[PATCH v3 4/4] Freescale enhanced Local Bus Controller FCM NAND support.

Josh Boyer jwboyer at gmail.com
Fri Dec 14 20:08:19 EST 2007


On Fri, 14 Dec 2007 16:17:36 -0600
Scott Wood <scottwood at freescale.com> wrote:

> Signed-off-by: Nick Spence <nick.spence at freescale.com>
> Signed-off-by: Scott Wood <scottwood at freescale.com>
> ---
> Fixed some formatting issues, removed some leftover debugging cruft,
> and added a comment about potential conflicts in the interrupt handling.
> 
>  drivers/mtd/nand/Kconfig         |    9 +
>  drivers/mtd/nand/Makefile        |    1 +
>  drivers/mtd/nand/fsl_elbc_nand.c | 1236 ++++++++++++++++++++++++++++++++++++++
>  3 files changed, 1246 insertions(+), 0 deletions(-)
>  create mode 100644 drivers/mtd/nand/fsl_elbc_nand.c
> 
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 246d451..05d976c 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -306,4 +306,13 @@ config MTD_ALAUDA
>  	  These two (and possibly other) Alauda-based cardreaders for
>  	  SmartMedia and xD allow raw flash access.
>  
> +config MTD_NAND_FSL_ELBC
> +	tristate "NAND support for Freescale eLBC controllers"
> +	depends on MTD_NAND && PPC_OF
> +	help
> +	  Various Freescale chips, including the 8313, include a NAND Flash
> +	  Controller Module with built-in hardware ECC capabilities.
> +	  Enabling this option will enable you to use this to control
> +	  external NAND devices.
> +
>  endif # MTD_NAND
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 3ad6c01..d0d4de2 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -29,5 +29,6 @@ obj-$(CONFIG_MTD_NAND_CM_X270)		+= cmx270_nand.o
>  obj-$(CONFIG_MTD_NAND_BASLER_EXCITE)	+= excite_nandflash.o
>  obj-$(CONFIG_MTD_NAND_PLATFORM)		+= plat_nand.o
>  obj-$(CONFIG_MTD_ALAUDA)		+= alauda.o
> +obj-$(CONFIG_MTD_NAND_FSL_ELBC)		+= fsl_elbc_nand.o
>  
>  nand-objs := nand_base.o nand_bbt.o
> diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
> new file mode 100644
> index 0000000..001c32c
> --- /dev/null
> +++ b/drivers/mtd/nand/fsl_elbc_nand.c
> @@ -0,0 +1,1236 @@
> +/* Freescale Enhanced Local Bus Controller NAND driver
> + *
> + * Copyright (c) 2006-2007 Freescale Semiconductor
> + *
> + * Authors: Nick Spence <nick.spence at freescale.com>,
> + *          Scott Wood <scottwood at freescale.com>
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> + * GNU General Public License for more details.
> + *
> + * You should have received a copy of the GNU General Public License
> + * along with this program; if not, write to the Free Software
> + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
> + */
> +
> +#include <linux/module.h>
> +#include <linux/types.h>
> +#include <linux/init.h>
> +#include <linux/kernel.h>
> +#include <linux/string.h>
> +#include <linux/ioport.h>
> +#include <linux/of_platform.h>
> +#include <linux/slab.h>
> +#include <linux/interrupt.h>
> +
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/nand_ecc.h>
> +#include <linux/mtd/partitions.h>
> +
> +#include <asm/io.h>
> +
> +
> +#define MAX_BANKS 8
> +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
> +#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
> +
> +struct elbc_bank {
> +	__be32 br;             /**< Base Register  */
> +#define BR_BA           0xFFFF8000
> +#define BR_BA_SHIFT             15
> +#define BR_PS           0x00001800
> +#define BR_PS_SHIFT             11
> +#define BR_PS_8         0x00000800  /* Port Size 8 bit */
> +#define BR_PS_16        0x00001000  /* Port Size 16 bit */
> +#define BR_PS_32        0x00001800  /* Port Size 32 bit */
> +#define BR_DECC         0x00000600
> +#define BR_DECC_SHIFT            9
> +#define BR_DECC_OFF     0x00000000  /* HW ECC checking and generation off */
> +#define BR_DECC_CHK     0x00000200  /* HW ECC checking on, generation off */
> +#define BR_DECC_CHK_GEN 0x00000400  /* HW ECC checking and generation on */
> +#define BR_WP           0x00000100
> +#define BR_WP_SHIFT              8
> +#define BR_MSEL         0x000000E0
> +#define BR_MSEL_SHIFT            5
> +#define BR_MS_GPCM      0x00000000  /* GPCM */
> +#define BR_MS_FCM       0x00000020  /* FCM */
> +#define BR_MS_SDRAM     0x00000060  /* SDRAM */
> +#define BR_MS_UPMA      0x00000080  /* UPMA */
> +#define BR_MS_UPMB      0x000000A0  /* UPMB */
> +#define BR_MS_UPMC      0x000000C0  /* UPMC */
> +#define BR_V            0x00000001
> +#define BR_V_SHIFT               0
> +#define BR_RES          ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
> +
> +	__be32 or;             /**< Base Register  */

Urgh.  Maybe it's just me, but when people mix #defines in the middle
of a structure definition I have a hard time actually reading the
structure.  You could move the #defines above the structure.

