[PATCH] add bcmring mtd nand driver support
Leo Chen
leochen at broadcom.com
Mon Sep 28 17:11:49 EDT 2009
Add mtd umi driver for bcmring arm arch.
Add header files, register definition files,
add entry in Kconfig and Makefile.
Signed-off-by: Leo Hao Chen <leochen at broadcom.com>
---
arch/arm/mach-bcmring/include/mach/reg_nand.h | 66 ++
arch/arm/mach-bcmring/include/mach/reg_umi.h | 237 ++++++++
drivers/mtd/nand/Kconfig | 16 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/bcm_umi_bch.c | 213 +++++++
drivers/mtd/nand/bcm_umi_nand.c | 792 +++++++++++++++++++++++++
drivers/mtd/nand/nand_bcm_umi.c | 149 +++++
drivers/mtd/nand/nand_bcm_umi.h | 358 +++++++++++
8 files changed, 1832 insertions(+), 0 deletions(-)
create mode 100644 arch/arm/mach-bcmring/include/mach/reg_nand.h
create mode 100644 arch/arm/mach-bcmring/include/mach/reg_umi.h
create mode 100644 drivers/mtd/nand/bcm_umi_bch.c
create mode 100644 drivers/mtd/nand/bcm_umi_nand.c
create mode 100644 drivers/mtd/nand/nand_bcm_umi.c
create mode 100644 drivers/mtd/nand/nand_bcm_umi.h
diff --git a/arch/arm/mach-bcmring/include/mach/reg_nand.h b/arch/arm/mach-bcmring/include/mach/reg_nand.h
new file mode 100644
index 0000000..387376f
--- /dev/null
+++ b/arch/arm/mach-bcmring/include/mach/reg_nand.h
@@ -0,0 +1,66 @@
+/*****************************************************************************
+* Copyright 2001 - 2008 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/*
+*
+*****************************************************************************
+*
+* REG_NAND.h
+*
+* PURPOSE:
+*
+* This file contains definitions for the nand registers:
+*
+* NOTES:
+*
+*****************************************************************************/
+
+#if !defined(__ASM_ARCH_REG_NAND_H)
+#define __ASM_ARCH_REG_NAND_H
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <csp/reg.h>
+#include <mach/reg_umi.h>
+
+/* ---- Constants and Types ---------------------------------------------- */
+
+#define HW_NAND_BASE MM_IO_BASE_NAND /* NAND Flash */
+
+/* DMA accesses by the bootstrap need hard nonvirtual addresses */
+#define REG_NAND_CMD __REG16(HW_NAND_BASE + 0)
+#define REG_NAND_ADDR __REG16(HW_NAND_BASE + 4)
+
+#define REG_NAND_PHYS_DATA16 (HW_NAND_BASE + 8)
+#define REG_NAND_PHYS_DATA8 (HW_NAND_BASE + 8)
+#define REG_NAND_DATA16 __REG16(REG_NAND_PHYS_DATA16)
+#define REG_NAND_DATA8 __REG8(REG_NAND_PHYS_DATA8)
+
+/* use appropriate offset to make sure it start at the 1K boundary */
+#define REG_NAND_PHYS_DATA_DMA (HW_NAND_BASE + 0x400)
+#define REG_NAND_DATA_DMA __REG32(REG_NAND_PHYS_DATA_DMA)
+
+/* Linux DMA requires physical address of the data register */
+#define REG_NAND_DATA16_PADDR HW_IO_VIRT_TO_PHYS(REG_NAND_PHYS_DATA16)
+#define REG_NAND_DATA8_PADDR HW_IO_VIRT_TO_PHYS(REG_NAND_PHYS_DATA8)
+#define REG_NAND_DATA_PADDR HW_IO_VIRT_TO_PHYS(REG_NAND_PHYS_DATA_DMA)
+
+#define NAND_BUS_16BIT() (0)
+#define NAND_BUS_8BIT() (!NAND_BUS_16BIT())
+
+/* Register offsets */
+#define REG_NAND_CMD_OFFSET (0)
+#define REG_NAND_ADDR_OFFSET (4)
+#define REG_NAND_DATA8_OFFSET (8)
+
+#endif
diff --git a/arch/arm/mach-bcmring/include/mach/reg_umi.h b/arch/arm/mach-bcmring/include/mach/reg_umi.h
new file mode 100644
index 0000000..06a3554
--- /dev/null
+++ b/arch/arm/mach-bcmring/include/mach/reg_umi.h
@@ -0,0 +1,237 @@
+/*****************************************************************************
+* Copyright 2005 - 2008 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/*
+*
+*****************************************************************************
+*
+* REG_UMI.h
+*
+* PURPOSE:
+*
+* This file contains definitions for the nand registers:
+*
+* NOTES:
+*
+*****************************************************************************/
+
+#if !defined(__ASM_ARCH_REG_UMI_H)
+#define __ASM_ARCH_REG_UMI_H
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <csp/reg.h>
+#include <mach/csp/mm_io.h>
+
+/* ---- Constants and Types ---------------------------------------------- */
+
+/* Unified Memory Interface Ctrl Register */
+#define HW_UMI_BASE MM_IO_BASE_UMI
+
+/* Flash bank 0 timing and control register */
+#define REG_UMI_FLASH0_TCR __REG32(HW_UMI_BASE + 0x00)
+/* Flash bank 1 timing and control register */
+#define REG_UMI_FLASH1_TCR __REG32(HW_UMI_BASE + 0x04)
+/* Flash bank 2 timing and control register */
+#define REG_UMI_FLASH2_TCR __REG32(HW_UMI_BASE + 0x08)
+/* MMD interface and control register */
+#define REG_UMI_MMD_ICR __REG32(HW_UMI_BASE + 0x0c)
+/* NAND timing and control register */
+#define REG_UMI_NAND_TCR __REG32(HW_UMI_BASE + 0x18)
+/* NAND ready/chip select register */
+#define REG_UMI_NAND_RCSR __REG32(HW_UMI_BASE + 0x1c)
+/* NAND ECC control & status register */
+#define REG_UMI_NAND_ECC_CSR __REG32(HW_UMI_BASE + 0x20)
+/* NAND ECC data register XXB2B1B0 */
+#define REG_UMI_NAND_ECC_DATA __REG32(HW_UMI_BASE + 0x24)
+/* BCH ECC Parameter N */
+#define REG_UMI_BCH_N __REG32(HW_UMI_BASE + 0x40)
+/* BCH ECC Parameter T */
+#define REG_UMI_BCH_K __REG32(HW_UMI_BASE + 0x44)
+/* BCH ECC Parameter K */
+#define REG_UMI_BCH_T __REG32(HW_UMI_BASE + 0x48)
+/* BCH ECC Contro Status */
+#define REG_UMI_BCH_CTRL_STATUS __REG32(HW_UMI_BASE + 0x4C)
+/* BCH WR ECC 31:0 */
+#define REG_UMI_BCH_WR_ECC_0 __REG32(HW_UMI_BASE + 0x50)
+/* BCH WR ECC 63:32 */
+#define REG_UMI_BCH_WR_ECC_1 __REG32(HW_UMI_BASE + 0x54)
+/* BCH WR ECC 95:64 */
+#define REG_UMI_BCH_WR_ECC_2 __REG32(HW_UMI_BASE + 0x58)
+/* BCH WR ECC 127:96 */
+#define REG_UMI_BCH_WR_ECC_3 __REG32(HW_UMI_BASE + 0x5c)
+/* BCH WR ECC 155:128 */
+#define REG_UMI_BCH_WR_ECC_4 __REG32(HW_UMI_BASE + 0x60)
+/* BCH Read Error Location 1,0 */
+#define REG_UMI_BCH_RD_ERR_LOC_1_0 __REG32(HW_UMI_BASE + 0x64)
+/* BCH Read Error Location 3,2 */
+#define REG_UMI_BCH_RD_ERR_LOC_3_2 __REG32(HW_UMI_BASE + 0x68)
+/* BCH Read Error Location 5,4 */
+#define REG_UMI_BCH_RD_ERR_LOC_5_4 __REG32(HW_UMI_BASE + 0x6c)
+/* BCH Read Error Location 7,6 */
+#define REG_UMI_BCH_RD_ERR_LOC_7_6 __REG32(HW_UMI_BASE + 0x70)
+/* BCH Read Error Location 9,8 */
+#define REG_UMI_BCH_RD_ERR_LOC_9_8 __REG32(HW_UMI_BASE + 0x74)
+/* BCH Read Error Location 11,10 */
