[RESUBMIT] [PATCH] [MTD] NAND nand_ecc.c: rewrite for improved performance

Frans Meulenbroeks fransmeulenbroeks at gmail.com
Mon Aug 11 07:35:09 EDT 2008


Haven't seen any response on my patch, but didn't see it in git either.
Is there a problem or an issue I need to resolve?
Or am I just impatient?

Frans.

2008/7/31 frans <fransmeulenbroeks at gmail.com>:
> Dear all,
>
> A resubmit of my patch, with all comments from Thomas addressed, and this
> time wiht the patch inlined and submitted using pine/gmail
>
> This patch improves the performance of the ecc generation code by a factor
> of 18 on an INTEL D920 CPU, a factor of 7 on MIPS and a factor of 5 on ARM
> (NSLU2)
>
> Please let me know if additional changes are needed.
>
> Best regards, Frans.
>
> diff -urN linux-2.6.25.10/Documentation/nand/ecc.txt linux-2.6.25.10.work/Documentation/nand/ecc.txt
> --- linux-2.6.25.10/Documentation/nand/ecc.txt  1970-01-01 01:00:00.000000000 +0100
> +++ linux-2.6.25.10.work/Documentation/nand/ecc.txt     2008-07-29 19:25:19.000000000 +0200
> @@ -0,0 +1,714 @@
> +Introduction
> +============
> +
> +Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
> +I felt there was room for optimisation. I bashed the code for a few hours
> +performing tricks like table lookup removing superfluous code etc.
> +After that the speed was increased by 35-40%.
> +Still I was not too happy as I felt there was additional room for improvement.
> +
> +Bad! I was hooked.
> +I decided to annotate my steps in this file. Perhaps it is useful to someone
> +or someone learns something from it.
> +
> +
> +The problem
> +===========
> +
> +NAND flash (at least SLC one) typically has sectors of 256 bytes.
> +However NAND flash is not extremely reliable so some error detection
> +(and sometimes correction) is needed.
> +
> +This is done by means of a Hamming code. I'll try to explain it in
> +laymans terms (and apologies to all the pro's in the field in case I do
> +not use the right terminology, my coding theory class was almost 30
> +years ago, and I must admit it was not one of my favourites).
> +
> +As I said before the ecc calculation is performed on sectors of 256
> +bytes. This is done by calculating several parity bits over the rows and
> +columns. The parity used is even parity which means that the parity bit = 1
> +if the data over which the parity is calculated is 1 and the parity bit = 0
> +if the data over which the parity is calculated is 0. So the total
> +number of bits over the data over which the parity is calculated + the
> +parity bit is even. (see wikipedia if you can't follow this).
> +Parity is often calculated by means of an exclusive or operation,
> +sometimes also referred to as xor. In C the operator for xor is ^
> +
> +Back to ecc.
> +Let's give a small figure:
> +
> +byte   0:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp2 rp4 ... rp14
> +byte   1:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp1 rp2 rp4 ... rp14
> +byte   2:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp3 rp4 ... rp14
> +byte   3:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp1 rp3 rp4 ... rp14
> +byte   4:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp2 rp5 ... rp14
> +....
> +byte 254:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp3 rp5 ... rp15
> +byte 255:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp1 rp3 rp5 ... rp15
> +           cp1  cp0  cp1  cp0  cp1  cp0  cp1  cp0
> +           cp3  cp3  cp2  cp2  cp3  cp3  cp2  cp2
> +           cp5  cp5  cp5  cp5  cp4  cp4  cp4  cp4
> +
> +This figure represents a sector of 256 bytes.
> +cp is my abbreviaton for column parity, rp for row parity.
> +
> +Let's start to explain column parity.
> +cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
> +so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
> +Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
> +cp2 is the parity over bit0, bit1, bit4 and bit5
> +cp3 is the parity over bit2, bit3, bit6 and bit7.
> +cp4 is the parity over bit0, bit1, bit2 and bit3.
> +cp5 is the parity over bit4, bit5, bit6 and bit7.
> +Note that each of cp0 .. cp5 is exactly one bit.
> +
> +Row parity actually works almost the same.
> +rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
> +rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
> +rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
> +(so handle two bytes, then skip 2 bytes).
> +rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
> +for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
> +so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
> +and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
> +The story now becomes quite boring. I guess you get the idea.
> +rp6 covers 8 bytes then skips 8 etc
> +rp7 skips 8 bytes then covers 8 etc
> +rp8 covers 16 bytes then skips 16 etc
> +rp9 skips 16 bytes then covers 16 etc
> +rp10 covers 32 bytes then skips 32 etc
> +rp11 skips 32 bytes then covers 32 etc
> +rp12 covers 64 bytes then skips 64 etc
> +rp13 skips 64 bytes then covers 64 etc
> +rp14 covers 128 bytes then skips 128
> +rp15 skips 128 bytes then covers 128
> +
> +In the end the parity bits are grouped together in three bytes as
> +follows:
> +ECC    Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
> +ECC 0   rp07  rp06  rp05  rp04  rp03  rp02  rp01  rp00
> +ECC 1   rp15  rp14  rp13  rp12  rp11  rp10  rp09  rp08
> +ECC 2   cp5   cp4   cp3   cp2   cp1   cp0      1     1
> +
> +I detected after writing this that ST application note AN1823
> +(http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much
> +nicer picture.(but they use line parity as term where I use row parity)
> +Oh well, I'm graphically challenged, so suffer with me for a moment :-)
> +And I could not reuse the ST picture anyway for copyright reasons.