> +#define OR0 0x5004
> +#define OR1 0x500C
> +#define OR2 0x5014
> +#define OR3 0x501C
> +#define OR4 0x5024
> +#define OR5 0x502C
> +#define OR6 0x5034
> +#define OR7 0x503C
> +
> +#define OR_FCM_AM               0xFFFF8000
> +#define OR_FCM_AM_SHIFT                 15
> +#define OR_FCM_BCTLD            0x00001000
> +#define OR_FCM_BCTLD_SHIFT              12
> +#define OR_FCM_PGS              0x00000400
> +#define OR_FCM_PGS_SHIFT                10
> +#define OR_FCM_CSCT             0x00000200
> +#define OR_FCM_CSCT_SHIFT                9
> +#define OR_FCM_CST              0x00000100
> +#define OR_FCM_CST_SHIFT                 8
> +#define OR_FCM_CHT              0x00000080
> +#define OR_FCM_CHT_SHIFT                 7
> +#define OR_FCM_SCY              0x00000070
> +#define OR_FCM_SCY_SHIFT                 4
> +#define OR_FCM_SCY_1            0x00000010
> +#define OR_FCM_SCY_2            0x00000020
> +#define OR_FCM_SCY_3            0x00000030
> +#define OR_FCM_SCY_4            0x00000040
> +#define OR_FCM_SCY_5            0x00000050
> +#define OR_FCM_SCY_6            0x00000060
> +#define OR_FCM_SCY_7            0x00000070
> +#define OR_FCM_RST              0x00000008
> +#define OR_FCM_RST_SHIFT                 3
> +#define OR_FCM_TRLX             0x00000004
> +#define OR_FCM_TRLX_SHIFT                2
> +#define OR_FCM_EHTR             0x00000002
> +#define OR_FCM_EHTR_SHIFT                1
> +};
> +
> +struct elbc_regs {
> +	struct elbc_bank bank[8];
> +	u8 res0[0x28];
> +	__be32 mar;             /**< UPM Address Register */
> +	u8 res1[0x4];
> +	__be32 mamr;            /**< UPMA Mode Register */
> +	__be32 mbmr;            /**< UPMB Mode Register */
> +	__be32 mcmr;            /**< UPMC Mode Register */
> +	u8 res2[0x8];
> +	__be32 mrtpr;           /**< Memory Refresh Timer Prescaler Register */
> +	__be32 mdr;             /**< UPM Data Register */
> +	u8 res3[0x4];
> +	__be32 lsor;            /**< Special Operation Initiation Register */
> +	__be32 lsdmr;           /**< SDRAM Mode Register */
> +	u8 res4[0x8];
> +	__be32 lurt;            /**< UPM Refresh Timer */
> +	__be32 lsrt;            /**< SDRAM Refresh Timer */
> +	u8 res5[0x8];
> +	__be32 ltesr;           /**< Transfer Error Status Register */
> +#define LTESR_BM   0x80000000
> +#define LTESR_FCT  0x40000000
> +#define LTESR_PAR  0x20000000
> +#define LTESR_WP   0x04000000
> +#define LTESR_ATMW 0x00800000
> +#define LTESR_ATMR 0x00400000
> +#define LTESR_CS   0x00080000
> +#define LTESR_CC   0x00000001
> +#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
> +	__be32 ltedr;           /**< Transfer Error Disable Register */
> +	__be32 lteir;           /**< Transfer Error Interrupt Register */
> +	__be32 lteatr;          /**< Transfer Error Attributes Register */
> +	__be32 ltear;           /**< Transfer Error Address Register */
> +	u8 res6[0xC];
> +	__be32 lbcr;            /**< Configuration Register */
> +#define LBCR_LDIS  0x80000000
> +#define LBCR_LDIS_SHIFT    31
> +#define LBCR_BCTLC 0x00C00000
> +#define LBCR_BCTLC_SHIFT   22
> +#define LBCR_AHD   0x00200000
> +#define LBCR_LPBSE 0x00020000
> +#define LBCR_LPBSE_SHIFT   17
> +#define LBCR_EPAR  0x00010000
> +#define LBCR_EPAR_SHIFT    16
> +#define LBCR_BMT   0x0000FF00
> +#define LBCR_BMT_SHIFT      8
> +#define LBCR_INIT  0x00040000
> +	__be32 lcrr;            /**< Clock Ratio Register */
> +#define LCRR_DBYP    0x80000000
> +#define LCRR_DBYP_SHIFT      31
> +#define LCRR_BUFCMDC 0x30000000
> +#define LCRR_BUFCMDC_SHIFT   28
> +#define LCRR_ECL     0x03000000
> +#define LCRR_ECL_SHIFT       24
> +#define LCRR_EADC    0x00030000
> +#define LCRR_EADC_SHIFT      16
> +#define LCRR_CLKDIV  0x0000000F
> +#define LCRR_CLKDIV_SHIFT     0
> +	u8 res7[0x8];
> +	__be32 fmr;             /**< Flash Mode Register */
> +#define FMR_CWTO     0x0000F000
> +#define FMR_CWTO_SHIFT       12
> +#define FMR_BOOT     0x00000800
> +#define FMR_ECCM     0x00000100
> +#define FMR_AL       0x00000030
> +#define FMR_AL_SHIFT          4
> +#define FMR_OP       0x00000003
> +#define FMR_OP_SHIFT          0
> +	__be32 fir;             /**< Flash Instruction Register */
> +#define FIR_OP0      0xF0000000
> +#define FIR_OP0_SHIFT        28
> +#define FIR_OP1      0x0F000000
> +#define FIR_OP1_SHIFT        24
> +#define FIR_OP2      0x00F00000
> +#define FIR_OP2_SHIFT        20
> +#define FIR_OP3      0x000F0000
> +#define FIR_OP3_SHIFT        16
> +#define FIR_OP4      0x0000F000
> +#define FIR_OP4_SHIFT        12
> +#define FIR_OP5      0x00000F00
> +#define FIR_OP5_SHIFT         8
> +#define FIR_OP6      0x000000F0
> +#define FIR_OP6_SHIFT         4
> +#define FIR_OP7      0x0000000F
> +#define FIR_OP7_SHIFT         0
> +#define FIR_OP_NOP   0x0	/* No operation and end of sequence */
> +#define FIR_OP_CA    0x1        /* Issue current column address */