+#define REG_UMI_BCH_RD_ERR_LOC_B_A __REG32(HW_UMI_BASE + 0x78)
+
+/* REG_UMI_FLASH0/1/2_TCR, REG_UMI_SRAM0/1_TCR bits */
+/* Enable wait pin during burst write or read */
+#define REG_UMI_TCR_WAITEN 0x80000000
+/* Enable mem ctrlr to work iwth ext mem of lower freq than AHB clk */
+#define REG_UMI_TCR_LOWFREQ 0x40000000
+/* 1=synch write, 0=async write */
+#define REG_UMI_TCR_MEMTYPE_SYNCWRITE 0x20000000
+/* 1=synch read, 0=async read */
+#define REG_UMI_TCR_MEMTYPE_SYNCREAD 0x10000000
+/* 1=page mode read, 0=normal mode read */
+#define REG_UMI_TCR_MEMTYPE_PAGEREAD 0x08000000
+/* page size/burst size (wrap only) */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_MASK 0x07000000
+/* 4 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_4 0x00000000
+/* 8 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_8 0x01000000
+/* 16 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_16 0x02000000
+/* 32 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_32 0x03000000
+/* 64 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_64 0x04000000
+/* 128 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_128 0x05000000
+/* 256 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_256 0x06000000
+/* 512 word */
+#define REG_UMI_TCR_MEMTYPE_PGSZ_512 0x07000000
+/* Page read access cycle / Burst write latency (n+2 / n+1) */
+#define REG_UMI_TCR_TPRC_TWLC_MASK 0x00f80000
+/* Bus turnaround cycle (n) */
+#define REG_UMI_TCR_TBTA_MASK 0x00070000
+/* Write pulse width cycle (n+1) */
+#define REG_UMI_TCR_TWP_MASK 0x0000f800
+/* Write recovery cycle (n+1) */
+#define REG_UMI_TCR_TWR_MASK 0x00000600
+/* Write address setup cycle (n+1) */
+#define REG_UMI_TCR_TAS_MASK 0x00000180
+/* Output enable delay cycle (n) */
+#define REG_UMI_TCR_TOE_MASK 0x00000060
+/* Read access cycle / Burst read latency (n+2 / n+1) */
+#define REG_UMI_TCR_TRC_TLC_MASK 0x0000001f
+
+/* REG_UMI_MMD_ICR bits */
+/* Flash write protection pin control */
+#define REG_UMI_MMD_ICR_FLASH_WP 0x8000
+/* Extend hold time for sram0, sram1 csn (39 MHz operation) */
+#define REG_UMI_MMD_ICR_XHCS 0x4000
+/* Enable SDRAM 2 interface control */
+#define REG_UMI_MMD_ICR_SDRAM2EN 0x2000
+/* Enable merge of flash banks 0/1 to 512 MBit bank */
+#define REG_UMI_MMD_ICR_INST512 0x1000
+/* Enable merge of flash banks 1/2 to 512 MBit bank */
+#define REG_UMI_MMD_ICR_DATA512 0x0800
+/* Enable SDRAM interface control */
+#define REG_UMI_MMD_ICR_SDRAMEN 0x0400
+/* Polarity of busy state of Burst Wait Signal */
+#define REG_UMI_MMD_ICR_WAITPOL 0x0200
+/* Enable burst clock stopped when not accessing external burst flash/sram */
+#define REG_UMI_MMD_ICR_BCLKSTOP 0x0100
+/* Enable the peri1_csn to replace flash1_csn in 512 Mb flash mode */
+#define REG_UMI_MMD_ICR_PERI1EN 0x0080
+/* Enable the peri2_csn to replace sdram_csn */
+#define REG_UMI_MMD_ICR_PERI2EN 0x0040
+/* Enable the peri3_csn to replace sdram2_csn */
+#define REG_UMI_MMD_ICR_PERI3EN 0x0020
+/* Enable sram bank1 for H/W controlled MRS */
+#define REG_UMI_MMD_ICR_MRSB1 0x0010
+/* Enable sram bank0 for H/W controlled MRS */
+#define REG_UMI_MMD_ICR_MRSB0 0x0008
+/* Polarity for assert3ed state of H/W controlled MRS */
+#define REG_UMI_MMD_ICR_MRSPOL 0x0004
+/* 0: S/W controllable ZZ/MRS/CRE/P-Mode pin */
+/* 1: H/W controlled ZZ/MRS/CRE/P-Mode, same timing as CS */
+#define REG_UMI_MMD_ICR_MRSMODE 0x0002
+/* MRS state for S/W controlled mode */
+#define REG_UMI_MMD_ICR_MRSSTATE 0x0001
+
+/* REG_UMI_NAND_TCR bits */
+/* Enable software to control CS */
+#define REG_UMI_NAND_TCR_CS_SWCTRL 0x80000000
+/* 16-bit nand wordsize if set */
+#define REG_UMI_NAND_TCR_WORD16 0x40000000
+/* Bus turnaround cycle (n) */
+#define REG_UMI_NAND_TCR_TBTA_MASK 0x00070000
+/* Write pulse width cycle (n+1) */
+#define REG_UMI_NAND_TCR_TWP_MASK 0x0000f800
+/* Write recovery cycle (n+1) */
+#define REG_UMI_NAND_TCR_TWR_MASK 0x00000600
+/* Write address setup cycle (n+1) */
+#define REG_UMI_NAND_TCR_TAS_MASK 0x00000180
+/* Output enable delay cycle (n) */
+#define REG_UMI_NAND_TCR_TOE_MASK 0x00000060
+/* Read access cycle (n+2) */
+#define REG_UMI_NAND_TCR_TRC_TLC_MASK 0x0000001f
+
+/* REG_UMI_NAND_RCSR bits */
+/* Status: Ready=1, Busy=0 */
+#define REG_UMI_NAND_RCSR_RDY 0x02
+/* Keep CS asserted during operation */
+#define REG_UMI_NAND_RCSR_CS_ASSERTED 0x01
+
+/* REG_UMI_NAND_ECC_CSR bits */
+/* Interrupt status - read-only */
+#define REG_UMI_NAND_ECC_CSR_NANDINT 0x80000000
+/* Read: Status of ECC done, Write: clear ECC interrupt */
+#define REG_UMI_NAND_ECC_CSR_ECCINT_RAW 0x00800000
+/* Read: Status of R/B, Write: clear R/B interrupt */
+#define REG_UMI_NAND_ECC_CSR_RBINT_RAW 0x00400000
+/* 1 = Enable ECC Interrupt */
+#define REG_UMI_NAND_ECC_CSR_ECCINT_ENABLE 0x00008000
+/* 1 = Assert interrupt at rising edge of R/B_ */
+#define REG_UMI_NAND_ECC_CSR_RBINT_ENABLE 0x00004000
+/* Calculate ECC by 0=512 bytes, 1=256 bytes */
+#define REG_UMI_NAND_ECC_CSR_256BYTE 0x00000080
+/* Enable ECC in hardware */
+#define REG_UMI_NAND_ECC_CSR_ECC_ENABLE 0x00000001
+
+/* REG_UMI_BCH_CTRL_STATUS bits */
+/* Shift to Indicate Number of correctable errors detected */
+#define REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR_SHIFT 20
+/* Indicate Number of correctable errors detected */
+#define REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR 0x00F00000
+/* Indicate Errors detected during read but uncorrectable */
+#define REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR 0x00080000
+/* Indicate Errors detected during read and are correctable */
+#define REG_UMI_BCH_CTRL_STATUS_CORR_ERR 0x00040000
+/* Flag indicates BCH's ECC status of read process are valid */
+#define REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID 0x00020000
+/* Flag indicates BCH's ECC status of write process are valid */
+#define REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID 0x00010000
+/* Pause ECC calculation */
+#define REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC 0x00000010
+/* Enable Interrupt */
+#define REG_UMI_BCH_CTRL_STATUS_INT_EN 0x00000004
+/* Enable ECC during read */
