[PATCH] [MTD] [NAND] Add OMAP2 / OMAP3 NAND driver
vimal singh
vimalsingh at ti.com
Fri Apr 24 02:40:50 EDT 2009
I do not see this patch in the tree, although no comments reported.
CC'ing to David Woodhouse.
---
vimal
> This driver is present in the OMAP tree, now pushing it to MTD.
>
> Original author(s):
> Jian Zhang <jzhang at ti.com>
>
> Signed-off-by: Vimal Singh <vimalsingh at ti.com>
> ---
> drivers/mtd/nand/Kconfig | 6
> drivers/mtd/nand/Makefile | 1
> drivers/mtd/nand/omap2.c | 755
> ++++++++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 762 insertions(+)
>
> Index: mtd-2.6/drivers/mtd/nand/Kconfig
> ===================================================================
> --- mtd-2.6.orig/drivers/mtd/nand/Kconfig 2009-04-06 11:58:42 +0530
> +++ mtd-2.6/drivers/mtd/nand/Kconfig 2009-04-06 11:59:09 +0530
> @@ -74,6 +74,12 @@
> help
> Support for NAND flash on Amstrad E3 (Delta).
>
> +config MTD_NAND_OMAP2
> + tristate "NAND Flash device on OMAP2 and OMAP3"
> + depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3)
> + help
> + Support for NAND flash on Texas Instruments OMAP2 and OMAP3
> platforms.
> +
> config MTD_NAND_TS7250
> tristate "NAND Flash device on TS-7250 board"
> depends on MACH_TS72XX
> Index: mtd-2.6/drivers/mtd/nand/Makefile
> ===================================================================
> --- mtd-2.6.orig/drivers/mtd/nand/Makefile 2009-04-06 11:58:42 +0530
> +++ mtd-2.6/drivers/mtd/nand/Makefile 2009-04-06 11:59:09 +0530
> @@ -25,6 +25,7 @@
> obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
> obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
> obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
> +obj-$(CONFIG_MTD_NAND_OMAP2) += omap2.o
> obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
> obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o
> obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
> Index: mtd-2.6/drivers/mtd/nand/omap2.c
> ===================================================================
> --- /dev/null 1970-01-01 00:00:00 +0000
> +++ mtd-2.6/drivers/mtd/nand/omap2.c 2009-04-06 11:59:14 +0530
> @@ -0,0 +1,755 @@
> +/*
> + * drivers/mtd/nand/omap2.c
> + *
> + * Copyright (c) 2004 Texas Instruments, Jian Zhang <jzhang at ti.com>
> + * Copyright (c) 2004 Micron Technology Inc.
> + * Copyright (c) 2004 David Brownell
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License version 2 as
> + * published by the Free Software Foundation.
> + */
> +
> +#include <linux/platform_device.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/delay.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/io.h>
> +
> +#include <asm/dma.h>
> +
> +#include <mach/gpmc.h>
> +#include <mach/nand.h>
> +
> +#define GPMC_IRQ_STATUS 0x18
> +#define GPMC_ECC_CONFIG 0x1F4
> +#define GPMC_ECC_CONTROL 0x1F8
> +#define GPMC_ECC_SIZE_CONFIG 0x1FC
> +#define GPMC_ECC1_RESULT 0x200
> +
> +#define DRIVER_NAME "omap2-nand"
> +#define NAND_IO_SIZE SZ_4K
> +
> +#define NAND_WP_ON 1
> +#define NAND_WP_OFF 0
> +#define NAND_WP_BIT 0x00000010
> +#define WR_RD_PIN_MONITORING 0x00600000
> +
> +#define GPMC_BUF_FULL 0x00000001
> +#define GPMC_BUF_EMPTY 0x00000000
> +
> +#define NAND_Ecc_P1e (1 << 0)
> +#define NAND_Ecc_P2e (1 << 1)
> +#define NAND_Ecc_P4e (1 << 2)
> +#define NAND_Ecc_P8e (1 << 3)
> +#define NAND_Ecc_P16e (1 << 4)
> +#define NAND_Ecc_P32e (1 << 5)
> +#define NAND_Ecc_P64e (1 << 6)
> +#define NAND_Ecc_P128e (1 << 7)
> +#define NAND_Ecc_P256e (1 << 8)
> +#define NAND_Ecc_P512e (1 << 9)
> +#define NAND_Ecc_P1024e (1 << 10)
> +#define NAND_Ecc_P2048e (1 << 11)
> +
