DONE |
                            INTR_STATUS0__ECC_ERR;
        bool check_erased_page =3D false;

@@ -1581,7 +1581,7 @@ static int denali_read_page(struct mtd_info *mtd, str=
uct nand_chip *chip,
        pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE=
);

        memcpy(buf, denali->buf.buf, mtd->writesize);
-
+
        check_erased_page =3D handle_ecc(denali, buf, chip->oob_poi, irq_st=
atus);
        denali_enable_dma(denali, false);

@@ -1600,7 +1600,7 @@ static int denali_read_page(struct mtd_info *mtd, str=
uct nand_chip *chip,
                        {
                                denali->mtd.ecc_stats.failed++;
                        }
-               }
+               }
        }
        return 0;
 }
@@ -1616,7 +1616,7 @@ static int denali_read_page_raw(struct mtd_info *mtd,=
 struct nand_chip *chip,

        uint32_t irq_status =3D 0;
        uint32_t irq_mask =3D INTR_STATUS0__DMA_CMD_COMP;
-
+
        setup_ecc_for_xfer(denali, false, true);
        denali_enable_dma(denali, true);

@@ -1687,21 +1687,21 @@ static void denali_erase(struct mtd_info *mtd, int =
page)
        printk("erase page: %d\n", page);
 #endif
        /* clear interrupts */
-       clear_interrupts(denali);
+       clear_interrupts(denali);

        /* setup page read request for access type */
        cmd =3D MODE_10 | BANK(denali->flash_bank) | page;
        index_addr(denali, (uint32_t)cmd, 0x1);

        /* wait for erase to complete or failure to occur */
-       irq_status =3D wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
+       irq_status =3D wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
                                        INTR_STATUS0__ERASE_FAIL);

-       denali->status =3D (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_S=
TATUS_FAIL :
+       denali->status =3D (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_S=
TATUS_FAIL :
                                                                 PASS;
 }

-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col=
,
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col=
,
                           int page)
 {
        struct denali_nand_info *denali =3D mtd_to_denali(mtd);
@@ -1710,7 +1710,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsi=
gned int cmd, int col,
        printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
 #endif
        switch (cmd)
-       {
+       {
                case NAND_CMD_PAGEPROG:
                        break;
                case NAND_CMD_STATUS:
@@ -1720,19 +1720,19 @@ static void denali_cmdfunc(struct mtd_info *mtd, un=
signed int cmd, int col,
                        reset_buf(denali);
                        if (denali->flash_bank < denali->total_used_banks)
                        {
-                               /* write manufacturer information into nand
+                               /* write manufacturer information into nand
                                   buffer for NAND subsystem to fetch.
-                                */
+                                */
                                write_byte_to_buf(denali, denali->dev_info.=
wDeviceMaker);
                                write_byte_to_buf(denali, denali->dev_info.=
wDeviceID);
                                write_byte_to_buf(denali, denali->dev_info.=
bDeviceParam0);
                                write_byte_to_buf(denali, denali->dev_info.=
bDeviceParam1);
                                write_byte_to_buf(denali, denali->dev_info.=
bDeviceParam2);
                        }
-                       else
+                       else
                        {
                                int i;
-                               for (i =3D 0; i < 5; i++)
+                               for (i =3D 0; i < 5; i++)
                                        write_byte_to_buf(denali, 0xff);
                        }
                        break;
@@ -1753,7 +1753,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsi=
gned int cmd, int col,
 }

 /* stubs for ECC functions not used by the NAND core */
-static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
                                uint8_t *ecc_code)
 {
        printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
@@ -1761,7 +1761,7 @@ static int denali_ecc_calculate(struct mtd_info *mtd,=
 const uint8_t *data,
        return -EIO;
 }

-static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
                                uint8_t *read_ecc, uint8_t *calc_ecc)
 {
        printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
@@ -1797,9 +1797,9 @@ static void denali_hw_init(struct denali_nand_info *d=
enali)
 static struct nand_ecclayout nand_oob_slc =3D {
        .eccbytes =3D 4,
        .eccpos =3D { 0, 1, 2, 3 }, /* not used */
-       .oobfree =3D {{
-                       .offset =3D ECC_BYTES_SLC,
-                       .length =3D 64 - ECC_BYTES_SLC
+       .oobfree =3D {{
+                       .offset =3D ECC_BYTES_SLC,
+                       .length =3D 64 - ECC_BYTES_SLC
                   }}
 };

