[PATCH 1/2] [MTD] nand/denali.c: fixed checkpatch errors in denali=
Chuanxiao Dong
chuanxiao.dong at intel.com
Wed Jul 21 12:53:35 EDT 2010
.c
Signed-off-by: Chuanxiao Dong <chuanxiao.dong at intel.com>
---
drivers/mtd/nand/denali.c | 806 +++++++++++++++++++++++------------------=
----
1 files changed, 409 insertions(+), 397 deletions(-)
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index ca03428..4e255ff 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -29,15 +29,15 @@
MODULE_LICENSE("GPL");
-/* We define a module parameter that allows the user to override
+/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode =3D NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
-MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 ind=
icates"
- " use default timings");
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
+ "-1 indicates use default timings")=
;
#define DENALI_NAND_NAME "denali-nand"
@@ -54,13 +54,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default O=
NFI setting. -1 indicates
INTR_STATUS0__RST_COMP | \
INTR_STATUS0__ERASE_COMP)
-/* indicates whether or not the internal value for the flash bank is
+/* indicates whether or not the internal value for the flash bank is
valid or not */
-#define CHIP_SELECT_INVALID -1
+#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
-/* This macro divides two integers and rounds fractional values up
+/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
@@ -83,7 +83,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONF=
I setting. -1 indicates
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
-/* this is a helper macro that allows us to
+/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
@@ -95,59 +95,63 @@ static const struct pci_device_id denali_pci_ids[] =3D =
{
};
-/* these are static lookup tables that give us easy access to
- registers in the NAND controller.
+/* these are static lookup tables that give us easy access to
+ registers in the NAND controller.
*/
-static const uint32_t intr_status_addresses[4] =3D {INTR_STATUS0,
- INTR_STATUS1,
- INTR_STATUS2,
+static const uint32_t intr_status_addresses[4] =3D {INTR_STATUS0,
+ INTR_STATUS1,
+ INTR_STATUS2,
INTR_STATUS3};
static const uint32_t device_reset_banks[4] =3D {DEVICE_RESET__BANK0,
- DEVICE_RESET__BANK1,
- DEVICE_RESET__BANK2,
- DEVICE_RESET__BANK3};
+ DEVICE_RESET__BANK1=
,
+ DEVICE_RESET__BANK2=
,
+ DEVICE_RESET__BANK3=
};
static const uint32_t operation_timeout[4] =3D {INTR_STATUS0__TIME_OUT,
- INTR_STATUS1__TIME_OUT,
- INTR_STATUS2__TIME_OUT,
- INTR_STATUS3__TIME_OUT};
+ INTR_STATUS1__TIME_=
OUT,
+ INTR_STATUS2__TIME_=
OUT,
+ INTR_STATUS3__TIME_=
OUT};
static const uint32_t reset_complete[4] =3D {INTR_STATUS0__RST_COMP,
- INTR_STATUS1__RST_COMP,
- INTR_STATUS2__RST_COMP,
- INTR_STATUS3__RST_COMP};
+ INTR_STATUS1__RST_C=
OMP,
+ INTR_STATUS2__RST_C=
OMP,
+ INTR_STATUS3__RST_C=
OMP};
/* specifies the debug level of the driver */
-static int nand_debug_level =3D 0;
+static int nand_debug_level;
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq=
_mask);
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t in=
t_mask);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+ uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
#define DEBUG_DENALI 0
/* This is a wrapper for writing to the denali registers.
* this allows us to create debug information so we can
- * observe how the driver is programming the device.
+ * observe how the driver is programming the device.
* it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
- iowrite32(value, addr);
+ iowrite32(value, addr);
#if DEBUG_DENALI
- printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_=
t)addr & 0x1fff));
+ printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value,
+ (uint32_t)((uint32_t)addr & 0x1fff));
#endif
-}
+}
-/* Certain operations for the denali NAND controller use an indexed mode t=
o read/write
- data. The operation is performed by writing the address value of the co=
mmand to
- the device memory followed by the data. This function abstracts this co=
mmon
- operation.
+/* Certain operations for the denali NAND controller use an indexed mode
+ * to read/write data. The operation is performed by writing the address
+ * value of the command to the device memory followed by the data. This
+ * function abstracts this common operation.
*/
-static void index_addr(struct denali_nand_info *denali, uint32_t address, =
uint32_t data)
+static void index_addr(struct denali_nand_info *denali,
+ uint32_t address, uint32_t data)
{
denali_write32(address, denali->flash_mem);
denali_write32(data, denali->flash_mem + 0x10);
@@ -161,7 +165,7 @@ static void index_addr_read_data(struct denali_nand_inf=
o *denali,
*pdata =3D ioread32(denali->flash_mem + 0x10);
}
-/* We need to buffer some data for some of the NAND core routines.
+/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
@@ -183,7 +187,7 @@ static void read_status(struct denali_nand_info *denali=
)
reset_buf(denali);
/* initiate a device status read */
- cmd =3D MODE_11 | BANK(denali->flash_bank);
+ cmd =3D MODE_11 | BANK(denali->flash_bank);
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
@@ -191,7 +195,8 @@ static void read_status(struct denali_nand_info *denali=
)
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
#if DEBUG_DENALI
- printk("device reporting status value of 0x%2x\n", denali->buf.buf[=
0]);
+ printk(KERN_INFO "device reporting status value of 0x%2x\n",
+ denali->buf.buf[0]);
#endif
}
@@ -199,7 +204,7 @@ static void read_status(struct denali_nand_info *denali=
)
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status =3D 0;
- uint32_t irq_mask =3D reset_complete[denali->flash_bank] |
+ uint32_t irq_mask =3D reset_complete[denali->flash_bank] |
operation_timeout[denali->flash_bank];
int bank =3D 0;
@@ -209,11 +214,9 @@ static void reset_bank(struct denali_nand_info *denali=
)
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
irq_status =3D wait_for_irq(denali, irq_mask);
-
+
if (irq_status & operation_timeout[denali->flash_bank])
- {
printk(KERN_ERR "reset bank failed.\n");
- }
}
/* Reset the flash controller */
@@ -229,9 +232,12 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_in=
fo *denali)
denali->flash_reg + intr_status_addresses[i]);
for (i =3D 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
- denali_write32(device_reset_banks[i], denali->flash_reg + D=
EVICE_RESET);
- while (!(ioread32(denali->flash_reg + intr_status_addresses=
[i]) &
- (reset_complete[i] | operation_timeout[i])))
+ denali_write32(device_reset_banks[i],
+ denali->flash_reg + DEVICE_RESET);
+ while (!(ioread32(denali->flash_reg +
+ intr_status_addresses[i]) &
+ (reset_complete[i] |
+ operation_timeout[i])))
;
if (ioread32(denali->flash_reg + intr_status_addresses[i]) =
&
operation_timeout[i])
@@ -247,10 +253,11 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_i=
nfo *denali)
}
/* this routine calculates the ONFI timing values for a given mode and pro=
grams
- * the clocking register accordingly. The mode is determined by the get_on=
fi_nand_para
- routine.