> +#define NAND_Ecc_P1o (1 << 16)
> +#define NAND_Ecc_P2o (1 << 17)
> +#define NAND_Ecc_P4o (1 << 18)
> +#define NAND_Ecc_P8o (1 << 19)
> +#define NAND_Ecc_P16o (1 << 20)
> +#define NAND_Ecc_P32o (1 << 21)
> +#define NAND_Ecc_P64o (1 << 22)
> +#define NAND_Ecc_P128o (1 << 23)
> +#define NAND_Ecc_P256o (1 << 24)
> +#define NAND_Ecc_P512o (1 << 25)
> +#define NAND_Ecc_P1024o (1 << 26)
> +#define NAND_Ecc_P2048o (1 << 27)
> +
> +#define TF(value) (value ? 1 : 0)
> +
> +#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
> +#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
> +#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
> +#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
> +#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
> +#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
> +#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
> +#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
> +
> +#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
> +#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
> +#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
> +#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
> +#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
> +#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
> +#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
> +#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
> +
> +#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
> +#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
> +#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
> +#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
> +#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
> +#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
> +#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
> +#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
> +
> +#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
> +#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
> +#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
> +#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
> +#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
> +#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
> +#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
> +#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
> +
> +#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
> +#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
> +
> +#ifdef CONFIG_MTD_PARTITIONS
> +static const char *part_probes[] = { "cmdlinepart", NULL };
> +#endif
> +
> +struct omap_nand_info {
> + struct nand_hw_control controller;
> + struct omap_nand_platform_data *pdata;
> + struct mtd_info mtd;
> + struct mtd_partition *parts;
> + struct nand_chip nand;
> + struct platform_device *pdev;
> +
> + int gpmc_cs;
> + unsigned long phys_base;
> + void __iomem *gpmc_cs_baseaddr;
> + void __iomem *gpmc_baseaddr;
> +};
> +
> +/*
> + * omap_nand_wp - This function enable or disable the Write Protect feature on
> + * NAND device
> + * @mtd: MTD device structure
> + * @mode: WP ON/OFF
> + */
> +static void omap_nand_wp(struct mtd_info *mtd, int mode)
> +{
> + struct omap_nand_info *info = container_of(mtd,
> + struct omap_nand_info, mtd);
> +
> + unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
> +
> + if (mode)
> + config &= ~(NAND_WP_BIT); /* WP is ON */
> + else
> + config |= (NAND_WP_BIT); /* WP is OFF */
> +
> + __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
> +}
> +
> +/*
> + * hardware specific access to control-lines
> + * NOTE: boards may use different bits for these!!