> +#define FIR_OP_PA    0x2        /* Issue current block+page address */
> +#define FIR_OP_UA    0x3        /* Issue user defined address */
> +#define FIR_OP_CM0   0x4        /* Issue command from FCR[CMD0] */
> +#define FIR_OP_CM1   0x5        /* Issue command from FCR[CMD1] */
> +#define FIR_OP_CM2   0x6        /* Issue command from FCR[CMD2] */
> +#define FIR_OP_CM3   0x7        /* Issue command from FCR[CMD3] */
> +#define FIR_OP_WB    0x8        /* Write FBCR bytes from FCM buffer */
> +#define FIR_OP_WS    0x9        /* Write 1 or 2 bytes from MDR[AS] */
> +#define FIR_OP_RB    0xA        /* Read FBCR bytes to FCM buffer */
> +#define FIR_OP_RS    0xB        /* Read 1 or 2 bytes to MDR[AS] */
> +#define FIR_OP_CW0   0xC        /* Wait then issue FCR[CMD0] */
> +#define FIR_OP_CW1   0xD        /* Wait then issue FCR[CMD1] */
> +#define FIR_OP_RBW   0xE        /* Wait then read FBCR bytes */
> +#define FIR_OP_RSW   0xE        /* Wait then read 1 or 2 bytes */
> +	__be32 fcr;             /**< Flash Command Register */
> +#define FCR_CMD0     0xFF000000
> +#define FCR_CMD0_SHIFT       24
> +#define FCR_CMD1     0x00FF0000
> +#define FCR_CMD1_SHIFT       16
> +#define FCR_CMD2     0x0000FF00
> +#define FCR_CMD2_SHIFT        8
> +#define FCR_CMD3     0x000000FF
> +#define FCR_CMD3_SHIFT        0
> +	__be32 fbar;            /**< Flash Block Address Register */
> +#define FBAR_BLK     0x00FFFFFF
> +	__be32 fpar;            /**< Flash Page Address Register */
> +#define FPAR_SP_PI   0x00007C00
> +#define FPAR_SP_PI_SHIFT     10
> +#define FPAR_SP_MS   0x00000200
> +#define FPAR_SP_CI   0x000001FF
> +#define FPAR_SP_CI_SHIFT      0
> +#define FPAR_LP_PI   0x0003F000
> +#define FPAR_LP_PI_SHIFT     12
> +#define FPAR_LP_MS   0x00000800
> +#define FPAR_LP_CI   0x000007FF
> +#define FPAR_LP_CI_SHIFT      0
> +	__be32 fbcr;            /**< Flash Byte Count Register */
> +#define FBCR_BC      0x00000FFF
> +	u8 res11[0x8];
> +	u8 res8[0xF00];
> +};
> +
> +struct fsl_elbc_ctrl;
> +
> +/* mtd information per set */
> +
> +struct fsl_elbc_mtd {
> +	struct mtd_info mtd;
> +	struct nand_chip chip;
> +	struct fsl_elbc_ctrl *ctrl;
> +
> +	struct device *dev;
> +	int bank;               /* Chip select bank number           */
> +	u8 __iomem *vbase;      /* Chip select base virtual address  */
> +	int page_size;          /* NAND page size (0=512, 1=2048)    */
> +	unsigned int fmr;       /* FCM Flash Mode Register value     */
> +};
> +
> +/* overview of the fsl elbc controller */
> +
> +struct fsl_elbc_ctrl {
> +	struct nand_hw_control controller;
> +	struct fsl_elbc_mtd *chips[MAX_BANKS];
> +
> +	/* device info */
> +	struct device *dev;
> +	struct elbc_regs __iomem *regs;
> +	int irq;
> +	wait_queue_head_t irq_wait;
> +	unsigned int irq_status; /* status read from LTESR by irq handler */
> +	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
> +	unsigned int page;       /* Last page written to / read from      */
> +	unsigned int read_bytes; /* Number of bytes read during command   */
> +	unsigned int column;     /* Saved column from SEQIN               */
> +	unsigned int index;      /* Pointer to next byte to 'read'        */
> +	unsigned int status;     /* status read from LTESR after last op  */
> +	unsigned int mdr;        /* UPM/FCM Data Register value           */
> +	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
> +	unsigned int oob;        /* Non zero if operating on OOB data     */
> +	char *oob_poi;           /* Place to write ECC after read back    */
> +};
> +
> +/* These map to the positions used by the FCM hardware ECC generator */
> +
> +/* Small Page FLASH with FMR[ECCM] = 0 */
> +static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
> +	.eccbytes = 3,
> +	.eccpos = {6, 7, 8},
> +	.oobfree = { {0, 5}, {9, 7} },
> +	.oobavail = 12,
> +};
> +
> +/* Small Page FLASH with FMR[ECCM] = 1 */
> +static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
> +	.eccbytes = 3,
> +	.eccpos = {8, 9, 10},
> +	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
> +	.oobavail = 12,
> +};
> +
> +/* Large Page FLASH with FMR[ECCM] = 0 */
> +static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
> +	.eccbytes = 12,
> +	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
> +	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
> +	.oobavail = 48,
> +};
> +
> +/* Large Page FLASH with FMR[ECCM] = 1 */
> +static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
> +	.eccbytes = 12,
> +	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
> +	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
> +	.oobavail = 48,
> +};
> +
> +/*=================================*/
> +
> +/*
> + * Set up the FCM hardware block and page address fields, and the fcm
> + * structure addr field to point to the correct FCM buffer in memory
