[PATCH v3 4/4] Freescale enhanced Local Bus Controller FCM NAND support.
Josh Boyer
jwboyer at gmail.com
Fri Dec 14 20:08:19 EST 2007
On Fri, 14 Dec 2007 16:17:36 -0600
Scott Wood <scottwood at freescale.com> wrote:
> Signed-off-by: Nick Spence <nick.spence at freescale.com>
> Signed-off-by: Scott Wood <scottwood at freescale.com>
> ---
> Fixed some formatting issues, removed some leftover debugging cruft,
> and added a comment about potential conflicts in the interrupt handling.
>
> drivers/mtd/nand/Kconfig | 9 +
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/fsl_elbc_nand.c | 1236 ++++++++++++++++++++++++++++++++++++++
> 3 files changed, 1246 insertions(+), 0 deletions(-)
> create mode 100644 drivers/mtd/nand/fsl_elbc_nand.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 246d451..05d976c 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -306,4 +306,13 @@ config MTD_ALAUDA
> These two (and possibly other) Alauda-based cardreaders for
> SmartMedia and xD allow raw flash access.
>
> +config MTD_NAND_FSL_ELBC
> + tristate "NAND support for Freescale eLBC controllers"
> + depends on MTD_NAND && PPC_OF
> + help
> + Various Freescale chips, including the 8313, include a NAND Flash
> + Controller Module with built-in hardware ECC capabilities.
> + Enabling this option will enable you to use this to control
> + external NAND devices.
> +
> endif # MTD_NAND
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 3ad6c01..d0d4de2 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -29,5 +29,6 @@ obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
> obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o
> obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
> obj-$(CONFIG_MTD_ALAUDA) += alauda.o
> +obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
>
> nand-objs := nand_base.o nand_bbt.o
> diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
> new file mode 100644
> index 0000000..001c32c
> --- /dev/null
> +++ b/drivers/mtd/nand/fsl_elbc_nand.c
> @@ -0,0 +1,1236 @@
> +/* Freescale Enhanced Local Bus Controller NAND driver
> + *
> + * Copyright (c) 2006-2007 Freescale Semiconductor
> + *
> + * Authors: Nick Spence <nick.spence at freescale.com>,
> + * Scott Wood <scottwood at freescale.com>
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + *
> + * You should have received a copy of the GNU General Public License
> + * along with this program; if not, write to the Free Software
> + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
> + */
> +
> +#include <linux/module.h>
> +#include <linux/types.h>
> +#include <linux/init.h>
> +#include <linux/kernel.h>
> +#include <linux/string.h>
> +#include <linux/ioport.h>
> +#include <linux/of_platform.h>
> +#include <linux/slab.h>
> +#include <linux/interrupt.h>
> +
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/nand_ecc.h>
> +#include <linux/mtd/partitions.h>
> +
> +#include <asm/io.h>
> +
> +
> +#define MAX_BANKS 8
> +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
> +#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
> +
> +struct elbc_bank {
> + __be32 br; /**< Base Register */
> +#define BR_BA 0xFFFF8000
> +#define BR_BA_SHIFT 15
> +#define BR_PS 0x00001800
> +#define BR_PS_SHIFT 11
> +#define BR_PS_8 0x00000800 /* Port Size 8 bit */
> +#define BR_PS_16 0x00001000 /* Port Size 16 bit */
> +#define BR_PS_32 0x00001800 /* Port Size 32 bit */
> +#define BR_DECC 0x00000600
> +#define BR_DECC_SHIFT 9
> +#define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */
> +#define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */
> +#define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */
> +#define BR_WP 0x00000100
> +#define BR_WP_SHIFT 8
> +#define BR_MSEL 0x000000E0
> +#define BR_MSEL_SHIFT 5
> +#define BR_MS_GPCM 0x00000000 /* GPCM */
> +#define BR_MS_FCM 0x00000020 /* FCM */
> +#define BR_MS_SDRAM 0x00000060 /* SDRAM */
> +#define BR_MS_UPMA 0x00000080 /* UPMA */
> +#define BR_MS_UPMB 0x000000A0 /* UPMB */
> +#define BR_MS_UPMC 0x000000C0 /* UPMC */
> +#define BR_V 0x00000001
> +#define BR_V_SHIFT 0
> +#define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
> +
> + __be32 or; /**< Base Register */
Urgh. Maybe it's just me, but when people mix #defines in the middle
of a structure definition I have a hard time actually reading the
structure. You could move the #defines above the structure.