> + *
> + * ctrl:
> + * NAND_NCE: bit 0 - don't care
> + * NAND_CLE: bit 1 -> Command Latch
> + * NAND_ALE: bit 2 -> Address Latch
> + */
> +static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
> +{
> + struct omap_nand_info *info = container_of(mtd,
> + struct omap_nand_info, mtd);
> + switch (ctrl) {
> + case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
> + info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_COMMAND;
> + info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_DATA;
> + break;
> +
> + case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
> + info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_ADDRESS;
> + info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_DATA;
> + break;
> +
> + case NAND_CTRL_CHANGE | NAND_NCE:
> + info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_DATA;
> + info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_DATA;
> + break;
> + }
> +
> + if (cmd != NAND_CMD_NONE)
> + __raw_writeb(cmd, info->nand.IO_ADDR_W);
> +}
> +
> +/*
> + * omap_read_buf16 - read data from NAND controller into buffer
> + * @mtd: MTD device structure
> + * @buf: buffer to store date
> + * @len: number of bytes to read
> + */
> +static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
> +{
> + struct nand_chip *nand = mtd->priv;
> +
> + __raw_readsw(nand->IO_ADDR_R, buf, len / 2);
> +}
> +
> +/*
> + * omap_write_buf16 - write buffer to NAND controller
> + * @mtd: MTD device structure
> + * @buf: data buffer
> + * @len: number of bytes to write
> + */
> +static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int
> len)
> +{
> + struct omap_nand_info *info = container_of(mtd,
> + struct omap_nand_info, mtd);
> + u16 *p = (u16 *) buf;
> +
> + /* FIXME try bursts of writesw() or DMA ... */
> + len >>= 1;
> +
> + while (len--) {
> + writew(*p++, info->nand.IO_ADDR_W);
> +
> + while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
> + GPMC_STATUS) & GPMC_BUF_FULL));
> + }
> +}
> +/*
> + * omap_verify_buf - Verify chip data against buffer
> + * @mtd: MTD device structure
> + * @buf: buffer containing the data to compare
> + * @len: number of bytes to compare
> + */
> +static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
> +{
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + u16 *p = (u16 *) buf;
> +
> + len >>= 1;
> +
> + while (len--) {
> +
> + if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
> + return -EFAULT;
> + }
> +
> + return 0;
> +}
> +
> +#ifdef CONFIG_MTD_NAND_OMAP_HWECC
> +/*
> + * omap_hwecc_init-Initialize the Hardware ECC for NAND flash in GPMC
> controller
> + * @mtd: MTD device structure
> + */
> +static void omap_hwecc_init(struct mtd_info *mtd)
> +{
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + register struct nand_chip *chip = mtd->priv;
> + unsigned long val = 0x0;
> +
> + /* Read from ECC Control Register */
> + val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
> + /* Clear all ECC | Enable Reg1 */
> + val = ((0x00000001<<8) | 0x00000001);
> + __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
> +
> + /* Read from ECC Size Config Register */
> + val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
> + /* ECCSIZE1=512 | Select eccResultsize[0-3] */
> + val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
> + __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
> +}
> +
> +/*
> + * gen_true_ecc - This function will generate true ECC value, which can be
> used
> + * when correcting data read from NAND flash memory core
> + * @ecc_buf: buffer to store ecc code
> + */
> +static void gen_true_ecc(u8 *ecc_buf)
> +{
> + u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
> + ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
> +
> + ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
> + P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
> + ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
> + P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
> + ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
> + P1e(tmp) | P2048o(tmp) | P2048e(tmp));
> +}
> +
> +/*
> + * omap_compare_ecc - This function compares two ECC's and indicates if there
> + * is an error. If the error can be corrected it will be corrected to the
> + * buffer
> + * @ecc_data1: ecc code from nand spare area
> + * @ecc_data2: ecc code from hardware register obtained from hardware ecc