+#define REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN 0x00000002
+/* Enable ECC during write */
+#define REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN 0x00000001
+/* Mask for location */
+#define REG_UMI_BCH_ERR_LOC_MASK 0x00001FFF
+/* location within a byte */
+#define REG_UMI_BCH_ERR_LOC_BYTE 0x00000007
+/* location within a word */
+#define REG_UMI_BCH_ERR_LOC_WORD 0x00000018
+/* location within a page (512 byte) */
+#define REG_UMI_BCH_ERR_LOC_PAGE 0x00001FE0
+#define REG_UMI_BCH_ERR_LOC_ADDR(index) (__REG32(HW_UMI_BASE + 0x64 + (index / 2)*4) >> ((index % 2) * 16))
+#endif
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 2fda0b6..34598e9 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -203,6 +203,22 @@ config MTD_NAND_S3C2410_CLKSTOP
when the is NAND chip selected or released, but will save
approximately 5mA of power when there is nothing happening.
+config MTD_NAND_BCM_UMI
+ tristate "NAND Flash support for BCM Reference Boards"
+ depends on ARCH_BCMRING && MTD_NAND
+ help
+ This enables the NAND flash controller on the BCM UMI block.
+
+ No board specfic support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_BCM_UMI_HWCS
+ bool "BCM UMI NAND Hardware CS"
+ depends on MTD_NAND_BCM_UMI
+ help
+ Enable the use of the BCM UMI block's internal CS using NAND.
+ This should only be used if you know the external NAND CS can toggle.
+
config MTD_NAND_DISKONCHIP
tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
depends on EXPERIMENTAL
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 6950d3d..460a1f3 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -42,5 +42,6 @@ obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
obj-$(CONFIG_MTD_NAND_W90P910) += w90p910_nand.o
obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o
+obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o
nand-objs := nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/bcm_umi_bch.c b/drivers/mtd/nand/bcm_umi_bch.c
new file mode 100644
index 0000000..a930666
--- /dev/null
+++ b/drivers/mtd/nand/bcm_umi_bch.c
@@ -0,0 +1,213 @@
+/*****************************************************************************
+* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/* ---- Include Files ---------------------------------------------------- */
+#include "nand_bcm_umi.h"
+
+/* ---- External Variable Declarations ----------------------------------- */
+/* ---- External Function Prototypes ------------------------------------- */
+/* ---- Public Variables ------------------------------------------------- */
+/* ---- Private Constants and Types -------------------------------------- */
+
+/* ---- Private Function Prototypes -------------------------------------- */
+static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int page);
+static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf);
+
+/* ---- Private Variables ------------------------------------------------ */
+
+/*
+** nand_hw_eccoob
+** New oob placement block for use with hardware ecc generation.
+*/
+static struct nand_ecclayout nand_hw_eccoob_512 = {
+ /* Reserve 5 for BI indicator */
+ .oobfree = {
+#if (NAND_ECC_NUM_BYTES > 3)
+ {.offset = 0, .length = 2}
+#else
+ {.offset = 0, .length = 5},
+ {.offset = 6, .length = 7}
+#endif
+ }
+};
+
+/*
+** We treat the OOB for a 2K page as if it were 4 512 byte oobs,
+** except the BI is at byte 0.
+*/
+static struct nand_ecclayout nand_hw_eccoob_2048 = {
+ /* Reserve 0 as BI indicator */
+ .oobfree = {
+#if (NAND_ECC_NUM_BYTES > 10)
+ {.offset = 1, .length = 2},
+#elif (NAND_ECC_NUM_BYTES > 7)
+ {.offset = 1, .length = 5},
+ {.offset = 16, .length = 6},
+ {.offset = 32, .length = 6},
+ {.offset = 48, .length = 6}
+#else
+ {.offset = 1, .length = 8},
+ {.offset = 16, .length = 9},
+ {.offset = 32, .length = 9},
+ {.offset = 48, .length = 9}
+#endif
+ }
+};
+
+/* We treat the OOB for a 4K page as if it were 8 512 byte oobs,
+ * except the BI is at byte 0. */
+static struct nand_ecclayout nand_hw_eccoob_4096 = {
+ /* Reserve 0 as BI indicator */
+ .oobfree = {
+#if (NAND_ECC_NUM_BYTES > 10)
+ {.offset = 1, .length = 2},
+ {.offset = 16, .length = 3},
+ {.offset = 32, .length = 3},
+ {.offset = 48, .length = 3},
+ {.offset = 64, .length = 3},
+ {.offset = 80, .length = 3},
+ {.offset = 96, .length = 3},
+ {.offset = 112, .length = 3}
+#else
+ {.offset = 1, .length = 5},
+ {.offset = 16, .length = 6},
+ {.offset = 32, .length = 6},
+ {.offset = 48, .length = 6},
+ {.offset = 64, .length = 6},
+ {.offset = 80, .length = 6},
+ {.offset = 96, .length = 6},
+ {.offset = 112, .length = 6}
+#endif
+ }
+};
+
+/* ---- Private Functions ------------------------------------------------ */
+/* ==== Public Functions ================================================= */
+
+/****************************************************************************
+*
+* bcm_umi_bch_read_page_hwecc - hardware ecc based page read function
+* @mtd: mtd info structure
+* @chip: nand chip info structure
+* @buf: buffer to store read data
+*
+***************************************************************************/
+static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t * buf,
+ int page)
+{
+ int sectorIdx = 0;
+ int eccsize = chip->ecc.size;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *datap = buf;
+ uint8_t eccCalc[NAND_ECC_NUM_BYTES];
+ int sectorOobSize = mtd->oobsize / eccsteps;
+ int stat;
+
+ for (sectorIdx = 0; sectorIdx < eccsteps;
+ sectorIdx++, datap += eccsize) {
+ if (sectorIdx > 0) {
+ /* Seek to page location within sector */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize,
+ -1);
+ }
+
+ /* Enable hardware ECC before reading the buf */
+ nand_bcm_umi_bch_enable_read_hwecc();
+
+ /* Read in data */
+ bcm_umi_nand_read_buf(mtd, datap, eccsize);
+
+ /* Pause hardware ECC after reading the buf */
+ nand_bcm_umi_bch_pause_read_ecc_calc();
+
+ /* Read the OOB ECC */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ mtd->writesize + sectorIdx * sectorOobSize, -1);
+ nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc,
+ NAND_ECC_NUM_BYTES,
+ chip->oob_poi +
+ sectorIdx * sectorOobSize);