> +
> +
> +Attempt 0
> +=========
> +
> +Implementing the parity calculation is pretty simple.
> +In C pseudocode:
> +for (i = 0; i < 256; i++)
> +{
> +    if (i & 0x01)
> +       rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
> +    else
> +       rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
> +    if (i & 0x02)
> +       rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
> +    else
> +       rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
> +    if (i & 0x04)
> +      rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
> +    else
> +      rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
> +    if (i & 0x08)
> +      rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
> +    else
> +      rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
> +    if (i & 0x10)
> +      rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
> +    else
> +      rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
> +    if (i & 0x20)
> +      rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
> +    else
> +    rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
> +    if (i & 0x40)
> +      rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
> +    else
> +      rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
> +    if (i & 0x80)
> +      rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
> +    else
> +      rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
> +    cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
> +    cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
> +    cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
> +    cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
> +    cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
> +    cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
> +}
> +
> +
> +Analysis 0
> +==========
> +
> +C does have bitwise operators but not really operators to do the above
> +efficiently (and most hardware has no such instructions either).
> +Therefore without implementing this it was clear that the code above was
> +not going to bring me a Nobel prize :-)
> +
> +Fortunately the exclusive or operation is commutative, so we can combine
> +the values in any order. So instead of calculating all the bits
> +individually, let us try to rearrange things.
> +For the column parity this is easy. We can just xor the bytes and in the
> +end filter out the relevant bits. This is pretty nice as it will bring
> +all cp calculation out of the if loop.
> +
> +Similarly we can first xor the bytes for the various rows.
> +This leads to:
> +
> +
> +Attempt 1
> +=========
> +
> +const char parity[256] = {
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +    0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
> +};
> +
> +void ecc1(const unsigned char *buf, unsigned char *code)
> +{
> +    int i;
> +    const unsigned char *bp = buf;
> +    unsigned char cur;
> +    unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
> +    unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
> +    unsigned char par;
> +
> +    par = 0;
> +    rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
> +    rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
> +    rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
> +    rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
> +
> +    for (i = 0; i < 256; i++)
> +    {
> +        cur = *bp++;
> +        par ^= cur;
> +        if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
> +        if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
> +        if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
> +        if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
> +        if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
> +        if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
> +        if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
> +        if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
> +    }
> +    code[0] =
> +        (parity[rp7] << 7) |
> +        (parity[rp6] << 6) |
> +        (parity[rp5] << 5) |
> +        (parity[rp4] << 4) |
> +        (parity[rp3] << 3) |
> +        (parity[rp2] << 2) |
> +        (parity[rp1] << 1) |
> +        (parity[rp0]);
> +    code[1] =
> +        (parity[rp15] << 7) |
> +        (parity[rp14] << 6) |
> +        (parity[rp13] << 5) |
> +        (parity[rp12] << 4) |
> +        (parity[rp11] << 3) |
> +        (parity[rp10] << 2) |
> +        (parity[rp9]  << 1) |
> +        (parity[rp8]);
> +    code[2] =
> +        (parity[par & 0xf0] << 7) |
> +        (parity[par & 0x0f] << 6) |
> +        (parity[par & 0xcc] << 5) |
> +        (parity[par & 0x33] << 4) |
> +        (parity[par & 0xaa] << 3) |
> +        (parity[par & 0x55] << 2);
> +    code[0] = ~code[0];
> +    code[1] = ~code[1];
> +    code[2] = ~code[2];
> +}
> +
> +Still pretty straightforward. The last three invert statements are there to
> +give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
> +all data is 0xff, so the checksum then matches.
> +
> +I also introduced the parity lookup. I expected this to be the fastest
> +way to calculate the parity, but I will investigate alternatives later
> +on.
> +
> +
> +Analysis 1
> +==========
> +
> +The code works, but is not terribly efficient. On my system it took
> +almost 4 times as much time as the linux driver code. But hey, if it was
> +*that* easy this would have been done long before.
> +No pain. no gain.
> +
> +Fortunately there is plenty of room for improvement.
> +
> +In step 1 we moved from bit-wise calculation to byte-wise calculation.
> +However in C we can also use the unsigned long data type and virtually
> +every modern microprocessor supports 32 bit operations, so why not try
> +to write our code in such a way that we process data in 32 bit chunks.
> +
> +Of course this means some modification as the row parity is byte by
> +byte. A quick analysis:
> +for the column parity we use the par variable. When extending to 32 bits
> +we can in the end easily calculate p0 and p1 from it.
> +(because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
> +respectively)
> +also rp2 and rp3 can be easily retrieved from par as rp3 covers the
> +first two bytes and rp2 the last two bytes.
> +
> +Note that of course now the loop is executed only 64 times (256/4).
> +And note that care must taken wrt byte ordering. The way bytes are
> +ordered in a long is machine dependent, and might affect us.
> +Anyway, if there is an issue: this code is developed on x86 (to be
> +precise: a DELL PC with a D920 Intel CPU)
> +
> +And of course the performance might depend on alignment, but I expect
> +that the I/O buffers in the nand driver are aligned properly (and
> +otherwise that should be fixed to get maximum performance).
> +
> +Let's give it a try...