+ * the clocking register accordingly. The mode is determined by the
+ * get_onfi_nand_para routine.
*/
-static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_=
t mode)
+static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali,
+ uint16_t mo=
de)
{
uint16_t Trea[6] =3D {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] =3D {50, 25, 17, 15, 12, 10};
@@ -356,10 +363,11 @@ static void set_ecc_config(struct denali_nand_info *d=
enali)
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
- if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION_=
_VALUE)
- =3D=3D 1) {
+ if ((ioread32(denali->flash_reg + ECC_CORRECTION) &
+ ECC_CORRECTION__VALUE) =3D=3D 1) {
denali->dev_info.wECCBytesPerSector =3D 4;
- denali->dev_info.wECCBytesPerSector *=3D denali->dev_info.w=
DevicesConnected;
+ denali->dev_info.wECCBytesPerSector *=3D
+ denali->dev_info.wDevicesConnected;
denali->dev_info.wNumPageSpareFlag =3D
denali->dev_info.wPageSpareSize -
denali->dev_info.wPageDataSize /
@@ -375,8 +383,10 @@ static void set_ecc_config(struct denali_nand_info *de=
nali)
else
denali->dev_info.wECCBytesPerSector +=3D 1;
- denali->dev_info.wECCBytesPerSector *=3D denali->dev_info.w=
DevicesConnected;
- denali->dev_info.wNumPageSpareFlag =3D denali->dev_info.wPa=
geSpareSize -
+ denali->dev_info.wECCBytesPerSector *=3D
+ denali->dev_info.wDevicesConnected;
+ denali->dev_info.wNumPageSpareFlag =3D
+ denali->dev_info.wPageSpareSize -
denali->dev_info.wPageDataSize /
(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnect=
ed) *
denali->dev_info.wECCBytesPerSector
@@ -399,8 +409,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_=
info *denali)
INTR_STATUS0__TIME_OUT)))
;
- if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_=
COMP) {
- denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEV=
ICE_RESET);
+ if (ioread32(denali->flash_reg + INTR_STATUS0) &
+ INTR_STATUS0__RST_COMP) {
+ denali_write32(DEVICE_RESET__BANK1,
+ denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
INTR_STATUS1__RST_COMP) |
(ioread32(denali->flash_reg + INTR_STATUS1) &
@@ -421,9 +433,11 @@ static uint16_t get_onfi_nand_para(struct denali_nand_=
info *denali)
INTR_STATUS2__RST_COMP) {
denali_write32(DEVICE_RESET__BANK3,
denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR=
_STATUS3) &
+ while (!((ioread32(denali->flash_reg +
+ INTR_STATUS=
3) &
INTR_STATUS3__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_=
STATUS3) &
+ (ioread32(denali->flash_reg +
+ INTR_STATUS3) &
INTR_STATUS3__TIME_OUT)))
;
} else {
@@ -434,10 +448,14 @@ static uint16_t get_onfi_nand_para(struct denali_nand=
_info *denali)
}
}
- denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STA=
TUS0);
- denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STA=
TUS1);
- denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STA=
TUS2);
- denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STA=
TUS3);
+ denali_write32(INTR_STATUS0__TIME_OUT,
+ denali->flash_reg + INTR_STATUS0);
+ denali_write32(INTR_STATUS1__TIME_OUT,
+ denali->flash_reg + INTR_STATUS1);
+ denali_write32(INTR_STATUS2__TIME_OUT,
+ denali->flash_reg + INTR_STATUS2);
+ denali_write32(INTR_STATUS3__TIME_OUT,
+ denali->flash_reg + INTR_STATUS3);
denali->dev_info.wONFIDevFeatures =3D
ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
@@ -450,8 +468,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_=
info *denali)
n_of_luns =3D ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) =
&
ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
- blks_lun_l =3D ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCK=
S_PER_LUN_L);
- blks_lun_h =3D ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCK=
S_PER_LUN_U);
+ blks_lun_l =3D ioread32(denali->flash_reg +
+ ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
+ blks_lun_h =3D ioread32(denali->flash_reg +
+ ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
blockperlun =3D (blks_lun_h << 16) | blks_lun_l;
@@ -462,7 +482,8 @@ static uint16_t get_onfi_nand_para(struct denali_nand_i=
nfo *denali)
return FAIL;
for (i =3D 5; i > 0; i--) {
- if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 =
<< i))
+ if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ (0x01 << i))
break;
}
@@ -497,7 +518,8 @@ static void get_samsung_nand_para(struct denali_nand_in=
fo *denali)
index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
for (i =3D 0; i < 5; i++)
- index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_b=
ytes[i]);
+ index_addr_read_data(denali, (uint32_t)(MODE_11 | 2),
+ &id_bytes[i]);
nand_dbg_print(NAND_DBG_DEBUG,
"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
@@ -517,7 +539,8 @@ static void get_samsung_nand_para(struct denali_nand_in=
fo *denali)
no_of_planes =3D 1 << ((id_bytes[4] & 0x0c) >> 2);
plane_size =3D (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
- blk_size =3D 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) &=
0x30) >> 4);
+ blk_size =3D 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) &
+ 0x30) >> 4);
capacity =3D (uint64_t)128 * plane_size * no_of_planes;
do_div(capacity, blk_size);
@@ -536,7 +559,8 @@ static void get_toshiba_nand_para(struct denali_nand_in=
fo *denali)
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_S=
IZE);
tmp =3D ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE=
);
- denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_=
SIZE);
+ denali_write32(tmp, denali->flash_reg +
+ LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
@@ -575,10 +599,14 @@ static void get_hynix_nand_para(struct denali_nand_in=
fo *denali)
denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_S=
IZE);
denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_S=
IZE);
- main_size =3D 4096 * ioread32(denali->flash_reg + DEVICES_C=
ONNECTED);
- spare_size =3D 224 * ioread32(denali->flash_reg + DEVICES_C=
ONNECTED);
- denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_=
DATA_SIZE);
- denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE=
_SPARE_SIZE);
+ main_size =3D 4096 * ioread32(denali->flash_reg +
+ DEVICES_CONNECTED);
+ spare_size =3D 224 * ioread32(denali->flash_reg +
+ DEVICES_CONNECTED);
+ denali_write32(main_size, denali->flash_reg +
+ LOGICAL_PAGE_DATA_S=
IZE);
+ denali_write32(spare_size, denali->flash_reg +
+ LOGICAL_PAGE_SPARE_SIZE);
denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
@@ -610,7 +638,7 @@ static void get_hynix_nand_para(struct denali_nand_info=
*denali)
}
/* determines how many NAND chips are connected to the controller. Note fo=
r
- Intel CE4100 devices we don't support more than one device.
+ Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
@@ -621,7 +649,8 @@ static void find_valid_banks(struct denali_nand_info *d=
enali)
for (i =3D 0; i < LLD_MAX_FLASH_BANKS; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x9=
0);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
- index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24)=
| 2), &id[i]);
+ index_addr_read_data(denali,
+ (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]=
);
nand_dbg_print(NAND_DBG_DEBUG,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
@@ -638,18 +667,15 @@ static void find_valid_banks(struct denali_nand_info =
*denali)
}
if (denali->platform =3D=3D INTEL_CE4100)
- {
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
- * Multichip support is not enabled.
- */
- if (denali->total_used_banks !=3D 1)
- {
+ * Multichip support is not enabled.
+ */
+ if (denali->total_used_banks !=3D 1) {
printk(KERN_ERR "Sorry, Intel CE4100 only supports =
"
"a single NAND device.\n");
BUG();
}
- }
nand_dbg_print(NAND_DBG_DEBUG,
"denali->total_used_banks: %d\n", denali->total_used_banks)=
;
}
@@ -675,7 +701,8 @@ static void detect_partition_feature(struct denali_nand=
_info *denali)
(ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
MAX_BLK_ADDR_1__VALUE);
- denali->dev_info.wTotalBlocks *=3D denali->total_us=
ed_banks;
+ denali->dev_info.wTotalBlocks *=3D
+ denali->total_used_banks;
if (denali->dev_info.wSpectraEndBlock >=3D
denali->dev_info.wTotalBlocks) {
@@ -687,8 +714,10 @@ static void detect_partition_feature(struct denali_nan=
d_info *denali)
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
} else {
- denali->dev_info.wTotalBlocks *=3D denali->total_us=
ed_banks;
- denali->dev_info.wSpectraStartBlock =3D SPECTRA_STA=
RT_BLOCK;
+ denali->dev_info.wTotalBlocks *=3D
+ denali->total_used_banks;
+ denali->dev_info.wSpectraStartBlock =3D
+ SPECTRA_START_BLOCK;
denali->dev_info.wSpectraEndBlock =3D
denali->dev_info.wTotalBlocks - 1;
denali->dev_info.wDataBlockNum =3D
@@ -698,7 +727,8 @@ static void detect_partition_feature(struct denali_nand=
_info *denali)
} else {
denali->dev_info.wTotalBlocks *=3D denali->total_used_banks=
;
denali->dev_info.wSpectraStartBlock =3D SPECTRA_START_BLOCK=
;
- denali->dev_info.wSpectraEndBlock =3D denali->dev_info.wTot=
alBlocks - 1;
+ denali->dev_info.wSpectraEndBlock =3D
+ denali->dev_info.wTotalBlocks - 1;
denali->dev_info.wDataBlockNum =3D
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
@@ -780,13 +810,19 @@ static uint16_t NAND_Read_Device_ID(struct denali_nan=
d_info *denali)
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
- denali->dev_info.wDeviceMaker =3D ioread32(denali->flash_reg + MANU=
FACTURER_ID);
- denali->dev_info.wDeviceID =3D ioread32(denali->flash_reg + DEVICE_=
ID);
- denali->dev_info.bDeviceParam0 =3D ioread32(denali->flash_reg + DEV=
ICE_PARAM_0);
- denali->dev_info.bDeviceParam1 =3D ioread32(denali->flash_reg + DEV=
ICE_PARAM_1);
- denali->dev_info.bDeviceParam2 =3D ioread32(denali->flash_reg + DEV=
ICE_PARAM_2);
+ denali->dev_info.wDeviceMaker =3D
+ ioread32(denali->flash_reg + MANUFACTURER_ID);
+ denali->dev_info.wDeviceID =3D
+ ioread32(denali->flash_reg + DEVICE_ID);
+ denali->dev_info.bDeviceParam0 =3D
+ ioread32(denali->flash_reg + DEVICE_PARAM_0);
+ denali->dev_info.bDeviceParam1 =3D
+ ioread32(denali->flash_reg + DEVICE_PARAM_1);
+ denali->dev_info.bDeviceParam2 =3D
+ ioread32(denali->flash_reg + DEVICE_PARAM_2);
- denali->dev_info.MLCDevice =3D ioread32(denali->flash_reg + DEVICE_=
PARAM_0) & 0x0c;
+ denali->dev_info.MLCDevice =3D
+ ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
@@ -835,7 +871,8 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_=
info *denali)
denali->dev_info.wPageSpareSize =3D
ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- denali->dev_info.wPagesPerBlock =3D ioread32(denali->flash_reg + PA=
GES_PER_BLOCK);
+ denali->dev_info.wPagesPerBlock =3D
+ ioread32(denali->flash_reg + PAGES_PER_BLOCK);
denali->dev_info.wPageSize =3D
denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSiz=
e;
@@ -844,11 +881,13 @@ static uint16_t NAND_Read_Device_ID(struct denali_nan=
d_info *denali)
denali->dev_info.wBlockDataSize =3D
denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSiz=
e;
- denali->dev_info.wDeviceWidth =3D ioread32(denali->flash_reg + DEVI=
CE_WIDTH);
+ denali->dev_info.wDeviceWidth =3D
+ ioread32(denali->flash_reg + DEVICE_WIDTH);
denali->dev_info.wDeviceType =3D
((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8)=
;
- denali->dev_info.wDevicesConnected =3D ioread32(denali->flash_reg +=
DEVICES_CONNECTED);
+ denali->dev_info.wDevicesConnected =3D
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali->dev_info.wSpareSkipBytes =3D
ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
@@ -885,12 +924,10 @@ static uint16_t NAND_Read_Device_ID(struct denali_nan=
d_info *denali)
dump_device_info(denali);
/* If the user specified to override the default timings
- * with a specific ONFI mode, we apply those changes here.
+ * with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode !=3D NAND_DEFAULT_TIMINGS)
- {
NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
- }
return status;
}
@@ -912,7 +949,7 @@ static void NAND_LLD_Enable_Disable_Interrupts(struct d=
enali_nand_info *denali,
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
- return (flash_bank >=3D 0 && flash_bank < 4);
+ return (flash_bank >=3D 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
@@ -939,7 +976,8 @@ static void denali_irq_cleanup(int irqnum, struct denal=
i_nand_info *denali)
free_irq(irqnum, denali);
}
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t in=
t_mask)
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask)
{
denali_write32(int_mask, denali->flash_reg + INTR_EN0);
denali_write32(int_mask, denali->flash_reg + INTR_EN1);
@@ -948,15 +986,16 @@ static void denali_irq_enable(struct denali_nand_info=
*denali, uint32_t int_mask
}
/* This function only returns when an interrupt that this driver cares abo=
ut
- * occurs. This is to reduce the overhead of servicing interrupts
+ * occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali=
)
{
- return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
+ return read_interrupt_status(denali) & DENALI_IRQ_ALL;
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali, uint32=
_t irq_mask)
+static inline void clear_interrupt(struct denali_nand_info *denali,
+ uint32_t irq_mask)
{
uint32_t intr_status_reg =3D 0;
@@ -995,17 +1034,15 @@ static void print_irq_log(struct denali_nand_info *d=
enali)
{
int i =3D 0;
- printk("ISR debug log index =3D %X\n", denali->idx);
+ printk(KERN_INFO "ISR debug log index =3D %X\n", denali->idx);
for (i =3D 0; i < 32; i++)
- {
- printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
- }
+ printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array=
[i]);
}
#endif
-/* This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared
- * interrupt.