> + * @page_data: page data
> + */
> +static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
> + u8 *ecc_data2, /* read from register */
> + u8 *page_data)
> +{
> + uint i;
> + u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
> + u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
> + u8 ecc_bit[24];
> + u8 ecc_sum = 0;
> + u8 find_bit = 0;
> + uint find_byte = 0;
> + int isEccFF;
> +
> + isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
> +
> + gen_true_ecc(ecc_data1);
> + gen_true_ecc(ecc_data2);
> +
> + for (i = 0; i <= 2; i++) {
> + *(ecc_data1 + i) = ~(*(ecc_data1 + i));
> + *(ecc_data2 + i) = ~(*(ecc_data2 + i));
> + }
> +
> + for (i = 0; i < 8; i++) {
> + tmp0_bit[i] = *ecc_data1 % 2;
> + *ecc_data1 = *ecc_data1 / 2;
> + }
> +
> + for (i = 0; i < 8; i++) {
> + tmp1_bit[i] = *(ecc_data1 + 1) % 2;
> + *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
> + }
> +
> + for (i = 0; i < 8; i++) {
> + tmp2_bit[i] = *(ecc_data1 + 2) % 2;
> + *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
> + }
> +
> + for (i = 0; i < 8; i++) {
> + comp0_bit[i] = *ecc_data2 % 2;
> + *ecc_data2 = *ecc_data2 / 2;
> + }
> +
> + for (i = 0; i < 8; i++) {
> + comp1_bit[i] = *(ecc_data2 + 1) % 2;
> + *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
> + }
> +
> + for (i = 0; i < 8; i++) {
> + comp2_bit[i] = *(ecc_data2 + 2) % 2;
> + *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
> + }
> +
> + for (i = 0; i < 6; i++)
> + ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
> +
> + for (i = 0; i < 8; i++)
> + ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
> +
> + for (i = 0; i < 8; i++)
> + ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
> +
> + ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
> + ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
> +
> + for (i = 0; i < 24; i++)
> + ecc_sum += ecc_bit[i];
> +
> + switch (ecc_sum) {
> + case 0:
> + /* Not reached because this function is not called if
> + * ECC values are equal
> + */
> + return 0;
> +
> + case 1:
> + /* Uncorrectable error */
> + DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
> + return -1;
> +
> + case 11:
> + /* UN-Correctable error */
> + DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
> + return -1;
> +
> + case 12:
> + /* Correctable error */
> + find_byte = (ecc_bit[23] << 8) +
> + (ecc_bit[21] << 7) +
> + (ecc_bit[19] << 6) +
> + (ecc_bit[17] << 5) +
> + (ecc_bit[15] << 4) +
> + (ecc_bit[13] << 3) +
> + (ecc_bit[11] << 2) +
> + (ecc_bit[9] << 1) +
> + ecc_bit[7];
> +
> + find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
> +
> + DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
> + "offset: %d, bit: %d\n", find_byte, find_bit);
> +
> + page_data[find_byte] ^= (1 << find_bit);
> +
> + return 0;
> + default:
> + if (isEccFF) {
> + if (ecc_data2[0] == 0 &&
> + ecc_data2[1] == 0 &&
> + ecc_data2[2] == 0)
> + return 0;
> + }
> + DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
> + return -1;
> + }
> +}
> +
> +/*
> + * omap_correct_data - Compares the ecc read from nand spare area with ECC
> + * registers values and corrects one bit error if it has occured
> + * @mtd: MTD device structure
> + * @dat: page data
> + * @read_ecc: ecc read from nand flash
> + * @calc_ecc: ecc read from ECC registers
> + */
> +static int omap_correct_data(struct mtd_info *mtd, u_char * dat,
> + u_char * read_ecc, u_char * calc_ecc)
> +{
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + int blockCnt = 0, i = 0, ret = 0;
> +
> + /* Ex NAND_ECC_HW12_2048 */
> + if ((info->nand.ecc.mode == NAND_ECC_HW) &&
> + (info->nand.ecc.size == 2048))
> + blockCnt = 4;
> + else
> + blockCnt = 1;
> +
> + for (i = 0; i < blockCnt; i++) {
> + if (memcmp(read_ecc, calc_ecc, 3) != 0) {
> + ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
> + if (ret < 0) return ret;
> + }
> + read_ecc += 3;
> + calc_ecc += 3;
> + dat += 512;
> + }
> + return 0;
> +}
> +
> +/*
> + * omap_calcuate_ecc - Generate non-inverted ECC bytes.
> + * Using noninverted ECC can be considered ugly since writing a blank
> + * page ie. padding will clear the ECC bytes. This is no problem as long
> + * nobody is trying to write data on the seemingly unused page. Reading
> + * an erased page will produce an ECC mismatch between generated and read
> + * ECC bytes that has to be dealt with separately.