> +
> +
> +Attempt 2
> +=========
> +
> +extern const char parity[256];
> +
> +void ecc2(const unsigned char *buf, unsigned char *code)
> +{
> +    int i;
> +    const unsigned long *bp = (unsigned long *)buf;
> +    unsigned long cur;
> +    unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
> +    unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
> +    unsigned long par;
> +
> +    par = 0;
> +    rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
> +    rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
> +    rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
> +    rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
> +
> +    for (i = 0; i < 64; i++)
> +    {
> +        cur = *bp++;
> +        par ^= cur;
> +        if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
> +        if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
> +        if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
> +        if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
> +        if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
> +        if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
> +    }
> +    /*
> +       we need to adapt the code generation for the fact that rp vars are now
> +       long; also the column parity calculation needs to be changed.
> +       we'll bring rp4 to 15 back to single byte entities by shifting and
> +       xoring
> +    */
> +    rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
> +    rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
> +    rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
> +    rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
> +    rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
> +    rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
> +    rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
> +    rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
> +    rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
> +    rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
> +    rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
> +    rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
> +    rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
> +    rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
> +    par ^= (par >> 16);
> +    rp1 = (par >> 8); rp1 &= 0xff;
> +    rp0 = (par & 0xff);
> +    par ^= (par >> 8); par &= 0xff;
> +
> +    code[0] =
> +        (parity[rp7] << 7) |
> +        (parity[rp6] << 6) |
> +        (parity[rp5] << 5) |
> +        (parity[rp4] << 4) |
> +        (parity[rp3] << 3) |
> +        (parity[rp2] << 2) |
> +        (parity[rp1] << 1) |
> +        (parity[rp0]);
> +    code[1] =
> +        (parity[rp15] << 7) |
> +        (parity[rp14] << 6) |
> +        (parity[rp13] << 5) |
> +        (parity[rp12] << 4) |
> +        (parity[rp11] << 3) |
> +        (parity[rp10] << 2) |
> +        (parity[rp9]  << 1) |
> +        (parity[rp8]);
> +    code[2] =
> +        (parity[par & 0xf0] << 7) |
> +        (parity[par & 0x0f] << 6) |
> +        (parity[par & 0xcc] << 5) |
> +        (parity[par & 0x33] << 4) |
> +        (parity[par & 0xaa] << 3) |
> +        (parity[par & 0x55] << 2);
> +    code[0] = ~code[0];
> +    code[1] = ~code[1];
> +    code[2] = ~code[2];
> +}
> +
> +The parity array is not shown any more. Note also that for these
> +examples I kinda deviated from my regular programming style by allowing
> +multiple statements on a line, not using { } in then and else blocks
> +with only a single statement and by using operators like ^=
> +
> +
> +Analysis 2
> +==========
> +
> +The code (of course) works, and hurray: we are a little bit faster than
> +the linux driver code (about 15%). But wait, don't cheer too quickly.
> +THere is more to be gained.
> +If we look at e.g. rp14 and rp15 we see that we either xor our data with
> +rp14 or with rp15. However we also have par which goes over all data.
> +This means there is no need to calculate rp14 as it can be calculated from
> +rp15 through rp14 = par ^ rp15;
> +(or if desired we can avoid calculating rp15 and calculate it from
> +rp14).  That is why some places refer to inverse parity.
> +Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
> +Effectively this means we can eliminate the else clause from the if
> +statements. Also we can optimise the calculation in the end a little bit
> +by going from long to byte first. Actually we can even avoid the table
> +lookups
> +
> +Attempt 3
> +=========
> +
> +Odd replaced:
> +        if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
> +        if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
> +        if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
> +        if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
> +        if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
> +        if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
> +with
> +        if (i & 0x01) rp5 ^= cur;
> +        if (i & 0x02) rp7 ^= cur;
> +        if (i & 0x04) rp9 ^= cur;
> +        if (i & 0x08) rp11 ^= cur;
> +        if (i & 0x10) rp13 ^= cur;
> +        if (i & 0x20) rp15 ^= cur;
> +
> +        and outside the loop added:
> +    rp4  = par ^ rp5;
> +    rp6  = par ^ rp7;
> +    rp8  = par ^ rp9;
> +    rp10  = par ^ rp11;
> +    rp12  = par ^ rp13;
> +    rp14  = par ^ rp15;
> +
> +And after that the code takes about 30% more time, although the number of
> +statements is reduced. This is also reflected in the assembly code.
> +
> +
> +Analysis 3
> +==========
> +
> +Very weird. Guess it has to do with caching or instruction parallellism
> +or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
> +observation was that this one is only 30% slower (according to time)
> +executing the code as my 3Ghz D920 processor.
> +
> +Well, it was expected not to be easy so maybe instead move to a
> +different track: let's move back to the code from attempt2 and do some
> +loop unrolling. This will eliminate a few if statements. I'll try
> +different amounts of unrolling to see what works best.
> +
> +
> +Attempt 4
> +=========
> +
> +Unrolled the loop 1, 2, 3 and 4 times.
> +For 4 the code starts with:
> +
> +    for (i = 0; i < 4; i++)
> +    {
> +        cur = *bp++;
> +        par ^= cur;
> +        rp4 ^= cur;
> +        rp6 ^= cur;
> +        rp8 ^= cur;
> +        rp10 ^= cur;
> +        if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
> +        if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
> +        cur = *bp++;
> +        par ^= cur;
> +        rp5 ^= cur;
> +        rp6 ^= cur;
> +        ...