> + */
> +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +	int buf_num;
> +
> +	ctrl->page = page_addr;
> +
> +	out_be32(&lbc->fbar,
> +	         page_addr >> (chip->phys_erase_shift - chip->page_shift));
> +
> +	if (priv->page_size) {
> +		out_be32(&lbc->fpar,
> +		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
> +		         (oob ? FPAR_LP_MS : 0) | column);
> +		buf_num = (page_addr & 1) << 2;
> +	} else {
> +		out_be32(&lbc->fpar,
> +		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
> +		         (oob ? FPAR_SP_MS : 0) | column);
> +		buf_num = page_addr & 7;
> +	}
> +
> +	ctrl->addr = priv->vbase + buf_num * 1024;
> +	ctrl->index = column;
> +
> +	/* for OOB data point to the second half of the buffer */
> +	if (oob)
> +		ctrl->index += priv->page_size ? 2048 : 512;
> +
> +	dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
> +	                    "index %x, pes %d ps %d\n",
> +	         buf_num, ctrl->addr, priv->vbase, ctrl->index,
> +	         chip->phys_erase_shift, chip->page_shift);
> +}
> +
> +/*
> + * execute FCM command and wait for it to complete
> + */
> +static int fsl_elbc_run_command(struct mtd_info *mtd)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> +	/* Setup the FMR[OP] to execute without write protection */
> +	out_be32(&lbc->fmr, priv->fmr | 3);
> +	if (ctrl->use_mdr)
> +		out_be32(&lbc->mdr, ctrl->mdr);
> +
> +	dev_vdbg(ctrl->dev,
> +	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
> +	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
> +	dev_vdbg(ctrl->dev,
> +	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
> +	         "fbcr=%08x bank=%d\n",
> +	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
> +	         in_be32(&lbc->fbcr), priv->bank);
> +
> +	/* execute special operation */
> +	out_be32(&lbc->lsor, priv->bank);
> +
> +	/* wait for FCM complete flag or timeout */
> +	ctrl->irq_status = 0;
> +	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
> +	                   FCM_TIMEOUT_MSECS * HZ/1000);
> +	ctrl->status = ctrl->irq_status;
> +
> +	/* store mdr value in case it was needed */
> +	if (ctrl->use_mdr)
> +		ctrl->mdr = in_be32(&lbc->mdr);
> +
> +	ctrl->use_mdr = 0;
> +
> +	dev_vdbg(ctrl->dev,
> +	         "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
> +	         ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
> +
> +	/* returns 0 on success otherwise non-zero) */
> +	return ctrl->status == LTESR_CC ? 0 : -EIO;
> +}
> +
> +static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
> +{
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> +	if (priv->page_size) {
> +		out_be32(&lbc->fir,
> +		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
> +		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
> +		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
> +		         (FIR_OP_RBW << FIR_OP4_SHIFT));
> +
> +		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
> +		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
> +	} else {
> +		out_be32(&lbc->fir,
> +		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
> +		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
> +		         (FIR_OP_RBW << FIR_OP3_SHIFT));
> +
> +		if (oob)
> +			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
> +		else
> +			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
> +	}
> +}
> +
> +/* cmdfunc send commands to the FCM */
> +static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
> +                             int column, int page_addr)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> +	ctrl->use_mdr = 0;
> +
> +	/* clear the read buffer */
> +	ctrl->read_bytes = 0;
> +	if (command != NAND_CMD_PAGEPROG)
> +		ctrl->index = 0;
> +
> +	switch (command) {
> +	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
> +	case NAND_CMD_READ1:
> +		column += 256;
> +
> +	/* fall-through */
> +	case NAND_CMD_READ0:
> +		dev_dbg(ctrl->dev,
> +		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
> +		        " 0x%x, column: 0x%x.\n", page_addr, column);
> +
> +
> +		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
> +		set_addr(mtd, 0, page_addr, 0);
> +
> +		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
> +		ctrl->index += column;
> +
> +		fsl_elbc_do_read(chip, 0);
> +		fsl_elbc_run_command(mtd);
> +		return;
> +
> +	/* READOOB reads only the OOB because no ECC is performed. */
> +	case NAND_CMD_READOOB:
> +		dev_vdbg(ctrl->dev,
> +		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
> +			 " 0x%x, column: 0x%x.\n", page_addr, column);
> +
> +		out_be32(&lbc->fbcr, mtd->oobsize - column);
> +		set_addr(mtd, column, page_addr, 1);
> +
> +		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
> +
> +		fsl_elbc_do_read(chip, 1);
> +		fsl_elbc_run_command(mtd);
> +		return;
> +
> +	/* READID must read all 5 possible bytes while CEB is active */