> +#define OR0 0x5004
> +#define OR1 0x500C
> +#define OR2 0x5014
> +#define OR3 0x501C
> +#define OR4 0x5024
> +#define OR5 0x502C
> +#define OR6 0x5034
> +#define OR7 0x503C
> +
> +#define OR_FCM_AM 0xFFFF8000
> +#define OR_FCM_AM_SHIFT 15
> +#define OR_FCM_BCTLD 0x00001000
> +#define OR_FCM_BCTLD_SHIFT 12
> +#define OR_FCM_PGS 0x00000400
> +#define OR_FCM_PGS_SHIFT 10
> +#define OR_FCM_CSCT 0x00000200
> +#define OR_FCM_CSCT_SHIFT 9
> +#define OR_FCM_CST 0x00000100
> +#define OR_FCM_CST_SHIFT 8
> +#define OR_FCM_CHT 0x00000080
> +#define OR_FCM_CHT_SHIFT 7
> +#define OR_FCM_SCY 0x00000070
> +#define OR_FCM_SCY_SHIFT 4
> +#define OR_FCM_SCY_1 0x00000010
> +#define OR_FCM_SCY_2 0x00000020
> +#define OR_FCM_SCY_3 0x00000030
> +#define OR_FCM_SCY_4 0x00000040
> +#define OR_FCM_SCY_5 0x00000050
> +#define OR_FCM_SCY_6 0x00000060
> +#define OR_FCM_SCY_7 0x00000070
> +#define OR_FCM_RST 0x00000008
> +#define OR_FCM_RST_SHIFT 3
> +#define OR_FCM_TRLX 0x00000004
> +#define OR_FCM_TRLX_SHIFT 2
> +#define OR_FCM_EHTR 0x00000002
> +#define OR_FCM_EHTR_SHIFT 1
> +};
> +
> +struct elbc_regs {
> + struct elbc_bank bank[8];
> + u8 res0[0x28];
> + __be32 mar; /**< UPM Address Register */
> + u8 res1[0x4];
> + __be32 mamr; /**< UPMA Mode Register */
> + __be32 mbmr; /**< UPMB Mode Register */
> + __be32 mcmr; /**< UPMC Mode Register */
> + u8 res2[0x8];
> + __be32 mrtpr; /**< Memory Refresh Timer Prescaler Register */
> + __be32 mdr; /**< UPM Data Register */
> + u8 res3[0x4];
> + __be32 lsor; /**< Special Operation Initiation Register */
> + __be32 lsdmr; /**< SDRAM Mode Register */
> + u8 res4[0x8];
> + __be32 lurt; /**< UPM Refresh Timer */
> + __be32 lsrt; /**< SDRAM Refresh Timer */
> + u8 res5[0x8];
> + __be32 ltesr; /**< Transfer Error Status Register */
> +#define LTESR_BM 0x80000000
> +#define LTESR_FCT 0x40000000
> +#define LTESR_PAR 0x20000000
> +#define LTESR_WP 0x04000000
> +#define LTESR_ATMW 0x00800000
> +#define LTESR_ATMR 0x00400000
> +#define LTESR_CS 0x00080000
> +#define LTESR_CC 0x00000001
> +#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
> + __be32 ltedr; /**< Transfer Error Disable Register */
> + __be32 lteir; /**< Transfer Error Interrupt Register */
> + __be32 lteatr; /**< Transfer Error Attributes Register */
> + __be32 ltear; /**< Transfer Error Address Register */
> + u8 res6[0xC];
> + __be32 lbcr; /**< Configuration Register */
> +#define LBCR_LDIS 0x80000000
> +#define LBCR_LDIS_SHIFT 31
> +#define LBCR_BCTLC 0x00C00000
> +#define LBCR_BCTLC_SHIFT 22
> +#define LBCR_AHD 0x00200000
> +#define LBCR_LPBSE 0x00020000
> +#define LBCR_LPBSE_SHIFT 17
> +#define LBCR_EPAR 0x00010000
> +#define LBCR_EPAR_SHIFT 16
> +#define LBCR_BMT 0x0000FF00
> +#define LBCR_BMT_SHIFT 8
> +#define LBCR_INIT 0x00040000
> + __be32 lcrr; /**< Clock Ratio Register */
> +#define LCRR_DBYP 0x80000000
> +#define LCRR_DBYP_SHIFT 31
> +#define LCRR_BUFCMDC 0x30000000
> +#define LCRR_BUFCMDC_SHIFT 28
> +#define LCRR_ECL 0x03000000
> +#define LCRR_ECL_SHIFT 24
> +#define LCRR_EADC 0x00030000
> +#define LCRR_EADC_SHIFT 16
> +#define LCRR_CLKDIV 0x0000000F
> +#define LCRR_CLKDIV_SHIFT 0
> + u8 res7[0x8];
> + __be32 fmr; /**< Flash Mode Register */
> +#define FMR_CWTO 0x0000F000
> +#define FMR_CWTO_SHIFT 12
> +#define FMR_BOOT 0x00000800
> +#define FMR_ECCM 0x00000100