+
+ /* Correct any ECC detected errors */
+ stat =
+ nand_bcm_umi_bch_correct_page(datap, eccCalc,
+ NAND_ECC_NUM_BYTES);
+
+ /* Update Stats */
+ if (stat < 0) {
+#if defined(NAND_BCM_UMI_DEBUG)
+ printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n",
+ __func__, sectorIdx);
+ printk(KERN_WARNING
+ "%s data %02x %02x %02x %02x "
+ "%02x %02x %02x %02x\n",
+ __func__, datap[0], datap[1], datap[2], datap[3],
+ datap[4], datap[5], datap[6], datap[7]);
+ printk(KERN_WARNING
+ "%s ecc %02x %02x %02x %02x "
+ "%02x %02x %02x %02x %02x %02x "
+ "%02x %02x %02x\n",
+ __func__, eccCalc[0], eccCalc[1], eccCalc[2],
+ eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6],
+ eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10],
+ eccCalc[11], eccCalc[12]);
+ BUG();
+#endif
+ mtd->ecc_stats.failed++;
+ } else {
+#if defined(NAND_BCM_UMI_DEBUG)
+ if (stat > 0) {
+ printk(KERN_INFO
+ "%s %d correctable_errors detected\n",
+ __func__, stat);
+ }
+#endif
+ mtd->ecc_stats.corrected += stat;
+ }
+ }
+ return 0;
+}
+
+/****************************************************************************
+*
+* bcm_umi_bch_write_page_hwecc - hardware ecc based page write function
+* @mtd: mtd info structure
+* @chip: nand chip info structure
+* @buf: data buffer
+*
+***************************************************************************/
+static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf)
+{
+ int sectorIdx = 0;
+ int eccsize = chip->ecc.size;
+ int eccsteps = chip->ecc.steps;
+ const uint8_t *datap = buf;
+ uint8_t *oobp = chip->oob_poi;
+ int sectorOobSize = mtd->oobsize / eccsteps;
+
+ for (sectorIdx = 0; sectorIdx < eccsteps;
+ sectorIdx++, datap += eccsize, oobp += sectorOobSize) {
+ /* Enable hardware ECC before writing the buf */
+ nand_bcm_umi_bch_enable_write_hwecc();
+ bcm_umi_nand_write_buf(mtd, datap, eccsize);
+ nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp,
+ NAND_ECC_NUM_BYTES);
+ }
+
+ bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c
new file mode 100644
index 0000000..a7e0778
--- /dev/null
+++ b/drivers/mtd/nand/bcm_umi_nand.c
@@ -0,0 +1,792 @@
+/*****************************************************************************
+* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/mach-types.h>
+#include <asm/system.h>
+
+#include <mach/reg_nand.h>
+#include <mach/reg_umi.h>
+
+#include "nand_bcm_umi.h"
+
+#if !defined(CONFIG_ARCH_BCM116X)
+#include <mach/memory_settings.h>
+#endif
+
+#define USE_DMA 1
+#include <mach/dma.h>
+#include <linux/dma-mapping.h>
+#include <linux/completion.h>
+
+#define USE_HWECC 1
+
+/* ---- External Variable Declarations ----------------------------------- */
+/* ---- External Function Prototypes ------------------------------------- */
+/* ---- Public Variables ------------------------------------------------- */
+/* ---- Private Constants and Types -------------------------------------- */
+static char gBanner[] __initdata = KERN_INFO "BCM UMI MTD NAND Driver: 1.00\n";
+
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+#if NAND_ECC_BCH
+static uint8_t scan_ff_pattern[] = { 0xff };
+
+static struct nand_bbt_descr largepage_bbt = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+#endif
+
+/*
+** Preallocate a buffer to avoid having to do this every dma operation.
+** This is the size of the preallocated coherent DMA buffer.
+*/
+#if USE_DMA
+#define DMA_MIN_BUFLEN 512
+#define DMA_MAX_BUFLEN PAGE_SIZE
+#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \
+ ((len) > DMA_MAX_BUFLEN))
+
+#if defined(CONFIG_ARCH_BCMRING)
+/*
+ * The current NAND data space goes from 0x80001900 to 0x80001FFF,
+ * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
+ * size NAND flash. Need to break the DMA down to multiple 1Ks.
+ *
+ * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
+ */
+#define DMA_MAX_LEN 1024
+#endif
+
+#if defined(CONFIG_ARCH_BCM116X)
+
+#define NAND_DMA_CHAN 3
+
+/* Global config is common for both directions. */
+#define DMA_CFG \
+ (REG_DMA_CHAN_CFG_TC_INT_ENABLE \
+ | REG_DMA_CHAN_CFG_ERROR_INT_ENABLE \
+ | REG_DMA_CHAN_CFG_FLOW_CTL_MEM_TO_MEM_DMA \
+ | REG_DMA_CHAN_CFG_ENABLE)
+
+/* Common transfer widths in bits (typically 8, 16, or 32) */
+#define DMA_WIDTH(dstwidth, srcwidth) \
+ (REG_DMA_CHAN_CTL_DEST_WIDTH_##dstwidth \
+ | REG_DMA_CHAN_CTL_SRC_WIDTH_##srcwidth)
+
+/* Common burst sizes - typically 4 */
+#define DMA_BURST(width) \
+ (REG_DMA_CHAN_CTL_DEST_BURST_SIZE_##width \
+ | REG_DMA_CHAN_CTL_SRC_BURST_SIZE_##width)
+
+/* DMA settings for copying from NAND to SDRAM */
+#define DMA_CTRL_NAND_TO_SDRAM(dstwidth, srcwidth, bytes) \
+ (REG_DMA_CHAN_CTL_TC_INT_ENABLE \
+ | REG_DMA_CHAN_CTL_DEST_INCR \
+ | DMA_BURST(4) \
+ | DMA_WIDTH(dstwidth, srcwidth) \
+ | (bytes * 8 / srcwidth))
+
+/* DMA settings for copying from SDRAM to NAND */
+#define DMA_CTRL_SDRAM_TO_NAND(dstwidth, srcwidth, bytes) \
+ (REG_DMA_CHAN_CTL_TC_INT_ENABLE \
+ | REG_DMA_CHAN_CTL_SRC_INCR \
+ | DMA_BURST(4) \
+ | DMA_WIDTH(dstwidth, srcwidth) \
+ | (bytes * 8 / srcwidth))
+
+#endif /* CONFIG_ARCH_BCM116X */
+
+#else /* !USE_DMA */
+#define DMA_MIN_BUFLEN 0
+#define DMA_MAX_BUFLEN 0
+#define USE_DIRECT_IO(len) 1
+#endif
+/* ---- Private Function Prototypes -------------------------------------- */
+static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
+static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
+ int len);
+
+/* ---- Private Variables ------------------------------------------------ */
+static struct mtd_info *board_mtd;
+static void __iomem *bcm_umi_io_base;
+static void *virtPtr;
+static dma_addr_t physPtr;
+static struct completion nand_comp;
+
+/* ---- Private Functions ------------------------------------------------ */
+#if NAND_ECC_BCH
+#include "bcm_umi_bch.c"
+#else
+#include "bcm_umi_hamming.c"
+#endif
+
+#if USE_DMA
+
+#if defined(CONFIG_ARCH_BCM116X)
+static irqreturn_t nand_dma_isr(void *dev_id)
+{
+ complete(&nand_comp);
+ return IRQ_HANDLED;
+}
+
+#elif defined(CONFIG_ARCH_BCMRING)
+
+/****************************************************************************
+*
+* Handler called when the DMA finishes.