+/* This is the interrupt service routine. It handles all interrupts
+ * sent to this device. Note that on CE4100, this is a shared
+ * interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
@@ -1015,20 +1052,20 @@ static irqreturn_t denali_isr(int irq, void *dev_id=
)
spin_lock(&denali->irq_lock);
- /* check to see if a valid NAND chip has
- * been selected.
+ /* check to see if a valid NAND chip has
+ * been selected.
*/
- if (is_flash_bank_valid(denali->flash_bank))
- {
- /* check to see if controller generated
+ if (is_flash_bank_valid(denali->flash_bank)) {
+ /* check to see if controller generated
* the interrupt, since this is a shared interrupt */
- if ((irq_status =3D denali_irq_detected(denali)) !=3D 0)
- {
+ irq_status =3D denali_irq_detected(denali);
+ if (irq_status !=3D 0) {
#if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] =3D 0x100000=
00 | irq_status;
+ denali->irq_debug_array[denali->idx++] =3D
+ 0x10000000 | irq_status;
denali->idx %=3D 32;
- printk("IRQ status =3D 0x%04x\n", irq_status);
+ printk(KERN_INFO "IRQ status =3D 0x%04x\n", irq_sta=
tus);
#endif
/* handle interrupt */
/* first acknowledge it */
@@ -1054,61 +1091,62 @@ static uint32_t wait_for_irq(struct denali_nand_inf=
o *denali, uint32_t irq_mask)
bool retry =3D false;
unsigned long timeout =3D msecs_to_jiffies(1000);
- do
- {
+ do {
#if DEBUG_DENALI
- printk("waiting for 0x%x\n", irq_mask);
+ printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
#endif
- comp_res =3D wait_for_completion_timeout(&denali->complete,=
timeout);
+ comp_res =3D
+ wait_for_completion_timeout(&denali->complete, time=
out);
spin_lock_irq(&denali->irq_lock);
intr_status =3D denali->irq_status;
#if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] =3D 0x20000000 | (ir=
q_mask << 16) | intr_status;
+ denali->irq_debug_array[denali->idx++] =3D
+ 0x20000000 | (irq_mask << 16) | intr_status;
denali->idx %=3D 32;
#endif
- if (intr_status & irq_mask)
- {
+ if (intr_status & irq_mask) {
denali->irq_status &=3D ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
- if (retry) printk("status on retry =3D 0x%x\n", int=
r_status);
+ if (retry)
+ printk(KERN_INFO "status on retry =3D 0x%x\=
n",
+ intr_status);
#endif
/* our interrupt was detected */
break;
- }
- else
- {
- /* these are not the interrupts you are looking for=
-
- need to wait again */
+ } else {
+ /* these are not the interrupts you are looking for
+ * need to wait again */
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
print_irq_log(denali);
- printk("received irq nobody cared: irq_status =3D 0=
x%x,"
- " irq_mask =3D 0x%x, timeout =3D %ld\n", in=
tr_status, irq_mask, comp_res);
+ printk(KERN_INFO "received irq nobody cared: "
+ "irq_status =3D 0x%x, irq_mask =3D =
0x%x, "
+ "timeout =3D %ld\n", intr_status,
+ irq_mask, comp_res);
#endif
retry =3D true;
}
} while (comp_res !=3D 0);
- if (comp_res =3D=3D 0)
- {
+ if (comp_res =3D=3D 0) {
/* timeout */
- printk(KERN_ERR "timeout occurred, status =3D 0x%x, mask =
=3D 0x%x\n",
- intr_status, irq_mask);
+ printk(KERN_ERR "timeout occurred, status =3D 0x%x, mask =
=3D 0x%x\n",
+ intr_status, irq_mask);
intr_status =3D 0;
}
return intr_status;
}
-/* This helper function setups the registers for ECC and whether or not
+/* This helper function setups the registers for ECC and whether or not
the spare area will be transfered. */
-static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_e=
n,
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_e=
n,
bool transfer_spare)
{
- int ecc_en_flag =3D 0, transfer_spare_flag =3D 0;
+ int ecc_en_flag =3D 0, transfer_spare_flag =3D 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag =3D ecc_en ? ECC_ENABLE__FLAG : 0;
@@ -1116,85 +1154,85 @@ static void setup_ecc_for_xfer(struct denali_nand_i=
nfo *denali, bool ecc_en,
/* Enable spare area/ECC per user's request. */
denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
- denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SP=
ARE_REG);
+ denali_write32(transfer_spare_flag,
+ denali->flash_reg + TRANSFER_SPARE_REG);
}
-/* sends a pipeline command operation to the controller. See the Denali NA=
ND
- controller's user guide for more information (section 4.2.3.6).
+/* sends a pipeline command operation to the controller. See the Denali NA=
ND
+ controller's user guide for more information (section 4.2.3.6).
*/
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool =
ecc_en,
- bool transfer_spare, int access_typ=
e,
- int op)
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+ bool ecc_en,
+ bool transfer_spare=
,
+ int access_type,
+ int op)
{
int status =3D PASS;
- uint32_t addr =3D 0x0, cmd =3D 0x0, page_count =3D 1, irq_status =
=3D 0,
+ uint32_t addr =3D 0x0, cmd =3D 0x0, page_count =3D 1, irq_status =
=3D 0,
irq_mask =3D 0;
- if (op =3D=3D DENALI_READ) irq_mask =3D INTR_STATUS0__LOAD_COMP;
- else if (op =3D=3D DENALI_WRITE) irq_mask =3D 0;
- else BUG();
+ if (op =3D=3D DENALI_READ)
+ irq_mask =3D INTR_STATUS0__LOAD_COMP;
+ else if (op =3D=3D DENALI_WRITE)
+ irq_mask =3D 0;
+ else
+ BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] =3D 0x40000000 | ioread32(de=
nali->flash_reg + ECC_ENABLE) | (access_type << 4);
+ denali->irq_debug_array[denali->idx++] =3D
+ 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
+ (access_type << 4);
denali->idx %=3D 32;
spin_unlock_irq(&denali->irq_lock);
#endif
/* clear interrupts */
- clear_interrupts(denali);
+ clear_interrupts(denali);
addr =3D BANK(denali->flash_bank) | denali->page;
- if (op =3D=3D DENALI_WRITE && access_type !=3D SPARE_ACCESS)
- {
- cmd =3D MODE_01 | addr;
+ if (op =3D=3D DENALI_WRITE && access_type !=3D SPARE_ACCESS) {
+ cmd =3D MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
- }
- else if (op =3D=3D DENALI_WRITE && access_type =3D=3D SPARE_ACCESS)
- {
+ } else if (op =3D=3D DENALI_WRITE && access_type =3D=3D SPARE_ACCES=
S) {
/* read spare area */
- cmd =3D MODE_10 | addr;
+ cmd =3D MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
- cmd =3D MODE_01 | addr;
+ cmd =3D MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
- }
- else if (op =3D=3D DENALI_READ)
- {
+ } else if (op =3D=3D DENALI_READ) {
/* setup page read request for access type */
- cmd =3D MODE_10 | addr;
+ cmd =3D MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should =
not
- use the pipeline commands in Spare area only mode. So we
+ use the pipeline commands in Spare area only mode. So we
don't.