> +	case NAND_CMD_READID:
> +		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
> +
> +		out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
> +		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
> +		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
> +		/* 5 bytes for manuf, device and exts */
> +		out_be32(&lbc->fbcr, 5);
> +		ctrl->read_bytes = 5;
> +		ctrl->use_mdr = 1;
> +		ctrl->mdr = 0;
> +
> +		set_addr(mtd, 0, 0, 0);
> +		fsl_elbc_run_command(mtd);
> +		return;
> +
> +	/* ERASE1 stores the block and page address */
> +	case NAND_CMD_ERASE1:
> +		dev_vdbg(ctrl->dev,
> +		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
> +		         "page_addr: 0x%x.\n", page_addr);
> +		set_addr(mtd, 0, page_addr, 0);
> +		return;
> +
> +	/* ERASE2 uses the block and page address from ERASE1 */
> +	case NAND_CMD_ERASE2:
> +		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
> +
> +		out_be32(&lbc->fir,
> +		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
> +		         (FIR_OP_CM1 << FIR_OP2_SHIFT));
> +
> +		out_be32(&lbc->fcr,
> +		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
> +		         (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
> +
> +		out_be32(&lbc->fbcr, 0);
> +		ctrl->read_bytes = 0;
> +
> +		fsl_elbc_run_command(mtd);
> +		return;
> +
> +	/* SEQIN sets up the addr buffer and all registers except the length */
> +	case NAND_CMD_SEQIN: {
> +		__be32 fcr;
> +		dev_vdbg(ctrl->dev,
> +		         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
> +		         "page_addr: 0x%x, column: 0x%x.\n",
> +		         page_addr, column);
> +
> +		ctrl->column = column;
> +		ctrl->oob = 0;
> +
> +		fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
> +		      (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
> +
> +		if (priv->page_size) {
> +			out_be32(&lbc->fir,
> +			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
> +			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
> +			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
> +			         (FIR_OP_CW1 << FIR_OP4_SHIFT));
> +
> +			fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
> +		} else {
> +			out_be32(&lbc->fir,
> +			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
> +			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
> +			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
> +			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
> +			         (FIR_OP_CW1 << FIR_OP5_SHIFT));
> +
> +			if (column >= mtd->writesize) {
> +				/* OOB area --> READOOB */
> +				column -= mtd->writesize;
> +				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
> +				ctrl->oob = 1;
> +			} else if (column < 256) {
> +				/* First 256 bytes --> READ0 */
> +				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
> +			} else {
> +				/* Second 256 bytes --> READ1 */
> +				fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
> +			}
> +		}
> +
> +		out_be32(&lbc->fcr, fcr);
> +		set_addr(mtd, column, page_addr, ctrl->oob);
> +		return;
> +	}
> +
> +	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
> +	case NAND_CMD_PAGEPROG: {
> +		int full_page;
> +		dev_vdbg(ctrl->dev,
> +		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
> +		         "writing %d bytes.\n", ctrl->index);
> +
> +		/* if the write did not start at 0 or is not a full page
> +		 * then set the exact length, otherwise use a full page
> +		 * write so the HW generates the ECC.
> +		 */
> +		if (ctrl->oob || ctrl->column != 0 ||
> +		    ctrl->index != mtd->writesize + mtd->oobsize) {
> +			out_be32(&lbc->fbcr, ctrl->index);
> +			full_page = 0;
> +		} else {
> +			out_be32(&lbc->fbcr, 0);
> +			full_page = 1;
> +		}
> +
> +		fsl_elbc_run_command(mtd);
> +
> +		/* Read back the page in order to fill in the ECC for the
> +		 * caller.  Is this really needed?
> +		 */
> +		if (full_page && ctrl->oob_poi) {
> +			out_be32(&lbc->fbcr, 3);
> +			set_addr(mtd, 6, page_addr, 1);
> +
> +			ctrl->read_bytes = mtd->writesize + 9;
> +
> +			fsl_elbc_do_read(chip, 1);
> +			fsl_elbc_run_command(mtd);
> +
> +			memcpy_fromio(ctrl->oob_poi + 6,
> +			              &ctrl->addr[ctrl->index], 3);
> +			ctrl->index += 3;
> +		}
> +
> +		ctrl->oob_poi = NULL;
> +		return;
> +	}
> +
> +	/* CMD_STATUS must read the status byte while CEB is active */
> +	/* Note - it does not wait for the ready line */
> +	case NAND_CMD_STATUS:
> +		out_be32(&lbc->fir,
> +		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
> +		         (FIR_OP_RBW << FIR_OP1_SHIFT));
> +		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
> +		out_be32(&lbc->fbcr, 1);
> +		set_addr(mtd, 0, 0, 0);
> +		ctrl->read_bytes = 1;
> +
> +		fsl_elbc_run_command(mtd);
> +
> +		/* The chip always seems to report that it is
> +		 * write-protected, even when it is not.