> + * @mtd: MTD device structure
> + * @dat: The pointer to data on which ecc is computed
> + * @ecc_code: The ecc_code buffer
> + */
> +static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
> + u_char *ecc_code)
> +{
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + unsigned long val = 0x0;
> + unsigned long reg;
> +
> + /* Start Reading from HW ECC1_Result = 0x200 */
> + reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
> + val = __raw_readl(reg);
> + *ecc_code++ = val; /* P128e, ..., P1e */
> + *ecc_code++ = val >> 16; /* P128o, ..., P1o */
> + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
> + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
> + reg += 4;
> +
> + return 0;
> +}
> +
> +/*
> + * omap_enable_hwecc - This function enables the hardware ecc functionality
> + * @mtd: MTD device structure
> + * @mode: Read/Write mode
> + */
> +static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
> +{
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + register struct nand_chip *chip = mtd->priv;
> + unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
> + unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
> +
> + switch (mode) {
> + case NAND_ECC_READ :
> + __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
> + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
> + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
> + break;
> + case NAND_ECC_READSYN :
> + __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
> + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
> + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
> + break;
> + case NAND_ECC_WRITE :
> + __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
> + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
> + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
> + break;
> + default:
> + DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
> + mode);
> + break;
> + }
> +
> + __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
> +}
> +#endif
> +
> +/*
> + * omap_wait - Wait function is called during Program and erase
> + * operations and the way it is called from MTD layer, we should wait
> + * till the NAND chip is ready after the programming/erase operation
> + * has completed.
> + * @mtd: MTD device structure
> + * @chip: NAND Chip structure
> + */
> +static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
> +{
> + register struct nand_chip *this = mtd->priv;
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + int status = 0;
> +
> + this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
> + GPMC_CS_NAND_COMMAND;
> + this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
> +
> + while (!(status & 0x40)) {
> + __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
> + status = __raw_readb(this->IO_ADDR_R);
> + }
> + return status;
> +}
> +
> +/*
> + * omap_dev_ready - calls the platform specific dev_ready function
> + * @mtd: MTD device structure
> + */
> +static int omap_dev_ready(struct mtd_info *mtd)
> +{
> + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
> + mtd);
> + unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
> +
> + if ((val & 0x100) == 0x100) {
> + /* Clear IRQ Interrupt */
> + val |= 0x100;
> + val &= ~(0x0);
> + __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
> + } else {
> + unsigned int cnt = 0;
> + while (cnt++ < 0x1FF) {
> + if ((val & 0x100) == 0x100)
> + return 0;
> + val = __raw_readl(info->gpmc_baseaddr +
> + GPMC_IRQ_STATUS);
> + }
> + }
> +
> + return 1;
> +}
> +
> +static int __devinit omap_nand_probe(struct platform_device *pdev)
> +{
> + struct omap_nand_info *info;
> + struct omap_nand_platform_data *pdata;
> + int err;
> + unsigned long val;
> +
> +
> + pdata = pdev->dev.platform_data;
> + if (pdata == NULL) {
> + dev_err(&pdev->dev, "platform data missing\n");
> + return -ENODEV;
> + }
> +
> + info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
> + if (!info) return -ENOMEM;
> +
> + platform_set_drvdata(pdev, info);
> +
> + spin_lock_init(&info->controller.lock);
> + init_waitqueue_head(&info->controller.wq);
> +
> + info->pdev = pdev;
> +
> + info->gpmc_cs = pdata->cs;
> + info->gpmc_baseaddr = pdata->gpmc_baseaddr;
> + info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr;
> +
> + info->mtd.priv = &info->nand;
> + info->mtd.name = dev_name(&pdev->dev);
> + info->mtd.owner = THIS_MODULE;
> +