> +
> +
> +Analysis 4
> +==========
> +
> +Unrolling once gains about 15%
> +Unrolling twice keeps the gain at about 15%
> +Unrolling three times gives a gain of 30% compared to attempt 2.
> +Unrolling four times gives a marginal improvement compared to unrolling
> +three times.
> +
> +I decided to proceed with a four time unrolled loop anyway. It was my gut
> +feeling that in the next steps I would obtain additional gain from it.
> +
> +The next step was triggered by the fact that par contains the xor of all
> +bytes and rp4 and rp5 each contain the xor of half of the bytes.
> +So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
> +that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
> +eliminate rp5 (or rp4, but I already foresaw another optimisation).
> +The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
> +
> +
> +Attempt 5
> +=========
> +
> +Effectively so all odd digit rp assignments in the loop were removed.
> +This included the else clause of the if statements.
> +Of course after the loop we need to correct things by adding code like:
> +    rp5 = par ^ rp4;
> +Also the initial assignments (rp5 = 0; etc) could be removed.
> +Along the line I also removed the initialisation of rp0/1/2/3.
> +
> +
> +Analysis 5
> +==========
> +
> +Measurements showed this was a good move. The run-time roughly halved
> +compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
> +of the processor time compared to the current code in the linux kernel.
> +
> +However, still I thought there was more. I didn't like all the if
> +statements. Why not keep a running parity and only keep the last if
> +statement. Time for yet another version!
> +
> +
> +Attempt 6
> +=========
> +
> +THe code within the for loop was changed to:
> +
> +    for (i = 0; i < 4; i++)
> +    {
> +        cur = *bp++; tmppar  = cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
> +        cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
> +
> +        cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= cur;
> +           cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +           cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
> +
> +           cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
> +           cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp8 ^= cur;
> +
> +        cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur;
> +
> +           par ^= tmppar;
> +        if ((i & 0x1) == 0) rp12 ^= tmppar;
> +        if ((i & 0x2) == 0) rp14 ^= tmppar;
> +    }
> +
> +As you can see tmppar is used to accumulate the parity within a for
> +iteration. In the last 3 statements is is added to par and, if needed,
> +to rp12 and rp14.
> +
> +While making the changes I also found that I could exploit that tmppar
> +contains the running parity for this iteration. So instead of having:
> +rp4 ^= cur; rp6 = cur;
> +I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next
> +statement. A similar change was done for rp8 and rp10
> +
> +
> +Analysis 6
> +==========
> +
> +Measuring this code again showed big gain. When executing the original
> +linux code 1 million times, this took about 1 second on my system.
> +(using time to measure the performance). After this iteration I was back
> +to 0.075 sec. Actually I had to decide to start measuring over 10
> +million interations in order not to loose too much accuracy. This one
> +definitely seemed to be the jackpot!
> +
> +There is a little bit more room for improvement though. There are three
> +places with statements:
> +rp4 ^= cur; rp6 ^= cur;
> +It seems more efficient to also maintain a variable rp4_6 in the while
> +loop; This eliminates 3 statements per loop. Of course after the loop we
> +need to correct by adding:
> +    rp4 ^= rp4_6;
> +    rp6 ^= rp4_6
> +Furthermore there are 4 sequential assingments to rp8. This can be
> +encoded slightly more efficient by saving tmppar before those 4 lines
> +and later do rp8 = rp8 ^ tmppar ^ notrp8;
> +(where notrp8 is the value of rp8 before those 4 lines).
> +Again a use of the commutative property of xor.
> +Time for a new test!
> +
> +
> +Attempt 7
> +=========
> +
> +The new code now looks like:
> +
> +    for (i = 0; i < 4; i++)
> +    {
> +        cur = *bp++; tmppar  = cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
> +        cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
> +
> +        cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= cur;
> +           cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +           cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
> +
> +           notrp8 = tmppar;
> +           cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= cur;
> +           cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur;
> +           rp8 = rp8 ^ tmppar ^ notrp8;
> +
> +        cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp6 ^= cur;
> +        cur = *bp++; tmppar ^= cur; rp4 ^= cur;
> +        cur = *bp++; tmppar ^= cur;
> +
> +           par ^= tmppar;
> +        if ((i & 0x1) == 0) rp12 ^= tmppar;
> +        if ((i & 0x2) == 0) rp14 ^= tmppar;
> +    }
> +    rp4 ^= rp4_6;
> +    rp6 ^= rp4_6;
> +
> +
> +Not a big change, but every penny counts :-)
> +
> +
> +Analysis 7
> +==========
> +
> +Acutally this made things worse. Not very much, but I don't want to move
> +into the wrong direction. Maybe something to investigate later. Could
> +have to do with caching again.
> +
> +Guess that is what there is to win within the loop. Maybe unrolling one
> +more time will help. I'll keep the optimisations from 7 for now.
> +
> +
> +Attempt 8
> +=========
> +
> +Unrolled the loop one more time.
> +
> +
> +Analysis 8
> +==========
> +
> +This makes things worse. Let's stick with attempt 6 and continue from there.
> +Although it seems that the code within the loop cannot be optimised
> +further there is still room to optimize the generation of the ecc codes.
> +We can simply calcualate the total parity. If this is 0 then rp4 = rp5
> +etc. If the parity is 1, then rp4 = !rp5;
> +But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
> +in the result byte and then do something like
> +    code[0] |= (code[0] << 1);
> +Lets test this.