+*
+***************************************************************************/
+
+static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
+{
+ complete(&nand_comp);
+}
+
+#endif
+
+/****************************************************************************
+*
+* Function to perform DMA initialization
+*
+***************************************************************************/
+
+static int nand_dma_init(void)
+{
+#if defined(CONFIG_ARCH_BCM116X)
+
+ dma_request_irq(NAND_DMA_CHAN, nand_dma_isr, NULL);
+ dma_enable_irq(NAND_DMA_CHAN);
+ dma_request_chan(NAND_DMA_CHAN, "nand");
+
+#elif defined(CONFIG_ARCH_BCMRING)
+
+ int rc;
+
+ rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
+ nand_dma_handler, NULL);
+ if (rc != 0) {
+ printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
+ return rc;
+ }
+#else
+#error "Unrecognized DMA platform"
+#endif
+
+ virtPtr =
+ dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
+ if (virtPtr == NULL) {
+ printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* Function to perform DMA termination
+*
+***************************************************************************/
+
+static void nand_dma_term(void)
+{
+#if defined(CONFIG_ARCH_BCM116X)
+ dma_free_chan(NAND_DMA_CHAN);
+ dma_free_irq(NAND_DMA_CHAN);
+#elif defined(CONFIG_ARCH_BCMRING)
+ /* Nothing to do */
+#else
+#error "Unrecognized DMA platform"
+#endif
+
+ if (virtPtr != NULL)
+ dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
+}
+
+/****************************************************************************
+*
+* Performs a read via DMA
+*
+***************************************************************************/
+
+static void nand_dma_read(void *buf, int len)
+{
+#if defined(CONFIG_ARCH_BCM116X)
+ int dmactrl;
+
+ init_completion(&nand_comp);
+ dmactrl = DMA_CTRL_NAND_TO_SDRAM(32, 8, len);
+ dma_init_chan(NAND_DMA_CHAN);
+ dma_setup_chan(NAND_DMA_CHAN,
+ REG_NAND_DATA8_PADDR, (int)physPtr, 0, dmactrl, DMA_CFG);
+ wait_for_completion(&nand_comp);
+ if (buf != NULL)
+ memcpy(buf, virtPtr, len);
+
+#elif defined(CONFIG_ARCH_BCMRING)
+ int offset = 0;
+ int tmp_len = 0;
+ int len_left = len;
+ DMA_Handle_t hndl;
+
+ if (virtPtr == NULL)
+ panic("nand_dma_read: virtPtr == NULL\n");
+
+ if ((void *)physPtr == NULL)
+ panic("nand_dma_read: physPtr == NULL\n");
+
+ hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
+ if (hndl < 0) {
+ printk(KERN_ERR
+ "nand_dma_read: unable to allocate dma channel: %d\n",
+ (int)hndl);
+ panic("\n");
+ }
+
+ while (len_left > 0) {
+ if (len_left > DMA_MAX_LEN) {
+ tmp_len = DMA_MAX_LEN;
+ len_left -= DMA_MAX_LEN;
+ } else {
+ tmp_len = len_left;
+ len_left = 0;
+ }
+
+ init_completion(&nand_comp);
+ dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
+ physPtr + offset, tmp_len);
+ wait_for_completion(&nand_comp);
+
+ offset += tmp_len;
+ }
+
+ dma_free_channel(hndl);
+
+ if (buf != NULL)
+ memcpy(buf, virtPtr, len);
+
+#else
+#error "Unrecognized DMA platform"
+#endif
+}
+
+/****************************************************************************
+*
+* Performs a write via DMA
+*
+***************************************************************************/
+
+static void nand_dma_write(const void *buf, int len)
+{
+#if defined(CONFIG_ARCH_BCM116X)
+ int dmactrl;
+
+ memcpy(virtPtr, buf, len);
+ init_completion(&nand_comp);
+
+ dmactrl = DMA_CTRL_SDRAM_TO_NAND(8, 32, len);
+ dma_init_chan(NAND_DMA_CHAN);
+ dma_setup_chan(NAND_DMA_CHAN,
+ (int)physPtr, REG_NAND_DATA8_PADDR, 0, dmactrl, DMA_CFG);
+ wait_for_completion(&nand_comp);
+
+#elif defined(CONFIG_ARCH_BCMRING)
+ int offset = 0;
+ int tmp_len = 0;
+ int len_left = len;
+ DMA_Handle_t hndl;
+
+ if (buf == NULL)
+ panic("nand_dma_write: buf == NULL\n");
+
+ if (virtPtr == NULL)
+ panic("nand_dma_write: virtPtr == NULL\n");
+
+ if ((void *)physPtr == NULL)
+ panic("nand_dma_write: physPtr == NULL\n");
+
+ memcpy(virtPtr, buf, len);
+
+
+ hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
+ if (hndl < 0) {
+ printk(KERN_ERR
+ "nand_dma_write: unable to allocate dma channel: %d\n",
+ (int)hndl);
+ panic("\n");
+ }
+
+ while (len_left > 0) {
+ if (len_left > DMA_MAX_LEN) {
+ tmp_len = DMA_MAX_LEN;
+ len_left -= DMA_MAX_LEN;
+ } else {
+ tmp_len = len_left;
+ len_left = 0;
+ }
+
+ init_completion(&nand_comp);
+ dma_transfer_mem_to_mem(hndl, physPtr + offset,
+ REG_NAND_DATA_PADDR, tmp_len);
+ wait_for_completion(&nand_comp);
+
+ offset += tmp_len;
+ }
+
+ dma_free_channel(hndl);
+#else
+#error "Unrecognized DMA platform"
+#endif
+}
+
+#endif
+
+/****************************************************************************
+*
+* nand_dev_ready
+*
+* Routine to check if nand is ready.
+*
+***************************************************************************/
+static int nand_dev_ready(struct mtd_info *mtd)
+{
+ return nand_bcm_umi_dev_ready();
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_inithw
+*
+* This routine does the necessary hardware (board-specific)
+* initializations. This includes setting up the timings, etc.
+*
+***************************************************************************/
+
+int bcm_umi_nand_inithw(void)
+{
+ /* Configure nand timing parameters */
+#if defined(CONFIG_ARCH_BCM116X)
+/*
+ * waiten = 0
+ * lowfreq = 0
+ * memtype async r/w, no page mode = 000
+ * pgsz = 000
+ * tprc_twlc = 00000 Page read access cycle/Burst write latency (n+2/n+1)
+ * tbta = 001 Bus turnaround cycle (n)
+ * twp = 00100 Write pulse width cycle (n+1)
+ * twr = 00 Write recovery cycle (n+1)
+ * tas = 00 Write address setup cycle (n+1)
+ * toe = 00 Output enable delay cycle (n)
+ * trc_tlc = 00011 Read access cycle / Burst read latency (n+2 / n+1)
+ */
+ REG_UMI_FLASH0_TCR = 0x00012003;
+#endif
+
+ REG_UMI_NAND_TCR &= ~0x7ffff;
+#if defined(CONFIG_ARCH_BCM116X)
+/*
+ * tbta = 001 Bus turnaround cycle (n)
+ * twp = 00100 Write pulse width cycle (n+1)
+ * twr = 00 Write recovery cycle (n+1)
+ * tas = 00 Write address setup cycle (n+1)
+ * toe = 00 Output enable delay cycle (n)
+ * trc_tlc = 00011 Read access cycle / Burst read latency (n+2 / n+1)
+ */
+ REG_UMI_NAND_TCR |= 0x72003;
+#else
+ REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
+#endif
+
+#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
+ /* enable software control of CS */
+ REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
+#endif
+
+ /* keep NAND chip select asserted */
+ REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
+
+ REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
+ /* enable writes to flash */
+ REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
+
+ writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
+ nand_bcm_umi_wait_till_ready();
+
+#if NAND_ECC_BCH
+ nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
+#endif
+
+ return 0;
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_hwcontrol
+*
+* Used to turn latch the proper register for access.