> +#define FMR_AL 0x00000030
> +#define FMR_AL_SHIFT 4
> +#define FMR_OP 0x00000003
> +#define FMR_OP_SHIFT 0
> + __be32 fir; /**< Flash Instruction Register */
> +#define FIR_OP0 0xF0000000
> +#define FIR_OP0_SHIFT 28
> +#define FIR_OP1 0x0F000000
> +#define FIR_OP1_SHIFT 24
> +#define FIR_OP2 0x00F00000
> +#define FIR_OP2_SHIFT 20
> +#define FIR_OP3 0x000F0000
> +#define FIR_OP3_SHIFT 16
> +#define FIR_OP4 0x0000F000
> +#define FIR_OP4_SHIFT 12
> +#define FIR_OP5 0x00000F00
> +#define FIR_OP5_SHIFT 8
> +#define FIR_OP6 0x000000F0
> +#define FIR_OP6_SHIFT 4
> +#define FIR_OP7 0x0000000F
> +#define FIR_OP7_SHIFT 0
> +#define FIR_OP_NOP 0x0 /* No operation and end of sequence */
> +#define FIR_OP_CA 0x1 /* Issue current column address */
> +#define FIR_OP_PA 0x2 /* Issue current block+page address */
> +#define FIR_OP_UA 0x3 /* Issue user defined address */
> +#define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */
> +#define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */
> +#define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */
> +#define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */
> +#define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */
> +#define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */
> +#define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */
> +#define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */
> +#define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */
> +#define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */
> +#define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */
> +#define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */
> + __be32 fcr; /**< Flash Command Register */
> +#define FCR_CMD0 0xFF000000
> +#define FCR_CMD0_SHIFT 24
> +#define FCR_CMD1 0x00FF0000
> +#define FCR_CMD1_SHIFT 16
> +#define FCR_CMD2 0x0000FF00
> +#define FCR_CMD2_SHIFT 8
> +#define FCR_CMD3 0x000000FF
> +#define FCR_CMD3_SHIFT 0
> + __be32 fbar; /**< Flash Block Address Register */
> +#define FBAR_BLK 0x00FFFFFF
> + __be32 fpar; /**< Flash Page Address Register */
> +#define FPAR_SP_PI 0x00007C00
> +#define FPAR_SP_PI_SHIFT 10
> +#define FPAR_SP_MS 0x00000200
> +#define FPAR_SP_CI 0x000001FF
> +#define FPAR_SP_CI_SHIFT 0
> +#define FPAR_LP_PI 0x0003F000
> +#define FPAR_LP_PI_SHIFT 12
> +#define FPAR_LP_MS 0x00000800
> +#define FPAR_LP_CI 0x000007FF
> +#define FPAR_LP_CI_SHIFT 0
> + __be32 fbcr; /**< Flash Byte Count Register */
> +#define FBCR_BC 0x00000FFF
> + u8 res11[0x8];
> + u8 res8[0xF00];
> +};
> +
> +struct fsl_elbc_ctrl;
> +
> +/* mtd information per set */
> +
> +struct fsl_elbc_mtd {
> + struct mtd_info mtd;
> + struct nand_chip chip;
> + struct fsl_elbc_ctrl *ctrl;
> +
> + struct device *dev;
> + int bank; /* Chip select bank number */
> + u8 __iomem *vbase; /* Chip select base virtual address */
> + int page_size; /* NAND page size (0=512, 1=2048) */
> + unsigned int fmr; /* FCM Flash Mode Register value */
> +};
> +
> +/* overview of the fsl elbc controller */
> +
> +struct fsl_elbc_ctrl {
> + struct nand_hw_control controller;
> + struct fsl_elbc_mtd *chips[MAX_BANKS];
> +
> + /* device info */
> + struct device *dev;
> + struct elbc_regs __iomem *regs;
> + int irq;
> + wait_queue_head_t irq_wait;
> + unsigned int irq_status; /* status read from LTESR by irq handler */