> +
> +
> +Attempt 9
> +=========
> +
> +Changed the code but again this slightly degrades performance. Tried all
> +kind of other things, like having dedicated parity arrays to avoid the
> +shift after parity[rp7] << 7; No gain.
> +Change the lookup using the parity array by using shift operators (e.g.
> +replace parity[rp7] << 7 with:
> +rp7 ^= (rp7 << 4);
> +rp7 ^= (rp7 << 2);
> +rp7 ^= (rp7 << 1);
> +rp7 &= 0x80;
> +No gain.
> +
> +The only marginal change was inverting the parity bits, so we can remove
> +the last three invert statements.
> +
> +Ah well, pity this does not deliver more. Then again 10 million
> +iterations using the linux driver code takes between 13 and 13.5
> +seconds, whereas my code now takes about 0.73 seconds for those 10
> +million iterations. So basically I've improved the performance by a
> +factor 18 on my system. Not that bad. Of course on different hardware
> +you will get different results. No warranties!
> +
> +But of course there is no such thing as a free lunch. The codesize almost
> +tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
> +
> +
> +Correcting errors
> +=================
> +
> +For correcting errors I again used the ST application note as a starter,
> +but I also peeked at the existing code.
> +The algorithm itself is pretty straightforward. Just xor the given and
> +the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
> +are 1 we have one correctable bit error. If there is 1 bit 1, we have an
> +error in the given ecc code.
> +It proved to be fastest to do some table lookups. Performance gain
> +introduced by this is about a factor 2 on my system when a repair had to
> +be done, and 1% or so if no repair had to be done.
> +Code size increased from 330 bytes to 686 bytes for this function.
> +(gcc 4.2, -O3)
> +
> +
> +Conclusion
> +==========
> +
> +The gain when calculating the ecc is tremendous. Om my development hardware
> +a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
> +embedded system with a MIPS core a factor 7 was obtained.
> +On  a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
> +5 (big endian mode, gcc 4.1.2, -O3)
> +For correction not much gain could be obtained (as bitflips are rare). Then
> +again there are also much less cycles spent there.
> +
> +It seems there is not much more gain possible in this, at least when
> +programmed in C. Of course it might be possible to squeeze something more
> +out of it with an assembler program, but due to pipeline behaviour etc
> +this is very tricky (at least for intel hw).
> +
> +Author: Frans Meulenbroeks
> +Copyright (C) 2008 Koninklijke Philips Electronics NV.
> diff -urN linux-2.6.25.10/drivers/mtd/nand/nand_ecc.c linux-2.6.25.10.work/drivers/mtd/nand/nand_ecc.c
> --- linux-2.6.25.10/drivers/mtd/nand/nand_ecc.c 2008-07-03 05:46:47.000000000 +0200
> +++ linux-2.6.25.10.work/drivers/mtd/nand/nand_ecc.c    2008-07-30 09:53:59.000000000 +0200
> @@ -1,15 +1,18 @@
>  /*
> - * This file contains an ECC algorithm from Toshiba that detects and
> - * corrects 1 bit errors in a 256 byte block of data.
> + * This file contains an ECC algorithm that detects and corrects 1 bit
> + * errors in a 256 byte block of data.
>  *
>  * drivers/mtd/nand/nand_ecc.c
>  *
> - * Copyright (C) 2000-2004 Steven J. Hill (sjhill at realitydiluted.com)
> - *                         Toshiba America Electronics Components, Inc.
> + * Copyright (C) 2008 Koninklijke Philips Electronics NV.
> + *                    Author: Frans Meulenbroeks
>  *
> - * Copyright (C) 2006 Thomas Gleixner <tglx at linutronix.de>
> + * Completely replaces the previous ECC implementation which was written by:
> + *   Steven J. Hill (sjhill at realitydiluted.com)
> + *   Thomas Gleixner (tglx at linutronix.de)
>  *
> - * $Id: nand_ecc.c,v 1.15 2005/11/07 11:14:30 gleixner Exp $
> + * Information on how this algorithm works and how it was developed
> + * can be found in Documentation/nand/ecc.txt
>  *
>  * This file is free software; you can redistribute it and/or modify it
>  * under the terms of the GNU General Public License as published by the
> @@ -25,174 +28,415 @@
>  * with this file; if not, write to the Free Software Foundation, Inc.,
>  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
>  *
> - * As a special exception, if other files instantiate templates or use
> - * macros or inline functions from these files, or you compile these
> - * files and link them with other works to produce a work based on these
> - * files, these files do not by themselves cause the resulting work to be
> - * covered by the GNU General Public License. However the source code for
> - * these files must still be made available in accordance with section (3)
> - * of the GNU General Public License.
> - *
> - * This exception does not invalidate any other reasons why a work based on
> - * this file might be covered by the GNU General Public License.
>  */
>
> +/*
> + * The STANDALONE macro is useful when running the code outside the kernel
> + * e.g. when running the code in a testbed or a benchmark program.
> + * When STANDALONE is used, the module related macros are commented out
> + * as well as the linux include files.