*/
- if (access_type =3D=3D SPARE_ACCESS)
- {
+ if (access_type =3D=3D SPARE_ACCESS) {
cmd =3D MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
- }
- else
- {
- index_addr(denali, (uint32_t)cmd, 0x2000 | op | pag=
e_count);
-
- /* wait for command to be accepted
- * can always use status0 bit as the mask is identi=
cal for each
+ } else {
+ index_addr(denali, (uint32_t)cmd,
+ 0x2000 | op | page_count);
+
+ /* wait for command to be accepted
+ * can always use status0 bit as the mask is
+ * identical for each
* bank. */
irq_status =3D wait_for_irq(denali, irq_mask);
- if (irq_status =3D=3D 0)
- {
+ if (irq_status =3D=3D 0) {
printk(KERN_ERR "cmd, page, addr on timeout=
"
- "(0x%x, 0x%x, 0x%x)\n", cmd, denali=
->page, addr);
+ "(0x%x, 0x%x, 0x%x)\n", cmd,
+ denali->page, addr);
status =3D FAIL;
- }
- else
- {
+ } else {
cmd =3D MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
@@ -1204,36 +1242,35 @@ static int denali_send_pipeline_cmd(struct denali_n=
and_info *denali, bool ecc_en
}
/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali, const =
uint8_t *buf,
- int len)
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+ const uint8_t *buf,
+ int len)
{
uint32_t i =3D 0, *buf32;
- /* verify that the len is a multiple of 4. see comment in
- * read_data_from_flash_mem() */
+ /* verify that the len is a multiple of 4. see comment in
+ * read_data_from_flash_mem() */
BUG_ON((len % 4) !=3D 0);
/* write the data to the flash memory */
buf32 =3D (uint32_t *)buf;
for (i =3D 0; i < len / 4; i++)
- {
denali_write32(*buf32++, denali->flash_mem + 0x10);
- }
- return i*4; /* intent is to return the number of bytes read */
+ return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8=
_t *buf,
- int len)
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+ uint8_t *buf,
+ int len)
{
uint32_t i =3D 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
- * have random failures...
- *
- * This assumption is based on the fact that this
- * function is designed to be used to read flash pages,
+ * have random failures...
+ * This assumption is based on the fact that this
+ * function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
@@ -1242,10 +1279,8 @@ static int read_data_from_flash_mem(struct denali_na=
nd_info *denali, uint8_t *bu
/* transfer the data from the flash */
buf32 =3D (uint32_t *)buf;
for (i =3D 0; i < len / 4; i++)
- {
*buf32++ =3D ioread32(denali->flash_mem + 0x10);
- }
- return i*4; /* intent is to return the number of bytes read */
+ return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
@@ -1253,38 +1288,35 @@ static int write_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
{
struct denali_nand_info *denali =3D mtd_to_denali(mtd);
uint32_t irq_status =3D 0;
- uint32_t irq_mask =3D INTR_STATUS0__PROGRAM_COMP |
+ uint32_t irq_mask =3D INTR_STATUS0__PROGRAM_COMP |
INTR_STATUS0__PROGRAM_FAIL;
int status =3D 0;
denali->page =3D page;
- if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
- DENALI_WRITE) =3D=
=3D PASS)
- {
+ if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
+ DENALI_WRITE) =3D=
=3D PASS) {
write_data_to_flash_mem(denali, buf, mtd->oobsize);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] =3D 0x80000000 | mtd=
->oobsize;
+ denali->irq_debug_array[denali->idx++] =3D
+ 0x80000000 | mtd->oobsize;
denali->idx %=3D 32;
spin_unlock_irq(&denali->irq_lock);
#endif
-
+
/* wait for operation to complete */
irq_status =3D wait_for_irq(denali, irq_mask);
- if (irq_status =3D=3D 0)
- {
+ if (irq_status =3D=3D 0) {
printk(KERN_ERR "OOB write failed\n");
status =3D -EIO;
}
- }
- else
- {
+ } else {
printk(KERN_ERR "unable to send pipeline command\n");
- status =3D -EIO;
+ status =3D -EIO;
}
return status;
}
@@ -1293,60 +1325,56 @@ static int write_oob_data(struct mtd_info *mtd, uin=
t8_t *buf, int page)
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali =3D mtd_to_denali(mtd);
- uint32_t irq_mask =3D INTR_STATUS0__LOAD_COMP, irq_status =3D 0, ad=
dr =3D 0x0, cmd =3D 0x0;
+ uint32_t irq_mask =3D INTR_STATUS0__LOAD_COMP,
+ irq_status =3D 0, addr =3D 0x0, cmd =3D 0x0;
denali->page =3D page;
#if DEBUG_DENALI
- printk("read_oob %d\n", page);
+ printk(KERN_INFO "read_oob %d\n", page);
#endif
- if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
- DENALI_READ) =3D=3D=
PASS)
- {
- read_data_from_flash_mem(denali, buf, mtd->oobsize);
+ if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+ DENALI_READ) =3D=3D=
PASS) {
+ read_data_from_flash_mem(denali, buf, mtd->oobsize);
- /* wait for command to be accepted
+ /* wait for command to be accepted
* can always use status0 bit as the mask is identical for =
each
* bank. */
irq_status =3D wait_for_irq(denali, irq_mask);
if (irq_status =3D=3D 0)
- {
- printk(KERN_ERR "page on OOB timeout %d\n", denali-=
>page);
- }
+ printk(KERN_ERR "page on OOB timeout %d\n",
+ denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
- * if you are in MAIN_ACCESS.
+ * if you are in MAIN_ACCESS.