+*
+***************************************************************************/
+
+static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
+{
+ /* send command to hardware */
+ struct nand_chip *chip = mtd->priv;
+ if (ctrl & NAND_CTRL_CHANGE) {
+ if (ctrl & NAND_CLE) {
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
+ goto CMD;
+ }
+ if (ctrl & NAND_ALE) {
+ chip->IO_ADDR_W =
+ bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
+ goto CMD;
+ }
+ chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+ }
+
+CMD:
+ /* Send command to chip directly */
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, chip->IO_ADDR_W);
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_write_buf - write buffer to chip
+* @mtd: MTD device structure
+* @buf: data buffer
+* @len: number of bytes to write
+*
+***************************************************************************/
+static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
+ int len)
+{
+ if (USE_DIRECT_IO(len)) {
+ /* Do it the old way if the buffer is small or too large.
+ * Probably quicker than starting and checking dma. */
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i = 0; i < len; i++)
+ writeb(buf[i], this->IO_ADDR_W);
+ }
+#if USE_DMA
+ else
+ nand_dma_write(buf, len);
+#endif
+}
+
+/****************************************************************************
+*
+* nand_read_buf - read chip data into buffer
+* @mtd: MTD device structure
+* @buf: buffer to store data
+* @len: number of bytes to read
+*
+***************************************************************************/
+
+static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
+{
+ if (USE_DIRECT_IO(len)) {
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i = 0; i < len; i++)
+ buf[i] = readb(this->IO_ADDR_R);
+ }
+#if USE_DMA
+ else
+ nand_dma_read(buf, len);
+#endif
+}
+
+/****************************************************************************
+*
+* bcm_umi_nand_verify_buf - Verify chip data against buffer
+* @mtd: MTD device structure
+* @buf: buffer containing the data to compare
+* @len: number of bytes to compare
+*
+***************************************************************************/
+static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
+static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
+ int len)
+{
+ /*
+ * Try to readback page with ECC correction. This is necessary
+ * for MLC parts which may have permanently stuck bits.
+ */
+ struct nand_chip *chip = mtd->priv;
+ int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
+ if (ret < 0)
+ return -EFAULT;
+ else {
+ if (memcmp(readbackbuf, buf, len) == 0)
+ return 0;
+
+ return -EFAULT;
+ }
+ return 0;
+}
+
+static int bcm_umi_nand_probe(struct platform_device *pdev)
+{
+ struct nand_chip *this;
+ int err = 0;
+
+ printk(gBanner);
+
+ /* Allocate memory for MTD device structure and private data */
+ board_mtd =
+ kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
+ GFP_KERNEL);
+ if (!board_mtd) {
+ printk(KERN_WARNING
+ "Unable to allocate NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical adress */
+#ifdef CONFIG_ARCH_BCMRING
+ bcm_umi_io_base = ioremap(MM_ADDR_IO_NAND, 0x1000);
+#else
+ bcm_umi_io_base = ioremap(0x08000000, 0x1000);
+#endif
+
+ if (!bcm_umi_io_base) {
+ printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
+ kfree(board_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *)(&board_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *)board_mtd, 0, sizeof(struct mtd_info));
+ memset((char *)this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ board_mtd->priv = this;
+
+ /* Initialize the NAND hardware. */
+ if (bcm_umi_nand_inithw() < 0) {
+ printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return -EIO;
+ }
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+ this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
+
+ /* Set command delay time, see datasheet for correct value */
+ this->chip_delay = 0;
+ /* Assign the device ready function, if available */
+ this->dev_ready = nand_dev_ready;
+ this->options = 0;
+
+ this->write_buf = bcm_umi_nand_write_buf;
+ this->read_buf = bcm_umi_nand_read_buf;
+ this->verify_buf = bcm_umi_nand_verify_buf;
+
+ this->cmd_ctrl = bcm_umi_nand_hwcontrol;
+#if USE_HWECC
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ this->ecc.bytes = NAND_ECC_NUM_BYTES;
+
+#if NAND_ECC_BCH
+ this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
+ this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
+#else
+ this->ecc.correct = nand_correct_data512;
+ this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
+ this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
+#endif
+#else
+ this->ecc.mode = NAND_ECC_SOFT;
+#endif
+
+#if USE_DMA
+ err = nand_dma_init();
+ if (err != 0)
+ return err;
+#endif
+
+ /* Figure out the size of the device that we have.
+ * We need to do this to figure out which ECC
+ * layout we'll be using.
+ */
+
+ err = nand_scan_ident(board_mtd, 1);
+ if (err) {
+ printk(KERN_ERR "nand_scan failed: %d\n", err);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return err;
+ }
+
+ /* Now that we know the nand size, we can setup the ECC layout */
+
+#if USE_HWECC
+ switch (board_mtd->writesize) { /* writesize is the pagesize */
+ case 4096:
+ this->ecc.layout = &nand_hw_eccoob_4096;
+ break;
+ case 2048:
+ this->ecc.layout = &nand_hw_eccoob_2048;
+ break;
+ case 512:
+ this->ecc.layout = &nand_hw_eccoob_512;
+ break;
+ default:
+ {
+ printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
+ board_mtd->writesize);
+ return -EINVAL;
+ }
+ }
+#endif
+
+#if NAND_ECC_BCH
+ if (board_mtd->writesize > 512) {
+ if (this->options & NAND_USE_FLASH_BBT)
+ largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
+ this->badblock_pattern = &largepage_bbt;
+ }
+#endif
+
+ /* Now finish off the scan, now that ecc.layout has been initialized. */
+
+ err = nand_scan_tail(board_mtd);
+ if (err) {
+ printk(KERN_ERR "nand_scan failed: %d\n", err);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return err;
+ }
+
+ /* Register the partitions */
+ {
+ int nr_partitions;
+ struct mtd_partition *partition_info;
+
+ board_mtd->name = "bcm_umi-nand";
+ nr_partitions =
+ parse_mtd_partitions(board_mtd, part_probes,
+ &partition_info, 0);
+
+ if (nr_partitions <= 0) {
+ printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n",
+ nr_partitions);
+ iounmap(bcm_umi_io_base);
+ kfree(board_mtd);
+ return -EIO;
+ }
+ add_mtd_partitions(board_mtd, partition_info, nr_partitions);
+ }
+
+ /* Return happy */
+ return 0;
+}
+