> + * Instead a private definition of mtd_into is given to satisfy the compiler
> + * (the code does not use mtd_info, so the code does not care)
> + */
> +#ifndef STANDALONE
>  #include <linux/types.h>
>  #include <linux/kernel.h>
>  #include <linux/module.h>
>  #include <linux/mtd/nand_ecc.h>
> +#else
> +struct mtd_info {
> +       int dummy;
> +};
> +#define EXPORT_SYMBOL(x)  /* x */
> +
> +#define MODULE_LICENSE(x)      /* x */
> +#define MODULE_AUTHOR(x)       /* x */
> +#define MODULE_DESCRIPTION(x)  /* x */
> +#endif
> +
> +/*
> + * invparity is a 256 byte table that contains the odd parity
> + * for each byte. So if the number of bits in a byte is even,
> + * the array element is 1, and when the number of bits is odd
> + * the array eleemnt is 0.
> + */
> +static const char invparity[256] = {
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
> +       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
> +};
> +
> +/*
> + * bitsperbyte contains the number of bits per byte
> + * this is only used for testing and repairing parity
> + * (a precalculated value slightly improves performance)
> + */
> +static const char bitsperbyte[256] = {
> +       0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
> +       1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
> +       1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
> +       2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
> +       1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
> +       2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
> +       2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
> +       3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
> +       1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
> +       2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
> +       2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
> +       3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
> +       2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
> +       3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
> +       3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
> +       4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
> +};
>
>  /*
> - * Pre-calculated 256-way 1 byte column parity
> + * addressbits is a lookup table to filter out the bits from the xor-ed
> + * ecc data that identify the faulty location.
> + * this is only used for repairing parity
> + * see the comments in nand_correct_data for more details
>  */
> -static const u_char nand_ecc_precalc_table[] = {
> -       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
> -       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
> -       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
> -       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
> -       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
> -       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
> -       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
> -       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
> -       0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
> -       0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
> -       0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
> -       0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
> -       0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
> -       0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
> -       0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
> -       0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
> +static const char addressbits[256] = {
> +       0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
> +       0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
> +       0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
> +       0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
> +       0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
> +       0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
> +       0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
> +       0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
> +       0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
> +       0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
> +       0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
> +       0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
> +       0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
> +       0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
> +       0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
> +       0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
> +       0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
> +       0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
> +       0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
> +       0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
> +       0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
> +       0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
> +       0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
> +       0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
> +       0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
> +       0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
> +       0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
> +       0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
> +       0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
> +       0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
> +       0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
> +       0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
>  };
>
>  /**
>  * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
> - * @mtd:       MTD block structure
> + * @mtd:       MTD block structure (unused)
>  * @dat:       raw data
>  * @ecc_code:  buffer for ECC
>  */
> -int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
> -                      u_char *ecc_code)
> +int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
> +                      unsigned char *code)
>  {
> -       uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
>        int i;
> -
> -       /* Initialize variables */
> -       reg1 = reg2 = reg3 = 0;
> -
> -       /* Build up column parity */
> -       for(i = 0; i < 256; i++) {
> -               /* Get CP0 - CP5 from table */
> -               idx = nand_ecc_precalc_table[*dat++];
> -               reg1 ^= (idx & 0x3f);
> -
> -               /* All bit XOR = 1 ? */
> -               if (idx & 0x40) {
> -                       reg3 ^= (uint8_t) i;
> -                       reg2 ^= ~((uint8_t) i);
> -               }
> +       const unsigned long *bp = (unsigned long *)buf;
> +       unsigned long cur;      /* current value in buffer */
> +       /* rp0..rp15 are the various accumulated parities (per byte) */
> +       unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
> +       unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
> +       unsigned long par;      /* the cumulative parity for all data */
> +       unsigned long tmppar;   /* the cumulative parity for this iteration;
> +                                  for rp12 and rp14 at the end of the loop */
> +
> +       par = 0;
> +       rp4 = 0;
> +       rp6 = 0;
> +       rp8 = 0;
> +       rp10 = 0;
> +       rp12 = 0;
> +       rp14 = 0;
> +
> +       /*
> +        * The loop is unrolled a number of times;
> +        * This avoids if statements to decide on which rp value to update
> +        * Also we process the data by longwords.
> +        * Note: passing unaligned data might give a performance penalty.
> +        * It is assumed that the buffers are aligned.
> +        * tmppar is the cumulative sum of this iteration.
> +        * needed for calculating rp12, rp14 and par
> +        * also used as a performance improvement for rp6, rp8 and rp10
> +        */
> +       for (i = 0; i < 4; i++) {
> +               cur = *bp++;
> +               tmppar = cur;
> +               rp4 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp6 ^= tmppar;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp8 ^= tmppar;
> +
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               rp6 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp6 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp10 ^= tmppar;
> +
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               rp6 ^= cur;
> +               rp8 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp6 ^= cur;
> +               rp8 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               rp8 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp8 ^= cur;
> +
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               rp6 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp6 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +               rp4 ^= cur;
> +               cur = *bp++;
> +               tmppar ^= cur;
> +
> +               par ^= tmppar;
> +               if ((i & 0x1) == 0)
> +                       rp12 ^= tmppar;
> +               if ((i & 0x2) == 0)
> +                       rp14 ^= tmppar;
>        }
>
> -       /* Create non-inverted ECC code from line parity */
> -       tmp1  = (reg3 & 0x80) >> 0; /* B7 -> B7 */
> -       tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
> -       tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
> -       tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
> -       tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
> -       tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
> -       tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
> -       tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
> -
> -       tmp2  = (reg3 & 0x08) << 4; /* B3 -> B7 */
> -       tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
> -       tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
> -       tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
> -       tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
> -       tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
> -       tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
> -       tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
> -
> -       /* Calculate final ECC code */
> +       /*
> +        * handle the fact that we use longword operations
> +        * we'll bring rp4..rp14 back to single byte entities by shifting and
> +        * xoring first fold the upper and lower 16 bits,
> +        * then the upper and lower 8 bits.