*/
addr =3D BANK(denali->flash_bank) | denali->page;
- cmd =3D MODE_10 | addr;
+ cmd =3D MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] =3D 0x60000000 | mtd=
->oobsize;
+ denali->irq_debug_array[denali->idx++] =3D
+ 0x60000000 | mtd->oobsize;
denali->idx %=3D 32;
spin_unlock_irq(&denali->irq_lock);
#endif
}
}
-/* this function examines buffers to see if they contain data that
+/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
bool is_erased(uint8_t *buf, int len)
{
int i =3D 0;
for (i =3D 0; i < len; i++)
- {
if (buf[i] !=3D 0xFF)
- {
return false;
- }
- }
return true;
}
#define ECC_SECTOR_SIZE 512
@@ -1358,64 +1386,58 @@ bool is_erased(uint8_t *buf, int len)
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ER=
R_INFO)
-static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint8_t *oobbuf, uint32_t irq_status)
{
bool check_erased_page =3D false;
- if (irq_status & INTR_STATUS0__ECC_ERR)
- {
+ if (irq_status & INTR_STATUS0__ECC_ERR) {
/* read the ECC errors. we'll ignore them for now */
uint32_t err_address =3D 0, err_correction_info =3D 0;
uint32_t err_byte =3D 0, err_sector =3D 0, err_device =3D 0=
;
uint32_t err_correction_value =3D 0;
- do
- {
- err_address =3D ioread32(denali->flash_reg +
+ do {
+ err_address =3D ioread32(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector =3D ECC_SECTOR(err_address);
err_byte =3D ECC_BYTE(err_address);
- err_correction_info =3D ioread32(denali->flash_reg =
+
+ err_correction_info =3D ioread32(denali->flash_reg =
+
ERR_CORRECTION_INFO);
- err_correction_value =3D
+ err_correction_value =3D
ECC_CORRECTION_VALUE(err_correction_info);
err_device =3D ECC_ERR_DEVICE(err_correction_info);
- if (ECC_ERROR_CORRECTABLE(err_correction_info))
- {
+ if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
/* offset in our buffer is computed as:
- sector number * sector size + offset in
+ sector number * sector size + offset in
sector
*/
- int offset =3D err_sector * ECC_SECTOR_SIZE=
+
+ int offset =3D err_sector * ECC_SECTOR_SIZE=
+
err_byte;
- if (offset < denali->mtd.writesize)
- {
+ if (offset < denali->mtd.writesize) {
/* correct the ECC error */
buf[offset] ^=3D err_correction_val=
ue;
denali->mtd.ecc_stats.corrected++;
- }
- else
- {
+ } else {
/* bummer, couldn't correct the err=
or */
printk(KERN_ERR "ECC offset invalid=
\n");
denali->mtd.ecc_stats.failed++;
}
- }
- else
- {
- /* if the error is not correctable, need to
- * look at the page to see if it is an eras=
ed page.
- * if so, then it's not a real ECC error */
+ } else {
+ /* if the error is not correctable, need to
+ * look at the page to see if it is an
+ * erased page.
+ * if so, then it's not a real ECC error */
check_erased_page =3D true;
}
-#if DEBUG_DENALI
- printk("Detected ECC error in page %d: err_addr =3D=
0x%08x,"
- " info to fix is 0x%08x\n", denali->page, e=
rr_address,
+#if DEBUG_DENALI
+ printk(KERN_INFO "Detected ECC error in page %d: "
+ "err_addr =3D 0x%08x, info to fix is 0x%08x=
\n",
+ denali->page, err_address,
err_correction_info);
#endif
} while (!ECC_LAST_ERR(err_correction_info));
@@ -1428,7 +1450,8 @@ static void denali_enable_dma(struct denali_nand_info=
*denali, bool en)
{
uint32_t reg_val =3D 0x0;
- if (en) reg_val =3D DMA_ENABLE__FLAG;
+ if (en)
+ reg_val =3D DMA_ENABLE__FLAG;
denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE);
@@ -1458,9 +1481,9 @@ static void denali_setup_dma(struct denali_nand_info =
*denali, int op)
index_addr(denali, mode | 0x14000, 0x2400);
}
-/* writes a page. user specifies type, and this function handles the
+/* writes a page. user specifies type, and this function handles the
configuration details. */
-static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali =3D mtd_to_denali(mtd);
@@ -1470,7 +1493,7 @@ static void write_page(struct mtd_info *mtd, struct n=
and_chip *chip,
size_t size =3D denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status =3D 0;
- uint32_t irq_mask =3D INTR_STATUS0__DMA_CMD_COMP |
+ uint32_t irq_mask =3D INTR_STATUS0__DMA_CMD_COMP |
INTR_STATUS0__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
@@ -1484,73 +1507,71 @@ static void write_page(struct mtd_info *mtd, struct=
nand_chip *chip,
memcpy(denali->buf.buf, buf, mtd->writesize);
if (raw_xfer)
- {
/* transfer the data to the spare area */
- memcpy(denali->buf.buf + mtd->writesize,
- chip->oob_poi,
- mtd->oobsize);
- }
+ memcpy(denali->buf.buf + mtd->writesize,
+ chip->oob_poi,
+ mtd->oobsize);
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVIC=
E);
clear_interrupts(denali);
- denali_enable_dma(denali, true);
+ denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status =3D wait_for_irq(denali, irq_mask);
- if (irq_status =3D=3D 0)
- {
- printk(KERN_ERR "timeout on write_page (type =3D %d)\n", ra=
w_xfer);
- denali->status =3D
- (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_=
FAIL :
- PASS;
+ if (irq_status =3D=3D 0) {
+ printk(KERN_ERR "timeout on write_page (type =3D %d)\n",
+ raw_xfer);
+ denali->status =3D
+ (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
+ NAND_STATUS_FAIL : PASS;
}
- denali_enable_dma(denali, false);
+ denali_enable_dma(denali, false);
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}
/* NAND core entry points */
-/* this is the callback that the NAND core calls to write a page. Since
- writing a page with ECC or without is similar, all the work is done
+/* this is the callback that the NAND core calls to write a page. Since
+ writing a page with ECC or without is similar, all the work is done
by write_page above. */
-static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip=
,
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip=
,
const uint8_t *buf)
{
/* for regular page writes, we let HW handle all the ECC
- * data written to the device. */
+ * data written to the device. */
write_page(mtd, chip, buf, false);
}
-/* This is the callback that the NAND core calls to write a page without E=
CC.
+/* This is the callback that the NAND core calls to write a page without E=
CC.
raw access is similiar to ECC page writes, so all the work is done in t=
he
- write_page() function above.
+ write_page() function above.