@@ -1807,9 +1807,9 @@ static struct nand_ecclayout nand_oob_slc =3D {
 static struct nand_ecclayout nand_oob_mlc_14bit =3D {
        .eccbytes =3D 14,
        .eccpos =3D { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not u=
sed */
-       .oobfree =3D {{
-                       .offset =3D ECC_BYTES_MLC,
-                       .length =3D 64 - ECC_BYTES_MLC
+       .oobfree =3D {{
+                       .offset =3D ECC_BYTES_MLC,
+                       .length =3D 64 - ECC_BYTES_MLC
                   }}
 };

@@ -1842,12 +1842,12 @@ void denali_drv_init(struct denali_nand_info *denal=
i)
        denali->idx =3D 0;

        /* setup interrupt handler */
-       /* the completion object will be used to notify
+       /* the completion object will be used to notify
         * the callee that the interrupt is done */
        init_completion(&denali->complete);

        /* the spinlock will be used to synchronize the ISR
-        * with any element that might be access shared
+        * with any element that might be access shared
         * data (interrupt status) */
        spin_lock_init(&denali->irq_lock);

@@ -1880,9 +1880,9 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)
        }

        if (id->driver_data =3D=3D INTEL_CE4100) {
-               /* Due to a silicon limitation, we can only support
-                * ONFI timing mode 1 and below.
-                */
+               /* Due to a silicon limitation, we can only support
+                * ONFI timing mode 1 and below.
+                */
                if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
                {
                        printk("Intel CE4100 only supports ONFI timing mode=
 1 "
@@ -1918,7 +1918,7 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)
                printk(KERN_ERR "Spectra: no usable DMA configuration\n");
                goto failed_enable;
        }
-       denali->buf.dma_buf =3D pci_map_single(dev, denali->buf.buf, DENALI=
_BUF_SIZE,
+       denali->buf.dma_buf =3D pci_map_single(dev, denali->buf.buf, DENALI=
_BUF_SIZE,
                                         PCI_DMA_BIDIRECTIONAL);

        if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
@@ -1976,7 +1976,7 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)

        NAND_Read_Device_ID(denali);

-       /* MTD supported page sizes vary by kernel. We validate our
+       /* MTD supported page sizes vary by kernel. We validate our
            kernel supports the device here.
         */
        if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSI=
ZE)
@@ -2009,17 +2009,17 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
        denali->nand.read_byte =3D denali_read_byte;
        denali->nand.waitfunc =3D denali_waitfunc;

-       /* scan for NAND devices attached to the controller
+       /* scan for NAND devices attached to the controller
         * this is the first stage in a two step process to register
-        * with the nand subsystem */
+        * with the nand subsystem */
        if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
        {
                ret =3D -ENXIO;
                goto failed_nand;
        }
-
-       /* second stage of the NAND scan
-        * this stage requires information regarding ECC and
+
+       /* second stage of the NAND scan
+        * this stage requires information regarding ECC and
          * bad block management. */

        /* Bad block management */
@@ -2041,8 +2041,8 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)
                denali->nand.ecc.bytes =3D ECC_BYTES_SLC;
        }

-       /* These functions are required by the NAND core framework, otherwi=
se,
-           the NAND core will assert. However, we don't need them, so we'l=
l stub
+       /* These functions are required by the NAND core framework, otherwi=
se,
+           the NAND core will assert. However, we don't need them, so we'l=
l stub
            them out. */
        denali->nand.ecc.calculate =3D denali_ecc_calculate;
        denali->nand.ecc.correct =3D denali_ecc_correct;
@@ -2079,7 +2079,7 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)
  failed_remap_csr:
        pci_release_regions(dev);
  failed_req_csr:
-       pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+       pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
                                                        PCI_DMA_BIDIRECTION=
AL);
  failed_enable:
        kfree(denali);
@@ -2103,7 +2103,7 @@ static void denali_pci_remove(struct pci_dev *dev)
        iounmap(denali->flash_mem);
        pci_release_regions(dev);
        pci_disable_device(dev);
-       pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+       pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
                                                        PCI_DMA_BIDIRECTION=
AL);
        pci_set_drvdata(dev, NULL);
        kfree(denali);
--
1.6.6.1




More information about the linux-mtd mailing list