> +        */
> +       rp4 ^= (rp4 >> 16);
> +       rp4 ^= (rp4 >> 8);
> +       rp4 &= 0xff;
> +       rp6 ^= (rp6 >> 16);
> +       rp6 ^= (rp6 >> 8);
> +       rp6 &= 0xff;
> +       rp8 ^= (rp8 >> 16);
> +       rp8 ^= (rp8 >> 8);
> +       rp8 &= 0xff;
> +       rp10 ^= (rp10 >> 16);
> +       rp10 ^= (rp10 >> 8);
> +       rp10 &= 0xff;
> +       rp12 ^= (rp12 >> 16);
> +       rp12 ^= (rp12 >> 8);
> +       rp12 &= 0xff;
> +       rp14 ^= (rp14 >> 16);
> +       rp14 ^= (rp14 >> 8);
> +       rp14 &= 0xff;
> +
> +       /*
> +        * we also need to calculate the row parity for rp0..rp3
> +        * This is present in par, because par is now
> +        * rp3 rp3 rp2 rp2
> +        * as well as
> +        * rp1 rp0 rp1 rp0
> +        * First calculate rp2 and rp3
> +        * (and yes: rp2 = (par ^ rp3) & 0xff; but doing that did not
> +        * give a performance improvement)
> +        */
> +       rp3 = (par >> 16);
> +       rp3 ^= (rp3 >> 8);
> +       rp3 &= 0xff;
> +       rp2 = par & 0xffff;
> +       rp2 ^= (rp2 >> 8);
> +       rp2 &= 0xff;
> +
> +       /* reduce par to 16 bits then calculate rp1 and rp0 */
> +       par ^= (par >> 16);
> +       rp1 = (par >> 8) & 0xff;
> +       rp0 = (par & 0xff);
> +
> +       /* finally reduce par to 8 bits */
> +       par ^= (par >> 8);
> +       par &= 0xff;
> +
> +       /*
> +        * and calculate rp5..rp15
> +        * note that par = rp4 ^ rp5 and due to the commutative property
> +        * of the ^ operator we can say:
> +        * rp5 = (par ^ rp4);
> +        * The & 0xff seems superfluous, but benchmarking learned that
> +        * leaving it out gives slightly worse results. No idea why, probably
> +        * it has to do with the way the pipeline in pentium is organized.
> +        */
> +       rp5 = (par ^ rp4) & 0xff;
> +       rp7 = (par ^ rp6) & 0xff;
> +       rp9 = (par ^ rp8) & 0xff;
> +       rp11 = (par ^ rp10) & 0xff;
> +       rp13 = (par ^ rp12) & 0xff;
> +       rp15 = (par ^ rp14) & 0xff;
> +
> +       /*
> +        * Finally calculate the ecc bits.
> +        * Again here it might seem that there are performance optimisations
> +        * possible, but benchmarks showed that on the system this is developed
> +        * the code below is the fastest
> +        */
>  #ifdef CONFIG_MTD_NAND_ECC_SMC
> -       ecc_code[0] = ~tmp2;
> -       ecc_code[1] = ~tmp1;
> +       code[0] =
> +           (invparity[rp7] << 7) |
> +           (invparity[rp6] << 6) |
> +           (invparity[rp5] << 5) |
> +           (invparity[rp4] << 4) |
> +           (invparity[rp3] << 3) |
> +           (invparity[rp2] << 2) |
> +           (invparity[rp1] << 1) |
> +           (invparity[rp0]);
> +       code[1] =
> +           (invparity[rp15] << 7) |
> +           (invparity[rp14] << 6) |
> +           (invparity[rp13] << 5) |
> +           (invparity[rp12] << 4) |
> +           (invparity[rp11] << 3) |
> +           (invparity[rp10] << 2) |
> +           (invparity[rp9] << 1)  |
> +           (invparity[rp8]);
>  #else
> -       ecc_code[0] = ~tmp1;
> -       ecc_code[1] = ~tmp2;
> +       code[1] =
> +           (invparity[rp7] << 7) |
> +           (invparity[rp6] << 6) |
> +           (invparity[rp5] << 5) |
> +           (invparity[rp4] << 4) |
> +           (invparity[rp3] << 3) |
> +           (invparity[rp2] << 2) |
> +           (invparity[rp1] << 1) |
> +           (invparity[rp0]);
> +       code[0] =
> +           (invparity[rp15] << 7) |
> +           (invparity[rp14] << 6) |
> +           (invparity[rp13] << 5) |
> +           (invparity[rp12] << 4) |
> +           (invparity[rp11] << 3) |
> +           (invparity[rp10] << 2) |
> +           (invparity[rp9] << 1)  |
> +           (invparity[rp8]);
>  #endif
> -       ecc_code[2] = ((~reg1) << 2) | 0x03;
> -
> -       return 0;
> +       code[2] =
> +           (invparity[par & 0xf0] << 7) |
> +           (invparity[par & 0x0f] << 6) |
> +           (invparity[par & 0xcc] << 5) |
> +           (invparity[par & 0x33] << 4) |
> +           (invparity[par & 0xaa] << 3) |
> +           (invparity[par & 0x55] << 2) |
> +           3;
>  }
>  EXPORT_SYMBOL(nand_calculate_ecc);
>
> -static inline int countbits(uint32_t byte)
> -{
> -       int res = 0;
> -
> -       for (;byte; byte >>= 1)
> -               res += byte & 0x01;
> -       return res;
> -}
> -
>  /**
>  * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
> - * @mtd:       MTD block structure
> + * @mtd:       MTD block structure (unused)