> +		 */
> +		setbits8(ctrl->addr, NAND_STATUS_WP);
> +		return;
> +
> +	/* RESET without waiting for the ready line */
> +	case NAND_CMD_RESET:
> +		dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
> +		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
> +		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
> +		fsl_elbc_run_command(mtd);
> +		return;
> +
> +	default:
> +		dev_err(ctrl->dev,
> +		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
> +		        command);
> +	}
> +}
> +
> +static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
> +{
> +	/* The hardware does not seem to support multiple
> +	 * chips per bank.
> +	 */
> +}
> +
> +/*
> + * Write buf to the FCM Controller Data Buffer
> + */
> +static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	unsigned int bufsize = mtd->writesize + mtd->oobsize;
> +
> +	if (len < 0) {
> +		dev_err(ctrl->dev, "write_buf of %d bytes", len);
> +		ctrl->status = 0;
> +		return;
> +	}
> +
> +	if ((unsigned int)len > bufsize - ctrl->index) {
> +		dev_err(ctrl->dev,
> +		        "write_buf beyond end of buffer "
> +		        "(%d requested, %u available)\n",
> +		        len, bufsize - ctrl->index);
> +		len = bufsize - ctrl->index;
> +	}
> +
> +	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
> +	ctrl->index += len;
> +}
> +
> +/*
> + * read a byte from either the FCM hardware buffer if it has any data left
> + * otherwise issue a command to read a single byte.
> + */
> +static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +
> +	/* If there are still bytes in the FCM, then use the next byte. */
> +	if (ctrl->index < ctrl->read_bytes)
> +		return in_8(&ctrl->addr[ctrl->index++]);
> +
> +	dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
> +	return ERR_BYTE;
> +}
> +
> +/*
> + * Read from the FCM Controller Data Buffer
> + */
> +static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	int avail;
> +
> +	if (len < 0)
> +		return;
> +
> +	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
> +	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
> +	ctrl->index += avail;
> +
> +	if (len > avail)
> +		dev_err(ctrl->dev,
> +		        "read_buf beyond end of buffer "
> +		        "(%d requested, %d available)\n",
> +		        len, avail);
> +}
> +
> +/*
> + * Verify buffer against the FCM Controller Data Buffer
> + */
> +static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	int i;
> +
> +	if (len < 0) {
> +		dev_err(ctrl->dev, "write_buf of %d bytes", len);
> +		return -EINVAL;
> +	}
> +
> +	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
> +		dev_err(ctrl->dev,
> +		        "verify_buf beyond end of buffer "
> +		        "(%d requested, %u available)\n",
> +		        len, ctrl->read_bytes - ctrl->index);
> +
> +		ctrl->index = ctrl->read_bytes;
> +		return -EINVAL;
> +	}
> +
> +	for (i = 0; i < len; i++)
> +		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
> +			break;
> +
> +	ctrl->index += len;
> +	return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
> +}
> +
> +/* This function is called after Program and Erase Operations to
> + * check for success or failure.
> + */
> +static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
> +{
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> +	if (ctrl->status != LTESR_CC)
> +		return NAND_STATUS_FAIL;
> +
> +	/* Use READ_STATUS command, but wait for the device to be ready */
> +	ctrl->use_mdr = 0;
> +	out_be32(&lbc->fir,
> +	         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> +	         (FIR_OP_RBW << FIR_OP1_SHIFT));
> +	out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
> +	out_be32(&lbc->fbcr, 1);
> +	set_addr(mtd, 0, 0, 0);
> +	ctrl->read_bytes = 1;
> +
> +	fsl_elbc_run_command(mtd);
> +
> +	if (ctrl->status != LTESR_CC)
> +		return NAND_STATUS_FAIL;
> +
> +	/* The chip always seems to report that it is
> +	 * write-protected, even when it is not.
> +	 */
> +	setbits8(ctrl->addr, NAND_STATUS_WP);
> +	return fsl_elbc_read_byte(mtd);
> +}
> +
> +static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
> +{
> +	struct nand_chip *chip = mtd->priv;
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +	unsigned int al;
> +
> +	/* calculate FMR Address Length field */
> +	al = 0;
> +	if (chip->pagemask & 0xffff0000)
> +		al++;
> +	if (chip->pagemask & 0xff000000)
> +		al++;
> +
> +	/* add to ECCM mode set in fsl_elbc_init */
> +	priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
> +	             (al << FMR_AL_SHIFT);
> +
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
> +	        chip->numchips);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
> +	        chip->chipsize);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
> +	        chip->pagemask);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
> +	        chip->chip_delay);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
> +	        chip->badblockpos);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
> +	        chip->chip_shift);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
> +	        chip->page_shift);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
> +	        chip->phys_erase_shift);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
> +	        chip->ecclayout);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
> +	        chip->ecc.mode);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
> +	        chip->ecc.steps);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
> +	        chip->ecc.bytes);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
> +	        chip->ecc.total);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
> +	        chip->ecc.layout);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
> +	        mtd->erasesize);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
> +	        mtd->writesize);
> +	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
> +	        mtd->oobsize);
> +
> +	/* adjust Option Register and ECC to match Flash page size */
> +	if (mtd->writesize == 512) {
> +		priv->page_size = 0;
> +		clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
> +	} else if (mtd->writesize == 2048) {
> +		priv->page_size = 1;
> +		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
> +		/* adjust ecc setup if needed */
> +		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
> +		    BR_DECC_CHK_GEN) {
> +			chip->ecc.size = 512;
> +			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
> +			                   &fsl_elbc_oob_lp_eccm1 :
> +			                   &fsl_elbc_oob_lp_eccm0;
> +			mtd->ecclayout = chip->ecc.layout;
> +			mtd->oobavail = chip->ecc.layout->oobavail;
> +		}
> +	} else {
> +		dev_err(ctrl->dev,
> +		        "fsl_elbc_init: page size %d is not supported\n",
> +		        mtd->writesize);
> +		return -1;
> +	}
> +
> +	/* The default u-boot configuration on MPC8313ERDB causes errors;
> +	 * more delay is needed.  This should be safe for other boards
> +	 * as well.