> + err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
> + if (err < 0) {
> + dev_err(&pdev->dev, "Cannot request GPMC CS\n");
> + goto out_free_info;
> + }
> +
> + /* Enable RD PIN Monitoring Reg */
> + if (pdata->dev_ready) {
> + val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
> + val |= WR_RD_PIN_MONITORING;
> + gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
> + }
> +
> + val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
> + val &= ~(0xf << 8);
> + val |= (0xc & 0xf) << 8;
> + gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
> +
> + /* NAND write protect off */
> + omap_nand_wp(&info->mtd, NAND_WP_OFF);
> +
> + if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
> + pdev->dev.driver->name)) {
> + err = -EBUSY;
> + goto out_free_cs;
> + }
> +
> + info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
> + if (!info->nand.IO_ADDR_R) {
> + err = -ENOMEM;
> + goto out_release_mem_region;
> + }
> + info->nand.controller = &info->controller;
> +
> + info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
> + info->nand.cmd_ctrl = omap_hwcontrol;
> +
> + /* REVISIT: only supports 16-bit NAND flash */
> +
> + info->nand.read_buf = omap_read_buf16;
> + info->nand.write_buf = omap_write_buf16;
> + info->nand.verify_buf = omap_verify_buf;
> +
> + /*
> + * If RDY/BSY line is connected to OMAP then use the omap ready funcrtion
> + * and the generic nand_wait function which reads the status register
> + * after monitoring the RDY/BSY line.Otherwise use a standard chip delay
> + * which is slightly more than tR (AC Timing) of the NAND device and read
> + * status register until you get a failure or success
> + */
> + if (pdata->dev_ready) {
> + info->nand.dev_ready = omap_dev_ready;
> + info->nand.chip_delay = 0;
> + } else {
> + info->nand.waitfunc = omap_wait;
> + info->nand.chip_delay = 50;
> + }
> +
> + info->nand.options |= NAND_SKIP_BBTSCAN;
> + if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
> + == 0x1000)
> + info->nand.options |= NAND_BUSWIDTH_16;
> +
> +#ifdef CONFIG_MTD_NAND_OMAP_HWECC
> + info->nand.ecc.bytes = 3;
> + info->nand.ecc.size = 512;
> + info->nand.ecc.calculate = omap_calculate_ecc;
> + info->nand.ecc.hwctl = omap_enable_hwecc;
> + info->nand.ecc.correct = omap_correct_data;
> + info->nand.ecc.mode = NAND_ECC_HW;
> +
> + /* init HW ECC */
> + omap_hwecc_init(&info->mtd);
> +#else
> + info->nand.ecc.mode = NAND_ECC_SOFT;
> +#endif
> +
> + /* DIP switches on some boards change between 8 and 16 bit
> + * bus widths for flash. Try the other width if the first try fails.
> + */
> + if (nand_scan(&info->mtd, 1)) {
> + info->nand.options ^= NAND_BUSWIDTH_16;
> + if (nand_scan(&info->mtd, 1)) {
> + err = -ENXIO;
> + goto out_release_mem_region;
> + }
> + }
> +
> +#ifdef CONFIG_MTD_PARTITIONS
> + err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
> + if (err > 0)
> + add_mtd_partitions(&info->mtd, info->parts, err);
> + else if (pdata->parts)
> + add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
> + else
> +#endif
> + add_mtd_device(&info->mtd);
> +
> + platform_set_drvdata(pdev, &info->mtd);
> +
> + return 0;
> +
> +out_release_mem_region:
> + release_mem_region(info->phys_base, NAND_IO_SIZE);
> +out_free_cs:
> + gpmc_cs_free(info->gpmc_cs);
> +out_free_info:
> + kfree(info);
> +
> + return err;
> +}
> +
> +static int omap_nand_remove(struct platform_device *pdev)
> +{
> + struct mtd_info *mtd = platform_get_drvdata(pdev);
> + struct omap_nand_info *info = mtd->priv;
> +
> + platform_set_drvdata(pdev, NULL);
> + /* Release NAND device, its internal structures and partitions */
> + nand_release(&info->mtd);
> + iounmap(info->nand.IO_ADDR_R);
> + kfree(&info->mtd);
> + return 0;
> +}
> +
> +static struct platform_driver omap_nand_driver = {
> + .probe = omap_nand_probe,
> + .remove = omap_nand_remove,
> + .driver = {
> + .name = DRIVER_NAME,
> + .owner = THIS_MODULE,
> + },
> +};
> +MODULE_ALIAS(DRIVER_NAME);
> +
> +static int __init omap_nand_init(void)
> +{
> + printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
> + return platform_driver_register(&omap_nand_driver);
> +}
> +
> +static void __exit omap_nand_exit(void)
> +{
> + platform_driver_unregister(&omap_nand_driver);
> +}
> +
> +module_init(omap_nand_init);
> +module_exit(omap_nand_exit);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
>
>
More information about the linux-mtd
mailing list