>  * @dat:       raw data read from the chip
>  * @read_ecc:  ECC from the chip
>  * @calc_ecc:  the ECC calculated from raw data
>  *
>  * Detect and correct a 1 bit error for 256 byte block
>  */
> -int nand_correct_data(struct mtd_info *mtd, u_char *dat,
> -                     u_char *read_ecc, u_char *calc_ecc)
> +int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
> +                     unsigned char *read_ecc, unsigned char *calc_ecc)
>  {
> -       uint8_t s0, s1, s2;
> -
> +       int nr_bits;
> +       unsigned char b0, b1, b2;
> +       unsigned char byte_addr, bit_addr;
> +
> +       /*
> +        * b0 to b2 indicate which bit is faulty (if any)
> +        * we might need the xor result  more than once,
> +        * so keep them in a local var
> +       */
>  #ifdef CONFIG_MTD_NAND_ECC_SMC
> -       s0 = calc_ecc[0] ^ read_ecc[0];
> -       s1 = calc_ecc[1] ^ read_ecc[1];
> -       s2 = calc_ecc[2] ^ read_ecc[2];
> +       b0 = read_ecc[0] ^ calc_ecc[0];
> +       b1 = read_ecc[1] ^ calc_ecc[1];
>  #else
> -       s1 = calc_ecc[0] ^ read_ecc[0];
> -       s0 = calc_ecc[1] ^ read_ecc[1];
> -       s2 = calc_ecc[2] ^ read_ecc[2];
> +       b0 = read_ecc[1] ^ calc_ecc[1];
> +       b1 = read_ecc[0] ^ calc_ecc[0];
>  #endif
> -       if ((s0 | s1 | s2) == 0)
> -               return 0;
> -
> -       /* Check for a single bit error */
> -       if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
> -           ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
> -           ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
> -
> -               uint32_t byteoffs, bitnum;
> -
> -               byteoffs = (s1 << 0) & 0x80;
> -               byteoffs |= (s1 << 1) & 0x40;
> -               byteoffs |= (s1 << 2) & 0x20;
> -               byteoffs |= (s1 << 3) & 0x10;
> +       b2 = read_ecc[2] ^ calc_ecc[2];
>
> -               byteoffs |= (s0 >> 4) & 0x08;
> -               byteoffs |= (s0 >> 3) & 0x04;
> -               byteoffs |= (s0 >> 2) & 0x02;
> -               byteoffs |= (s0 >> 1) & 0x01;
> +       /* check if there are any bitfaults */
>
> -               bitnum = (s2 >> 5) & 0x04;
> -               bitnum |= (s2 >> 4) & 0x02;
> -               bitnum |= (s2 >> 3) & 0x01;
> +       /* count nr of bits; use table lookup, faster than calculating it */
> +       nr_bits = bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2];
>
> -               dat[byteoffs] ^= (1 << bitnum);
> -
> -               return 1;
> +       /* repeated if statements are slightly more efficient than switch ... */
> +       /* ordered in order of likelihood */
> +       if (nr_bits == 0)
> +               return (0);     /* no error */
> +       if (nr_bits == 11) {    /* correctable error */
> +               /*
> +                * rp15/13/11/9/7/5/3/1 indicate which byte is the faulty byte
> +                * cp 5/3/1 indicate the faulty bit.
> +                * A lookup table (called addressbits) is used to filter
> +                * the bits from the byte they are in.
> +                * A marginal optimisation is possible by having three
> +                * different lookup tables.
> +                * One as we have now (for b0), one for b2
> +                * (that would avoid the >> 1), and one for b1 (with all values
> +                * << 4). However it was felt that introducing two more tables
> +                * hardly justify the gain.
> +                *
> +                * The b2 shift is there to get rid of the lowest two bits.
> +                * We could also do addressbits[b2] >> 1 but for the
> +                * performace it does not make any difference
> +                */
> +               byte_addr = (addressbits[b1] << 4) + addressbits[b0];
> +               bit_addr = addressbits[b2 >> 2];
> +               /* flip the bit */
> +               buf[byte_addr] ^= (1 << bit_addr);
> +               return (1);
>        }
> -
> -       if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
> -               return 1;
> -
> -       return -EBADMSG;
> +       if (nr_bits == 1)
> +               return (1);     /* error in ecc data; no action needed */
> +       return -1;
>  }
>  EXPORT_SYMBOL(nand_correct_data);
>
>  MODULE_LICENSE("GPL");
> -MODULE_AUTHOR("Steven J. Hill <sjhill at realitydiluted.com>");
> +MODULE_AUTHOR("Frans Meulenbroeks");
>  MODULE_DESCRIPTION("Generic NAND ECC support");
> Signed-off-by: Frans Meulenbroeks
>



More information about the linux-mtd mailing list