> +	 */
> +	setbits32(&lbc->bank[priv->bank].or, 0x70);
> +	return 0;
> +}
> +
> +static int fsl_elbc_read_page(struct mtd_info *mtd,
> +                              struct nand_chip *chip,
> +                              uint8_t *buf)
> +{
> +	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
> +	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> +	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
> +		mtd->ecc_stats.failed++;
> +
> +	return 0;
> +}
> +
> +/* ECC will be calculated automatically, and errors will be detected in
> + * waitfunc.
> + */
> +static void fsl_elbc_write_page(struct mtd_info *mtd,
> +                                struct nand_chip *chip,
> +                                const uint8_t *buf)
> +{
> +	struct fsl_elbc_mtd *priv = chip->priv;
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +
> +	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
> +	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> +	ctrl->oob_poi = chip->oob_poi;
> +}
> +
> +static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
> +{
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +	struct nand_chip *chip = &priv->chip;
> +
> +	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
> +
> +	/* Fill in fsl_elbc_mtd structure */
> +	priv->mtd.priv = chip;
> +	priv->mtd.owner = THIS_MODULE;
> +	priv->fmr = 0; /* rest filled in later */
> +
> +	/* fill in nand_chip structure */
> +	/* set up function call table */
> +	chip->read_byte = fsl_elbc_read_byte;
> +	chip->write_buf = fsl_elbc_write_buf;
> +	chip->read_buf = fsl_elbc_read_buf;
> +	chip->verify_buf = fsl_elbc_verify_buf;
> +	chip->select_chip = fsl_elbc_select_chip;
> +	chip->cmdfunc = fsl_elbc_cmdfunc;
> +	chip->waitfunc = fsl_elbc_wait;
> +	chip->late_init = fsl_elbc_chip_init_tail;
> +
> +	/* set up nand options */
> +	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
> +
> +	chip->controller = &ctrl->controller;
> +	chip->priv = priv;
> +
> +	chip->ecc.read_page = fsl_elbc_read_page;
> +	chip->ecc.write_page = fsl_elbc_write_page;
> +
> +	/* If CS Base Register selects full hardware ECC then use it */
> +	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
> +	    BR_DECC_CHK_GEN) {
> +		chip->ecc.mode = NAND_ECC_HW;
> +		/* put in small page settings and adjust later if needed */
> +		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
> +				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
> +		chip->ecc.size = 512;
> +		chip->ecc.bytes = 3;
> +	} else {
> +		/* otherwise fall back to default software ECC */
> +		chip->ecc.mode = NAND_ECC_SOFT;
> +	}
> +
> +	return 0;
> +}
> +
> +static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
> +{
> +	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +
> +	nand_release(&priv->mtd);
> +
> +	if (priv->vbase)
> +		iounmap(priv->vbase);
> +
> +	ctrl->chips[priv->bank] = NULL;
> +	kfree(priv);
> +
> +	return 0;
> +}
> +
> +static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
> +                               struct device_node *node)
> +{
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +	struct fsl_elbc_mtd *priv;
> +	struct resource res;
> +#ifdef CONFIG_MTD_PARTITIONS
> +	static const char *part_probe_types[]
> +		= { "cmdlinepart", "RedBoot", NULL };
> +	struct mtd_partition *parts;
> +#endif
> +	int ret;
> +	int bank;
> +
> +	/* get, allocate and map the memory resource */
> +	ret = of_address_to_resource(node, 0, &res);
> +	if (ret) {
> +		dev_err(ctrl->dev, "failed to get resource\n");
> +		return ret;
> +	}
> +
> +	/* find which chip select it is connected to */
> +	for (bank = 0; bank < MAX_BANKS; bank++)
> +		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
> +		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
> +		    (in_be32(&lbc->bank[bank].br) &
> +		     in_be32(&lbc->bank[bank].or) & BR_BA)
> +		     == res.start)
> +			break;
> +
> +	if (bank >= MAX_BANKS) {
> +		dev_err(ctrl->dev, "address did not match any chip selects\n");
> +		return -ENODEV;
> +	}
> +
> +	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
> +	if (!priv)
> +		return -ENOMEM;
> +
> +	ctrl->chips[bank] = priv;
> +	priv->bank = bank;
> +	priv->ctrl = ctrl;
> +	priv->dev = ctrl->dev;
> +
> +	priv->vbase = ioremap(res.start, res.end - res.start + 1);
> +	if (!priv->vbase) {
> +		dev_err(ctrl->dev, "failed to map chip region\n");
> +		ret = -ENOMEM;
> +		goto err;
> +	}