> + u8 __iomem *addr; /* Address of assigned FCM buffer */
> + unsigned int page; /* Last page written to / read from */
> + unsigned int read_bytes; /* Number of bytes read during command */
> + unsigned int column; /* Saved column from SEQIN */
> + unsigned int index; /* Pointer to next byte to 'read' */
> + unsigned int status; /* status read from LTESR after last op */
> + unsigned int mdr; /* UPM/FCM Data Register value */
> + unsigned int use_mdr; /* Non zero if the MDR is to be set */
> + unsigned int oob; /* Non zero if operating on OOB data */
> + char *oob_poi; /* Place to write ECC after read back */
> +};
> +
> +/* These map to the positions used by the FCM hardware ECC generator */
> +
> +/* Small Page FLASH with FMR[ECCM] = 0 */
> +static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
> + .eccbytes = 3,
> + .eccpos = {6, 7, 8},
> + .oobfree = { {0, 5}, {9, 7} },
> + .oobavail = 12,
> +};
> +
> +/* Small Page FLASH with FMR[ECCM] = 1 */
> +static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
> + .eccbytes = 3,
> + .eccpos = {8, 9, 10},
> + .oobfree = { {0, 5}, {6, 2}, {11, 5} },
> + .oobavail = 12,
> +};
> +
> +/* Large Page FLASH with FMR[ECCM] = 0 */
> +static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
> + .eccbytes = 12,
> + .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
> + .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
> + .oobavail = 48,
> +};
> +
> +/* Large Page FLASH with FMR[ECCM] = 1 */
> +static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
> + .eccbytes = 12,
> + .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
> + .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
> + .oobavail = 48,
> +};
> +
> +/*=================================*/
> +
> +/*
> + * Set up the FCM hardware block and page address fields, and the fcm
> + * structure addr field to point to the correct FCM buffer in memory
> + */
> +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> + int buf_num;
> +
> + ctrl->page = page_addr;
> +
> + out_be32(&lbc->fbar,
> + page_addr >> (chip->phys_erase_shift - chip->page_shift));
> +
> + if (priv->page_size) {
> + out_be32(&lbc->fpar,
> + ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
> + (oob ? FPAR_LP_MS : 0) | column);
> + buf_num = (page_addr & 1) << 2;
> + } else {
> + out_be32(&lbc->fpar,
> + ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
> + (oob ? FPAR_SP_MS : 0) | column);
> + buf_num = page_addr & 7;
> + }
> +
> + ctrl->addr = priv->vbase + buf_num * 1024;
> + ctrl->index = column;
> +
> + /* for OOB data point to the second half of the buffer */
> + if (oob)
> + ctrl->index += priv->page_size ? 2048 : 512;
> +
> + dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
> + "index %x, pes %d ps %d\n",
> + buf_num, ctrl->addr, priv->vbase, ctrl->index,
> + chip->phys_erase_shift, chip->page_shift);
> +}
> +
> +/*
> + * execute FCM command and wait for it to complete
> + */
> +static int fsl_elbc_run_command(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> + /* Setup the FMR[OP] to execute without write protection */
> + out_be32(&lbc->fmr, priv->fmr | 3);
> + if (ctrl->use_mdr)
> + out_be32(&lbc->mdr, ctrl->mdr);
> +
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