+static int bcm_umi_nand_remove(struct platform_device *pdev)
+{
+#if USE_DMA
+ nand_dma_term();
+#endif
+
+ /* Release resources, unregister device */
+ nand_release(board_mtd);
+
+ /* unmap physical adress */
+ iounmap(bcm_umi_io_base);
+
+ /* Free the MTD device structure */
+ kfree(board_mtd);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int bcm_umi_nand_suspend(struct platform_device *pdev,
+ pm_message_t state)
+{
+ printk(KERN_ERR "MTD NAND suspend is being called\n");
+ return 0;
+}
+
+static int bcm_umi_nand_resume(struct platform_device *pdev)
+{
+ printk(KERN_ERR "MTD NAND resume is being called\n");
+ return 0;
+}
+#else
+#define bcm_umi_nand_suspend NULL
+#define bcm_umi_nand_resume NULL
+#endif
+
+static struct platform_driver nand_driver = {
+ .driver = {
+ .name = "bcm-nand",
+ .owner = THIS_MODULE,
+ },
+ .probe = bcm_umi_nand_probe,
+ .remove = bcm_umi_nand_remove,
+ .suspend = bcm_umi_nand_suspend,
+ .resume = bcm_umi_nand_resume,
+};
+
+static int __init nand_init(void)
+{
+ return platform_driver_register(&nand_driver);
+}
+
+static void __exit nand_exit(void)
+{
+ platform_driver_unregister(&nand_driver);
+}
+
+module_init(nand_init);
+module_exit(nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Broadcom");
+MODULE_DESCRIPTION("BCM UMI MTD NAND driver");
diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c
new file mode 100644
index 0000000..46a6bc9
--- /dev/null
+++ b/drivers/mtd/nand/nand_bcm_umi.c
@@ -0,0 +1,149 @@
+/*****************************************************************************
+* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <mach/reg_umi.h>
+#include "nand_bcm_umi.h"
+#ifdef BOOT0_BUILD
+#include <uart.h>
+#endif
+
+/* ---- External Variable Declarations ----------------------------------- */
+/* ---- External Function Prototypes ------------------------------------- */
+/* ---- Public Variables ------------------------------------------------- */
+/* ---- Private Constants and Types -------------------------------------- */
+/* ---- Private Function Prototypes -------------------------------------- */
+/* ---- Private Variables ------------------------------------------------ */
+/* ---- Private Functions ------------------------------------------------ */
+
+#if NAND_ECC_BCH
+/****************************************************************************
+* nand_bch_ecc_flip_bit - Routine to flip an errored bit
+*
+* PURPOSE:
+* This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the
+* errored bit specified
+*
+* PARAMETERS:
+* datap - Container that holds the 512 byte data
+* errorLocation - Location of the bit that needs to be flipped
+*
+* RETURNS:
+* None
+****************************************************************************/
+static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation)
+{
+ int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0;
+ int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3;
+ int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5;
+
+ uint8_t errorByte = 0;
+ uint8_t byteMask = 1 << locWithinAByte;
+
+ /* BCH uses big endian, need to change the location
+ * bits to little endian */
+ locWithinAWord = 3 - locWithinAWord;
+
+ errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord];
+
+#ifdef BOOT0_BUILD
+ puthexs("\nECC Correct Offset: ",
+ locWithinAPage * sizeof(uint32_t) + locWithinAWord);
+ puthexs(" errorByte:", errorByte);
+ puthex8(" Bit: ", locWithinAByte);
+#endif
+
+ if (errorByte & byteMask) {
+ /* bit needs to be cleared */
+ errorByte &= ~byteMask;
+ } else {
+ /* bit needs to be set */
+ errorByte |= byteMask;
+ }
+
+ /* write back the value with the fixed bit */
+ datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte;
+}
+
+/****************************************************************************
+* nand_correct_page_bch - Routine to correct bit errors when reading NAND
+*
+* PURPOSE:
+* This routine reads the BCH registers to determine if there are any bit
+* errors during the read of the last 512 bytes of data + ECC bytes. If
+* errors exists, the routine fixes it.
+*
+* PARAMETERS:
+* datap - Container that holds the 512 byte data
+*
+* RETURNS:
+* 0 or greater = Number of errors corrected
+* (No errors are found or errors have been fixed)
+* -1 = Error(s) cannot be fixed
+****************************************************************************/
+int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
+ int numEccBytes)
+{
+ int numErrors;
+ int errorLocation;
+ int idx;
+ uint32_t regValue;
+
+ /* wait for read ECC to be valid */
+ regValue = nand_bcm_umi_bch_poll_read_ecc_calc();
+
+ /*
+ * read the control status register to determine if there
+ * are error'ed bits
+ * see if errors are correctible
+ */
+ if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) {
+ int i;
+
+ for (i = 0; i < numEccBytes; i++) {
+ if (readEccData[i] != 0xff) {
+ /* errors cannot be fixed, return -1 */
+ return -1;
+ }
+ }
+ /* If ECC is unprogrammed then we can't correct,
+ * assume everything OK */
+ return 0;
+ }
+
+ if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) {
+ /* no errors */
+ return 0;
+ }
+
+ /*
+ * Fix errored bits by doing the following:
+ * 1. Read the number of errors in the control and status register
+ * 2. Read the error location registers that corresponds to the number
+ * of errors reported
+ * 3. Invert the bit in the data
+ */
+ numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20;
+
+ for (idx = 0; idx < numErrors; idx++) {
+ errorLocation =
+ REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK;
+
+ /* Flip bit */
+ nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation);
+ }
+ /* Errors corrected */
+ return numErrors;
+}
+#endif
diff --git a/drivers/mtd/nand/nand_bcm_umi.h b/drivers/mtd/nand/nand_bcm_umi.h
new file mode 100644
index 0000000..7cec2cd
--- /dev/null
+++ b/drivers/mtd/nand/nand_bcm_umi.h
@@ -0,0 +1,358 @@
+/*****************************************************************************
+* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved.
+*
+* Unless you and Broadcom execute a separate written software license
+* agreement governing use of this software, this software is licensed to you
+* under the terms of the GNU General Public License version 2, available at
+* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
+*
+* Notwithstanding the above, under no circumstances may you combine this
+* software in any way with any other Broadcom software provided under a
+* license other than the GPL, without Broadcom's express prior written
+* consent.