> +
> +	ret = fsl_elbc_chip_init(priv);
> +	if (ret)
> +		goto err;
> +
> +	ret = nand_scan(&priv->mtd, 1);
> +	if (ret)
> +		goto err;
> +
> +#ifdef CONFIG_MTD_PARTITIONS
> +	/* First look for RedBoot table or partitions on the command
> +	 * line, these take precedence over device tree information */
> +	ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
> +	if (ret < 0)
> +		goto err;
> +
> +#ifdef CONFIG_MTD_OF_PARTS
> +	if (ret == 0) {
> +		ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
> +		                              node, &parts);
> +		if (ret < 0)
> +			goto err;
> +	}
> +#endif
> +
> +	if (ret > 0)
> +		add_mtd_partitions(&priv->mtd, parts, ret);
> +	else
> +#endif
> +		add_mtd_device(&priv->mtd);
> +
> +	printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
> +	       res.start, priv->bank);
> +	return 0;
> +
> +err:
> +	fsl_elbc_chip_remove(priv);
> +	return ret;
> +}
> +
> +static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
> +{
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> +	/* clear event registers */
> +	setbits32(&lbc->ltesr, LTESR_NAND_MASK);
> +	out_be32(&lbc->lteatr, 0);
> +
> +	/* Enable interrupts for any detected events */
> +	out_be32(&lbc->lteir, LTESR_NAND_MASK);
> +
> +	ctrl->read_bytes = 0;
> +	ctrl->index = 0;
> +	ctrl->addr = NULL;
> +
> +	return 0;
> +}
> +
> +static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
> +{
> +	struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
> +	int i;
> +
> +	for (i = 0; i < MAX_BANKS; i++)
> +		if (ctrl->chips[i])
> +			fsl_elbc_chip_remove(ctrl->chips[i]);
> +
> +	if (ctrl->irq)
> +		free_irq(ctrl->irq, ctrl);
> +
> +	if (ctrl->regs)
> +		iounmap(ctrl->regs);
> +
> +	dev_set_drvdata(&ofdev->dev, NULL);
> +	kfree(ctrl);
> +	return 0;
> +}
> +
> +/* NOTE: This interrupt is also used to report other localbus events,
> + * such as transaction errors on other chipselects.  If we want to
> + * capture those, we'll need to move the IRQ code into a shared
> + * LBC driver.
> + */
> +
> +static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
> +{
> +	struct fsl_elbc_ctrl *ctrl = data;
> +	struct elbc_regs __iomem *lbc = ctrl->regs;
> +	__be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
> +
> +	if (status) {
> +		out_be32(&lbc->ltesr, status);
> +		out_be32(&lbc->lteatr, 0);
> +
> +		ctrl->irq_status = status;
> +		smp_wmb();
> +		wake_up(&ctrl->irq_wait);
> +
> +		return IRQ_HANDLED;
> +	}
> +
> +	return IRQ_NONE;
> +}
> +
> +/* fsl_elbc_ctrl_probe
> + *
> + * called by device layer when it finds a device matching
> + * one our driver can handled. This code allocates all of
> + * the resources needed for the controller only.  The
> + * resources for the NAND banks themselves are allocated
> + * in the chip probe function.
> +*/
> +
> +static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
> +                                         const struct of_device_id *match)
> +{
> +	struct device_node *child;
> +	struct fsl_elbc_ctrl *ctrl;
> +	int ret;
> +
> +	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
> +	if (!ctrl)
> +		return -ENOMEM;
> +
> +	dev_set_drvdata(&ofdev->dev, ctrl);
> +
> +	spin_lock_init(&ctrl->controller.lock);
> +	init_waitqueue_head(&ctrl->controller.wq);
> +	init_waitqueue_head(&ctrl->irq_wait);
> +
> +	ctrl->regs = of_iomap(ofdev->node, 0);
> +	if (!ctrl->regs) {
> +		dev_err(&ofdev->dev, "failed to get memory region\n");
> +		ret = -ENODEV;
> +		goto err;
> +	}
> +
> +	ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
> +	if (ctrl->irq == NO_IRQ) {
> +		dev_err(&ofdev->dev, "failed to get irq resource\n");
> +		ret = -ENODEV;
> +		goto err;
> +	}
> +
> +	ctrl->dev = &ofdev->dev;
> +
> +	ret = fsl_elbc_ctrl_init(ctrl);
> +	if (ret < 0)
> +		goto err;
> +
> +	ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
> +	if (ret != 0) {
> +		dev_err(&ofdev->dev, "failed to install irq (%d)\n",
> +		        ctrl->irq);
> +		ret = ctrl->irq;
> +		goto err;
> +	}
> +
> +	child = NULL;
> +	while ((child = of_get_next_child(ofdev->node, child)))
> +		if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
> +			fsl_elbc_chip_probe(ctrl, child);

Don't you need some of_node_put calls here?

> +
> +	return 0;
> +
> +err:
> +	fsl_elbc_ctrl_remove(ofdev);
> +	return ret;

You don't free ctrl if you get an error.  Memory leak?

josh



More information about the linux-mtd mailing list