> + in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_run_command: fbar=%08x fpar=%08x "
> + "fbcr=%08x bank=%d\n",
> + in_be32(&lbc->fbar), in_be32(&lbc->fpar),
> + in_be32(&lbc->fbcr), priv->bank);
> +
> + /* execute special operation */
> + out_be32(&lbc->lsor, priv->bank);
> +
> + /* wait for FCM complete flag or timeout */
> + ctrl->irq_status = 0;
> + wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
> + FCM_TIMEOUT_MSECS * HZ/1000);
> + ctrl->status = ctrl->irq_status;
> +
> + /* store mdr value in case it was needed */
> + if (ctrl->use_mdr)
> + ctrl->mdr = in_be32(&lbc->mdr);
> +
> + ctrl->use_mdr = 0;
> +
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
> + ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
> +
> + /* returns 0 on success otherwise non-zero) */
> + return ctrl->status == LTESR_CC ? 0 : -EIO;
> +}
> +
> +static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
> +{
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> + if (priv->page_size) {
> + out_be32(&lbc->fir,
> + (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_CA << FIR_OP1_SHIFT) |
> + (FIR_OP_PA << FIR_OP2_SHIFT) |
> + (FIR_OP_CW1 << FIR_OP3_SHIFT) |
> + (FIR_OP_RBW << FIR_OP4_SHIFT));
> +
> + out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
> + (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
> + } else {
> + out_be32(&lbc->fir,
> + (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_CA << FIR_OP1_SHIFT) |
> + (FIR_OP_PA << FIR_OP2_SHIFT) |
> + (FIR_OP_RBW << FIR_OP3_SHIFT));
> +
> + if (oob)
> + out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
> + else
> + out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
> + }
> +}
> +
> +/* cmdfunc send commands to the FCM */
> +static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
> + int column, int page_addr)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> + ctrl->use_mdr = 0;
> +
> + /* clear the read buffer */
> + ctrl->read_bytes = 0;
> + if (command != NAND_CMD_PAGEPROG)
> + ctrl->index = 0;
> +
> + switch (command) {
> + /* READ0 and READ1 read the entire buffer to use hardware ECC. */
> + case NAND_CMD_READ1:
> + column += 256;
> +
> + /* fall-through */
> + case NAND_CMD_READ0:
> + dev_dbg(ctrl->dev,
> + "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
> + " 0x%x, column: 0x%x.\n", page_addr, column);
> +
> +
> + out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
> + set_addr(mtd, 0, page_addr, 0);
> +
> + ctrl->read_bytes = mtd->writesize + mtd->oobsize;
> + ctrl->index += column;
> +
> + fsl_elbc_do_read(chip, 0);
> + fsl_elbc_run_command(mtd);
> + return;
> +
> + /* READOOB reads only the OOB because no ECC is performed. */
> + case NAND_CMD_READOOB:
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
> + " 0x%x, column: 0x%x.\n", page_addr, column);
> +
> + out_be32(&lbc->fbcr, mtd->oobsize - column);
> + set_addr(mtd, column, page_addr, 1);
> +
> + ctrl->read_bytes = mtd->writesize + mtd->oobsize;
> +
> + fsl_elbc_do_read(chip, 1);
> + fsl_elbc_run_command(mtd);
> + return;
> +
> + /* READID must read all 5 possible bytes while CEB is active */
> + case NAND_CMD_READID:
> + dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
> +
> + out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_UA << FIR_OP1_SHIFT) |
> + (FIR_OP_RBW << FIR_OP2_SHIFT));