+*****************************************************************************/
+#ifndef NAND_BCM_UMI_H
+#define NAND_BCM_UMI_H
+
+/* ---- Include Files ---------------------------------------------------- */
+#include <mach/reg_umi.h>
+#include <mach/reg_nand.h>
+#include <cfg_global.h>
+
+/* ---- Constants and Types ---------------------------------------------- */
+#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
+#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
+#else
+#define NAND_ECC_BCH 0
+#endif
+
+#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13
+
+#if NAND_ECC_BCH
+#ifdef BOOT0_BUILD
+#define NAND_ECC_NUM_BYTES 13
+#else
+#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES
+#endif
+#else
+#define NAND_ECC_NUM_BYTES 3
+#endif
+
+#define NAND_DATA_ACCESS_SIZE 512
+
+/* ---- Variable Externs ------------------------------------------ */
+/* ---- Function Prototypes --------------------------------------- */
+int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
+ int numEccBytes);
+
+/* Check in device is ready */
+static inline int nand_bcm_umi_dev_ready(void)
+{
+ return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY;
+}
+
+/* Wait until device is ready */
+static inline void nand_bcm_umi_wait_till_ready(void)
+{
+ while (nand_bcm_umi_dev_ready() == 0)
+ ;
+}
+
+/* Enable Hamming ECC */
+static inline void nand_bcm_umi_hamming_enable_hwecc(void)
+{
+ /* disable and reset ECC, 512 byte page */
+ REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
+ REG_UMI_NAND_ECC_CSR_256BYTE);
+ /* enable ECC */
+ REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE;
+}
+
+#if NAND_ECC_BCH
+/* BCH ECC specifics */
+#define ECC_BITS_PER_CORRECTABLE_BIT 13
+
+/* Enable BCH Read ECC */
+static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
+{
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
+ /* Turn on ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
+}
+
+/* Enable BCH Write ECC */
+static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
+{
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
+ /* Turn on ECC */
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
+}
+
+/* Config number of BCH ECC bytes */
+static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
+{
+ uint32_t nValue;
+ uint32_t tValue;
+ uint32_t kValue;
+ uint32_t numBits = numEccBytes * 8;
+
+ /* disable and reset ECC */
+ REG_UMI_BCH_CTRL_STATUS =
+ REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
+ REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
+
+ /* Every correctible bit requires 13 ECC bits */
+ tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);
+
+ /* Total data in number of bits for generating and computing BCH ECC */
+ nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
+
+ /* K parameter is used internally. K = N - (T * 13) */
+ kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);
+
+ /* Write the settings */
+ REG_UMI_BCH_N = nValue;
+ REG_UMI_BCH_T = tValue;
+ REG_UMI_BCH_K = kValue;
+}
+
+/* Pause during ECC read calculation to skip bytes in OOB */
+static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
+{
+ REG_UMI_BCH_CTRL_STATUS =
+ REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
+ REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
+}
+
+/* Resume during ECC read calculation after skipping bytes in OOB */
+static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
+{
+ REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
+}
+
+/* Poll read ECC calc to check when hardware completes */
+static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
+{
+ uint32_t regVal;
+
+ do {
+ /* wait for ECC to be valid */
+ regVal = REG_UMI_BCH_CTRL_STATUS;
+ } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
+
+ return regVal;
+}
+
+/* Poll write ECC calc to check when hardware completes */
+static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
+{
+ /* wait for ECC to be valid */
+ while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
+ == 0)
+ ;
+}
+
+/* Read the OOB and ECC, for kernel write OOB to a buffer */
+#if defined(__KERNEL__) && !defined(STANDALONE)
+static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
+ uint8_t *eccCalc, int numEccBytes, uint8_t *oobp)
+#else
+static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
+ uint8_t *eccCalc, int numEccBytes)
+#endif
+{
+ int eccPos = 0;
+ int numToRead = 16; /* There are 16 bytes per sector in the OOB */
+
+ /* ECC is already paused when this function is called */
+
+ if (pageSize == NAND_DATA_ACCESS_SIZE) {
+ while (numToRead > numEccBytes) {
+ /* skip free oob region */
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp++ = REG_NAND_DATA8;
+#else
+ REG_NAND_DATA8;
+#endif
+ numToRead--;
+ }
+
+ /* read ECC bytes before BI */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+
+ while (numToRead > 11) {
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp = REG_NAND_DATA8;
+ eccCalc[eccPos++] = *oobp;
+ oobp++;
+#else
+ eccCalc[eccPos++] = REG_NAND_DATA8;
+#endif
+ }
+
+ nand_bcm_umi_bch_pause_read_ecc_calc();
+
+ if (numToRead == 11) {
+ /* read BI */
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp++ = REG_NAND_DATA8;
+#else
+ REG_NAND_DATA8;
+#endif
+ numToRead--;
+ }
+
+ /* read ECC bytes */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+ while (numToRead) {
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp = REG_NAND_DATA8;
+ eccCalc[eccPos++] = *oobp;
+ oobp++;
+#else
+ eccCalc[eccPos++] = REG_NAND_DATA8;
+#endif
+ numToRead--;
+ }
+ } else {
+ /* skip BI */
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp++ = REG_NAND_DATA8;
+#else
+ REG_NAND_DATA8;
+#endif
+ numToRead--;
+
+ while (numToRead > numEccBytes) {
+ /* skip free oob region */
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp++ = REG_NAND_DATA8;
+#else
+ REG_NAND_DATA8;
+#endif
+ numToRead--;
+ }
+
+ /* read ECC bytes */
+ nand_bcm_umi_bch_resume_read_ecc_calc();
+ while (numToRead) {
+#if defined(__KERNEL__) && !defined(STANDALONE)
+ *oobp = REG_NAND_DATA8;
+ eccCalc[eccPos++] = *oobp;
+ oobp++;
+#else
+ eccCalc[eccPos++] = REG_NAND_DATA8;
+#endif
+ numToRead--;
+ }
+ }
+}
+
+/* Helper function to write ECC */
+static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos,
+ uint8_t *oobp, uint8_t eccVal)
+{
+ if (eccBytePos <= numEccBytes)
+ *oobp = eccVal;
+}
+
+/* Write OOB with ECC */
+static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
+ uint8_t *oobp, int numEccBytes)
+{
+ uint32_t eccVal = 0xffffffff;
+
+ /* wait for write ECC to be valid */
+ nand_bcm_umi_bch_poll_write_ecc_calc();
+
+ /*
+ ** Get the hardware ecc from the 32-bit result registers.
+ ** Read after 512 byte accesses. Format B3B2B1B0
+ ** where B3 = ecc3, etc.
+ */
+
+ if (pageSize == NAND_DATA_ACCESS_SIZE) {
+ /* Now fill in the ECC bytes */
+ if (numEccBytes >= 13)
+ eccVal = REG_UMI_BCH_WR_ECC_3;
+
+ /* Usually we skip CM in oob[0,1] */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
+ (eccVal >> 16) & 0xff);
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1],
+ (eccVal >> 8) & 0xff);
+
+ /* Write ECC in oob[2,3,4] */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2],
+ eccVal & 0xff); /* ECC 12 */
+
+ if (numEccBytes >= 9)
+ eccVal = REG_UMI_BCH_WR_ECC_2;
+
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
+ (eccVal >> 24) & 0xff); /* ECC11 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4],
+ (eccVal >> 16) & 0xff); /* ECC10 */
+
+ /* Always Skip BI in oob[5] */
+ } else {
+ /* Always Skip BI in oob[0] */
+
+ /* Now fill in the ECC bytes */
+ if (numEccBytes >= 13)
+ eccVal = REG_UMI_BCH_WR_ECC_3;
+
+ /* Usually skip CM in oob[1,2] */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
+ (eccVal >> 16) & 0xff);
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2],
+ (eccVal >> 8) & 0xff);
+
+ /* Write ECC in oob[3-15] */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3],
+ eccVal & 0xff); /* ECC12 */
+
+ if (numEccBytes >= 9)
+ eccVal = REG_UMI_BCH_WR_ECC_2;
+
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
+ (eccVal >> 24) & 0xff); /* ECC11 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5],
+ (eccVal >> 16) & 0xff); /* ECC10 */
+ }
+
+ /* Fill in the remainder of ECC locations */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6],
+ (eccVal >> 8) & 0xff); /* ECC9 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7],
+ eccVal & 0xff); /* ECC8 */
+
+ if (numEccBytes >= 5)
+ eccVal = REG_UMI_BCH_WR_ECC_1;
+
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
+ (eccVal >> 24) & 0xff); /* ECC7 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9],
+ (eccVal >> 16) & 0xff); /* ECC6 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10],
+ (eccVal >> 8) & 0xff); /* ECC5 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11],
+ eccVal & 0xff); /* ECC4 */
+
+ if (numEccBytes >= 1)
+ eccVal = REG_UMI_BCH_WR_ECC_0;
+
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
+ (eccVal >> 24) & 0xff); /* ECC3 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13],
+ (eccVal >> 16) & 0xff); /* ECC2 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14],
+ (eccVal >> 8) & 0xff); /* ECC1 */
+ NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15],
+ eccVal & 0xff); /* ECC0 */
+}
+#endif
+
+#endif /* NAND_BCM_UMI_H */
--
1.6.0.6
--
Leo Hao Chen
------------------------
Life is short, run long.
More information about the linux-mtd
mailing list