*/
-static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *=
chip,
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *=
chip,
const uint8_t *buf)
{
- /* for raw page writes, we want to disable ECC and simply write
+ /* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
write_page(mtd, chip, buf, true);
}
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
- return write_oob_data(mtd, chip->oob_poi, page);
+ return write_oob_data(mtd, chip->oob_poi, page);
}
-static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
read_oob_data(mtd, chip->oob_poi, page);
- return 0; /* notify NAND core to send command to
- * NAND device. */
+ return 0; /* notify NAND core to send command to
+ NAND device. */
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
@@ -1563,7 +1584,7 @@ static int denali_read_page(struct mtd_info *mtd, str=
uct nand_chip *chip,
size_t size =3D denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status =3D 0;
- uint32_t irq_mask =3D INTR_STATUS0__ECC_TRANSACTION_DONE |
+ uint32_t irq_mask =3D INTR_STATUS0__ECC_TRANSACTION_DONE |
INTR_STATUS0__ECC_ERR;
bool check_erased_page =3D false;
@@ -1581,26 +1602,20 @@ static int denali_read_page(struct mtd_info *mtd, s=
truct nand_chip *chip,
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE=
);
memcpy(buf, denali->buf.buf, mtd->writesize);
-
+
check_erased_page =3D handle_ecc(denali, buf, chip->oob_poi, irq_st=
atus);
denali_enable_dma(denali, false);
- if (check_erased_page)
- {
+ if (check_erased_page) {
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased page=
s */
- if (check_erased_page)
- {
+ if (check_erased_page) {
if (!is_erased(buf, denali->mtd.writesize))
- {
denali->mtd.ecc_stats.failed++;
- }
if (!is_erased(buf, denali->mtd.oobsize))
- {
denali->mtd.ecc_stats.failed++;
- }
- }
+ }
}
return 0;
}
@@ -1616,7 +1631,7 @@ static int denali_read_page_raw(struct mtd_info *mtd,=
struct nand_chip *chip,
uint32_t irq_status =3D 0;
uint32_t irq_mask =3D INTR_STATUS0__DMA_CMD_COMP;
-
+
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
@@ -1644,12 +1659,10 @@ static uint8_t denali_read_byte(struct mtd_info *mt=
d)
uint8_t result =3D 0xff;
if (denali->buf.head < denali->buf.tail)
- {
result =3D denali->buf.buf[denali->buf.head++];
- }
#if DEBUG_DENALI
- printk("read byte -> 0x%02x\n", result);
+ printk(KERN_INFO "read byte -> 0x%02x\n", result);
#endif
return result;
}
@@ -1658,7 +1671,7 @@ static void denali_select_chip(struct mtd_info *mtd, =
int chip)
{
struct denali_nand_info *denali =3D mtd_to_denali(mtd);
#if DEBUG_DENALI
- printk("denali select chip %d\n", chip);
+ printk(KERN_INFO "denali select chip %d\n", chip);
#endif
spin_lock_irq(&denali->irq_lock);
denali->flash_bank =3D chip;
@@ -1672,7 +1685,7 @@ static int denali_waitfunc(struct mtd_info *mtd, stru=
ct nand_chip *chip)
denali->status =3D 0;
#if DEBUG_DENALI
- printk("waitfunc %d\n", status);
+ printk(KERN_INFO "waitfunc %d\n", status);
#endif
return status;
}
@@ -1684,76 +1697,77 @@ static void denali_erase(struct mtd_info *mtd, int =
page)
uint32_t cmd =3D 0x0, irq_status =3D 0;
#if DEBUG_DENALI
- printk("erase page: %d\n", page);
+ printk(KERN_INFO "erase page: %d\n", page);
#endif
/* clear interrupts */
- clear_interrupts(denali);
+ clear_interrupts(denali);
/* setup page read request for access type */
cmd =3D MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
- irq_status =3D wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
+ irq_status =3D wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
INTR_STATUS0__ERASE_FAIL);
- denali->status =3D (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_S=
TATUS_FAIL :
- PASS;
+ denali->status =3D (irq_status & INTR_STATUS0__ERASE_FAIL) ?
+ NAND_STATUS_FAIL : PASS;
}
-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col=
,
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col=
,
int page)
{
struct denali_nand_info *denali =3D mtd_to_denali(mtd);
#if DEBUG_DENALI
- printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
+ printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
#endif
- switch (cmd)
- {
- case NAND_CMD_PAGEPROG:
- break;
- case NAND_CMD_STATUS:
- read_status(denali);
- break;
- case NAND_CMD_READID:
- reset_buf(denali);
- if (denali->flash_bank < denali->total_used_banks)
- {
- /* write manufacturer information into nand
- buffer for NAND subsystem to fetch.
- */
- write_byte_to_buf(denali, denali->dev_info.=
wDeviceMaker);
- write_byte_to_buf(denali, denali->dev_info.=
wDeviceID);
- write_byte_to_buf(denali, denali->dev_info.=
bDeviceParam0);
- write_byte_to_buf(denali, denali->dev_info.=
bDeviceParam1);
- write_byte_to_buf(denali, denali->dev_info.=
bDeviceParam2);
- }
- else
- {
- int i;
- for (i =3D 0; i < 5; i++)
- write_byte_to_buf(denali, 0xff);
- }
- break;
- case NAND_CMD_READ0:
- case NAND_CMD_SEQIN:
- denali->page =3D page;
- break;
- case NAND_CMD_RESET:
- reset_bank(denali);
- break;
- case NAND_CMD_READOOB:
- /* TODO: Read OOB data */
- break;
- default:
- printk(KERN_ERR ": unsupported command received 0x%=
x\n", cmd);
- break;
+ switch (cmd) {
+ case NAND_CMD_PAGEPROG:
+ break;
+ case NAND_CMD_STATUS:
+ read_status(denali);
+ break;
+ case NAND_CMD_READID:
+ reset_buf(denali);
+ if (denali->flash_bank < denali->total_used_banks) {
+ /* write manufacturer information into nand
+ buffer for NAND subsystem to fetch.
+ */
+ write_byte_to_buf(denali,
+ denali->dev_info.wDeviceMaker);
+ write_byte_to_buf(denali,
+ denali->dev_info.wDeviceID);
+ write_byte_to_buf(denali,
+ denali->dev_info.bDeviceParam0);
+ write_byte_to_buf(denali,
+ denali->dev_info.bDeviceParam1);
+ write_byte_to_buf(denali,
+ denali->dev_info.bDeviceParam2);
+ } else {
+ int i;
+ for (i =3D 0; i < 5; i++)
+ write_byte_to_buf(denali, 0xff);
+ }
+ break;
+ case NAND_CMD_READ0:
+ case NAND_CMD_SEQIN:
+ denali->page =3D page;
+ break;
+ case NAND_CMD_RESET:
+ reset_bank(denali);
+ break;
+ case NAND_CMD_READOOB:
+ /* TODO: Read OOB data */
+ break;
+ default:
+ printk(KERN_ERR ": unsupported command received 0x%x\n", cm=
d);
+ break;
}
}
/* stubs for ECC functions not used by the NAND core */
-static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
@@ -1761,7 +1775,7 @@ static int denali_ecc_calculate(struct mtd_info *mtd,=
const uint8_t *data,
return -EIO;
}
-static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
@@ -1782,7 +1796,8 @@ static void denali_hw_init(struct denali_nand_info *d=
enali)
denali_irq_init(denali);
NAND_Flash_Reset(denali);
denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
- denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_EN=
ABLE_DONT_CARE);
+ denali_write32(CHIP_EN_DONT_CARE__FLAG,
+ denali->flash_reg + CHIP_ENABLE_DONT_CARE);
denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
@@ -1793,24 +1808,26 @@ static void denali_hw_init(struct denali_nand_info =
*denali)
}
/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes =
*/
-#define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE)
+#define ECC_BYTES_SLC (4 * (2048 / ECC_SECTOR_SIZE))
static struct nand_ecclayout nand_oob_slc =3D {
.eccbytes =3D 4,
.eccpos =3D { 0, 1, 2, 3 }, /* not used */
- .oobfree =3D {{
- .offset =3D ECC_BYTES_SLC,
- .length =3D 64 - ECC_BYTES_SLC
- }}
+ .oobfree =3D {{
+ .offset =3D ECC_BYTES_SLC,
+ .length =3D 64 - ECC_BYTES_SLC
+ }
+ }
};
-#define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE)
+#define ECC_BYTES_MLC (14 * (2048 / ECC_SECTOR_SIZE))
static struct nand_ecclayout nand_oob_mlc_14bit =3D {
.eccbytes =3D 14,
.eccpos =3D { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not u=
sed */
- .oobfree =3D {{
- .offset =3D ECC_BYTES_MLC,
- .length =3D 64 - ECC_BYTES_MLC
- }}
+ .oobfree =3D {{
+ .offset =3D ECC_BYTES_MLC,
+ .length =3D 64 - ECC_BYTES_MLC
+ }
+ }
};
static uint8_t bbt_pattern[] =3D {'B', 'b', 't', '0' };
@@ -1842,12 +1859,12 @@ void denali_drv_init(struct denali_nand_info *denal=
i)
denali->idx =3D 0;
/* setup interrupt handler */
- /* the completion object will be used to notify
+ /* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
- * with any element that might be access shared
+ * with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
@@ -1880,13 +1897,12 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
}
if (id->driver_data =3D=3D INTEL_CE4100) {
- /* Due to a silicon limitation, we can only support
- * ONFI timing mode 1 and below.