> + out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
> + /* 5 bytes for manuf, device and exts */
> + out_be32(&lbc->fbcr, 5);
> + ctrl->read_bytes = 5;
> + ctrl->use_mdr = 1;
> + ctrl->mdr = 0;
> +
> + set_addr(mtd, 0, 0, 0);
> + fsl_elbc_run_command(mtd);
> + return;
> +
> + /* ERASE1 stores the block and page address */
> + case NAND_CMD_ERASE1:
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
> + "page_addr: 0x%x.\n", page_addr);
> + set_addr(mtd, 0, page_addr, 0);
> + return;
> +
> + /* ERASE2 uses the block and page address from ERASE1 */
> + case NAND_CMD_ERASE2:
> + dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
> +
> + out_be32(&lbc->fir,
> + (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_PA << FIR_OP1_SHIFT) |
> + (FIR_OP_CM1 << FIR_OP2_SHIFT));
> +
> + out_be32(&lbc->fcr,
> + (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
> + (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
> +
> + out_be32(&lbc->fbcr, 0);
> + ctrl->read_bytes = 0;
> +
> + fsl_elbc_run_command(mtd);
> + return;
> +
> + /* SEQIN sets up the addr buffer and all registers except the length */
> + case NAND_CMD_SEQIN: {
> + __be32 fcr;
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
> + "page_addr: 0x%x, column: 0x%x.\n",
> + page_addr, column);
> +
> + ctrl->column = column;
> + ctrl->oob = 0;
> +
> + fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
> + (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
> +
> + if (priv->page_size) {
> + out_be32(&lbc->fir,
> + (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_CA << FIR_OP1_SHIFT) |
> + (FIR_OP_PA << FIR_OP2_SHIFT) |
> + (FIR_OP_WB << FIR_OP3_SHIFT) |
> + (FIR_OP_CW1 << FIR_OP4_SHIFT));
> +
> + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
> + } else {
> + out_be32(&lbc->fir,
> + (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_CM2 << FIR_OP1_SHIFT) |
> + (FIR_OP_CA << FIR_OP2_SHIFT) |
> + (FIR_OP_PA << FIR_OP3_SHIFT) |
> + (FIR_OP_WB << FIR_OP4_SHIFT) |
> + (FIR_OP_CW1 << FIR_OP5_SHIFT));
> +
> + if (column >= mtd->writesize) {
> + /* OOB area --> READOOB */
> + column -= mtd->writesize;
> + fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
> + ctrl->oob = 1;
> + } else if (column < 256) {
> + /* First 256 bytes --> READ0 */
> + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
> + } else {
> + /* Second 256 bytes --> READ1 */
> + fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
> + }
> + }
> +
> + out_be32(&lbc->fcr, fcr);
> + set_addr(mtd, column, page_addr, ctrl->oob);
> + return;
> + }
> +
> + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
> + case NAND_CMD_PAGEPROG: {
> + int full_page;
> + dev_vdbg(ctrl->dev,
> + "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
> + "writing %d bytes.\n", ctrl->index);
> +
> + /* if the write did not start at 0 or is not a full page
> + * then set the exact length, otherwise use a full page
> + * write so the HW generates the ECC.
> + */
> + if (ctrl->oob || ctrl->column != 0 ||
> + ctrl->index != mtd->writesize + mtd->oobsize) {
> + out_be32(&lbc->fbcr, ctrl->index);
> + full_page = 0;
> + } else {
> + out_be32(&lbc->fbcr, 0);
> + full_page = 1;
> + }
> +
> + fsl_elbc_run_command(mtd);
> +
> + /* Read back the page in order to fill in the ECC for the
> + * caller. Is this really needed?
> + */
> + if (full_page && ctrl->oob_poi) {
> + out_be32(&lbc->fbcr, 3);
> + set_addr(mtd, 6, page_addr, 1);
> +
> + ctrl->read_bytes = mtd->writesize + 9;
> +
> + fsl_elbc_do_read(chip, 1);
> + fsl_elbc_run_command(mtd);
> +
> + memcpy_fromio(ctrl->oob_poi + 6,
> + &ctrl->addr[ctrl->index], 3);
> + ctrl->index += 3;
> + }
> +
> + ctrl->oob_poi = NULL;
> + return;
> + }
> +
> + /* CMD_STATUS must read the status byte while CEB is active */
> + /* Note - it does not wait for the ready line */
> + case NAND_CMD_STATUS:
> + out_be32(&lbc->fir,
> + (FIR_OP_CM0 << FIR_OP0_SHIFT) |
> + (FIR_OP_RBW << FIR_OP1_SHIFT));
> + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
> + out_be32(&lbc->fbcr, 1);
> + set_addr(mtd, 0, 0, 0);
> + ctrl->read_bytes = 1;
> +
> + fsl_elbc_run_command(mtd);
> +
> + /* The chip always seems to report that it is
> + * write-protected, even when it is not.
> + */
> + setbits8(ctrl->addr, NAND_STATUS_WP);
> + return;
> +
> + /* RESET without waiting for the ready line */
> + case NAND_CMD_RESET:
> + dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
> + out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
> + out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
> + fsl_elbc_run_command(mtd);
> + return;
> +
> + default:
> + dev_err(ctrl->dev,
> + "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
> + command);
> + }
> +}
> +
> +static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
> +{
> + /* The hardware does not seem to support multiple
> + * chips per bank.
> + */
> +}
> +
> +/*
> + * Write buf to the FCM Controller Data Buffer
> + */
> +static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + unsigned int bufsize = mtd->writesize + mtd->oobsize;
> +
> + if (len < 0) {
> + dev_err(ctrl->dev, "write_buf of %d bytes", len);
> + ctrl->status = 0;
> + return;
> + }
> +
> + if ((unsigned int)len > bufsize - ctrl->index) {
> + dev_err(ctrl->dev,
> + "write_buf beyond end of buffer "
> + "(%d requested, %u available)\n",
> + len, bufsize - ctrl->index);
> + len = bufsize - ctrl->index;
> + }
> +
> + memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
> + ctrl->index += len;
> +}
> +
> +/*
> + * read a byte from either the FCM hardware buffer if it has any data left
> + * otherwise issue a command to read a single byte.
> + */
> +static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +
> + /* If there are still bytes in the FCM, then use the next byte. */
> + if (ctrl->index < ctrl->read_bytes)
> + return in_8(&ctrl->addr[ctrl->index++]);
> +
> + dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
> + return ERR_BYTE;
> +}
> +
> +/*
> + * Read from the FCM Controller Data Buffer
> + */
> +static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + int avail;
> +
> + if (len < 0)
> + return;
> +
> + avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
> + memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
> + ctrl->index += avail;
> +
> + if (len > avail)
> + dev_err(ctrl->dev,
> + "read_buf beyond end of buffer "
> + "(%d requested, %d available)\n",
> + len, avail);
> +}
> +
> +/*
> + * Verify buffer against the FCM Controller Data Buffer
> + */
> +static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + int i;
> +
> + if (len < 0) {
> + dev_err(ctrl->dev, "write_buf of %d bytes", len);
> + return -EINVAL;
> + }
> +
> + if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
> + dev_err(ctrl->dev,
> + "verify_buf beyond end of buffer "
> + "(%d requested, %u available)\n",
> + len, ctrl->read_bytes - ctrl->index);
> +
> + ctrl->index = ctrl->read_bytes;
> + return -EINVAL;
> + }
> +
> + for (i = 0; i < len; i++)
> + if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
> + break;
> +
> + ctrl->index += len;
> + return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
> +}
> +
> +/* This function is called after Program and Erase Operations to
> + * check for success or failure.