- */
- if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
- {
- printk("Intel CE4100 only supports ONFI timing mode=
1 "
- "or below\n");
+ /* Due to a silicon limitation, we can only support
+ * ONFI timing mode 1 and below.
+ */
+ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
+ printk(KERN_ERR "Intel CE4100 only supports ONFI"
+ " timing mode 1 or below\n");
ret =3D -EINVAL;
goto failed_enable;
}
@@ -1905,7 +1921,8 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)
mem_base =3D csr_base + csr_len;
mem_len =3D csr_len;
nand_dbg_print(NAND_DBG_WARN,
- "Spectra: No second BAR for PCI devi=
ce; assuming %08Lx\n",
+ "Spectra: No second BAR for PCI devi=
ce;"
+ " assuming %08Lx\n",
(uint64_t)csr_base);
}
}
@@ -1913,16 +1930,15 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
/* Is 32-bit DMA supported? */
ret =3D pci_set_dma_mask(dev, DMA_BIT_MASK(32));
- if (ret)
- {
+ if (ret) {
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable;
}
- denali->buf.dma_buf =3D pci_map_single(dev, denali->buf.buf, DENALI=
_BUF_SIZE,
- PCI_DMA_BIDIRECTIONAL);
+ denali->buf.dma_buf =3D pci_map_single(dev, denali->buf.buf,
+ DENALI_BUF_SIZE,
+ PCI_DMA_BIDIRECTION=
AL);
- if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
- {
+ if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
goto failed_enable;
}
@@ -1976,11 +1992,10 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
NAND_Read_Device_ID(denali);
- /* MTD supported page sizes vary by kernel. We validate our
- kernel supports the device here.
+ /* MTD supported page sizes vary by kernel. We validate our
+ * kernel supports the device here.
*/
- if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSI=
ZE)
- {
+ if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSI=
ZE) {
ret =3D -ENODEV;
printk(KERN_ERR "Spectra: device size not supported by this=
"
"version of MTD.");
@@ -2009,18 +2024,17 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
denali->nand.read_byte =3D denali_read_byte;
denali->nand.waitfunc =3D denali_waitfunc;
- /* scan for NAND devices attached to the controller
+ /* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
- * with the nand subsystem */
- if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
- {
+ * with the nand subsystem */
+ if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ret =3D -ENXIO;
goto failed_nand;
}
-
- /* second stage of the NAND scan
- * this stage requires information regarding ECC and
- * bad block management. */
+
+ /* second stage of the NAND scan
+ * this stage requires information regarding ECC and
+ * bad block management. */
/* Bad block management */
denali->nand.bbt_td =3D &bbt_main_descr;
@@ -2030,20 +2044,17 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
denali->nand.options |=3D NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
denali->nand.ecc.mode =3D NAND_ECC_HW_SYNDROME;
- if (denali->dev_info.MLCDevice)
- {
+ if (denali->dev_info.MLCDevice) {
denali->nand.ecc.layout =3D &nand_oob_mlc_14bit;
denali->nand.ecc.bytes =3D ECC_BYTES_MLC;
- }
- else /* SLC */
- {
+ } else { /* SLC */
denali->nand.ecc.layout =3D &nand_oob_slc;
denali->nand.ecc.bytes =3D ECC_BYTES_SLC;
}
- /* These functions are required by the NAND core framework, otherwi=
se,
- the NAND core will assert. However, we don't need them, so we'l=
l stub
- them out. */
+ /* These functions are required by the NAND core framework, otherwi=
se,
+ * the NAND core will assert. However, we don't need them, so we'll=
stub
+ * them out. */
denali->nand.ecc.calculate =3D denali_ecc_calculate;
denali->nand.ecc.correct =3D denali_ecc_correct;
denali->nand.ecc.hwctl =3D denali_ecc_hwctl;
@@ -2058,15 +2069,15 @@ static int denali_pci_probe(struct pci_dev *dev, co=
nst struct pci_device_id *id)
denali->nand.ecc.write_oob =3D denali_write_oob;
denali->nand.erase_cmd =3D denali_erase;
- if (nand_scan_tail(&denali->mtd))
- {
+ if (nand_scan_tail(&denali->mtd)) {
ret =3D -ENXIO;
goto failed_nand;
}
ret =3D add_mtd_device(&denali->mtd);
if (ret) {
- printk(KERN_ERR "Spectra: Failed to register MTD device: %d=
\n", ret);
+ printk(KERN_ERR "Spectra: Failed to register"
+ " MTD device: %d\n", ret);
goto failed_nand;
}
return 0;
@@ -2079,7 +2090,7 @@ static int denali_pci_probe(struct pci_dev *dev, cons=
t struct pci_device_id *id)
failed_remap_csr:
pci_release_regions(dev);
failed_req_csr:
- pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+ pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTION=
AL);
failed_enable:
kfree(denali);
@@ -2103,7 +2114,7 @@ static void denali_pci_remove(struct pci_dev *dev)
iounmap(denali->flash_mem);
pci_release_regions(dev);
pci_disable_device(dev);
- pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+ pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTION=
AL);
pci_set_drvdata(dev, NULL);
kfree(denali);
@@ -2120,7 +2131,8 @@ static struct pci_driver denali_pci_driver =3D {
static int __devinit denali_init(void)
{
- printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__,=
__TIME__);
+ printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
+ __DATE__, __TIME__);
return pci_register_driver(&denali_pci_driver);
}
--
1.6.6.1
More information about the linux-mtd
mailing list