> + */
> +static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
> +{
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> + if (ctrl->status != LTESR_CC)
> + return NAND_STATUS_FAIL;
> +
> + /* Use READ_STATUS command, but wait for the device to be ready */
> + ctrl->use_mdr = 0;
> + out_be32(&lbc->fir,
> + (FIR_OP_CW0 << FIR_OP0_SHIFT) |
> + (FIR_OP_RBW << FIR_OP1_SHIFT));
> + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
> + out_be32(&lbc->fbcr, 1);
> + set_addr(mtd, 0, 0, 0);
> + ctrl->read_bytes = 1;
> +
> + fsl_elbc_run_command(mtd);
> +
> + if (ctrl->status != LTESR_CC)
> + return NAND_STATUS_FAIL;
> +
> + /* The chip always seems to report that it is
> + * write-protected, even when it is not.
> + */
> + setbits8(ctrl->addr, NAND_STATUS_WP);
> + return fsl_elbc_read_byte(mtd);
> +}
> +
> +static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> + unsigned int al;
> +
> + /* calculate FMR Address Length field */
> + al = 0;
> + if (chip->pagemask & 0xffff0000)
> + al++;
> + if (chip->pagemask & 0xff000000)
> + al++;
> +
> + /* add to ECCM mode set in fsl_elbc_init */
> + priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
> + (al << FMR_AL_SHIFT);
> +
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
> + chip->numchips);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
> + chip->chipsize);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
> + chip->pagemask);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
> + chip->chip_delay);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
> + chip->badblockpos);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
> + chip->chip_shift);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
> + chip->page_shift);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
> + chip->phys_erase_shift);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
> + chip->ecclayout);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
> + chip->ecc.mode);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
> + chip->ecc.steps);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
> + chip->ecc.bytes);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
> + chip->ecc.total);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
> + chip->ecc.layout);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
> + mtd->erasesize);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
> + mtd->writesize);
> + dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
> + mtd->oobsize);
> +
> + /* adjust Option Register and ECC to match Flash page size */
> + if (mtd->writesize == 512) {
> + priv->page_size = 0;
> + clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
> + } else if (mtd->writesize == 2048) {
> + priv->page_size = 1;
> + setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
> + /* adjust ecc setup if needed */
> + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
> + BR_DECC_CHK_GEN) {
> + chip->ecc.size = 512;
> + chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
> + &fsl_elbc_oob_lp_eccm1 :
> + &fsl_elbc_oob_lp_eccm0;
> + mtd->ecclayout = chip->ecc.layout;
> + mtd->oobavail = chip->ecc.layout->oobavail;
> + }
> + } else {
> + dev_err(ctrl->dev,
> + "fsl_elbc_init: page size %d is not supported\n",
> + mtd->writesize);
> + return -1;
> + }
> +
> + /* The default u-boot configuration on MPC8313ERDB causes errors;
> + * more delay is needed. This should be safe for other boards
> + * as well.
> + */
> + setbits32(&lbc->bank[priv->bank].or, 0x70);
> + return 0;
> +}
> +
> +static int fsl_elbc_read_page(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + uint8_t *buf)
> +{
> + fsl_elbc_read_buf(mtd, buf, mtd->writesize);
> + fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
> + mtd->ecc_stats.failed++;
> +
> + return 0;
> +}
> +
> +/* ECC will be calculated automatically, and errors will be detected in
> + * waitfunc.
> + */
> +static void fsl_elbc_write_page(struct mtd_info *mtd,
> + struct nand_chip *chip,
> + const uint8_t *buf)
> +{
> + struct fsl_elbc_mtd *priv = chip->priv;
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +
> + fsl_elbc_write_buf(mtd, buf, mtd->writesize);
> + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> + ctrl->oob_poi = chip->oob_poi;
> +}
> +
> +static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
> +{
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> + struct nand_chip *chip = &priv->chip;
> +
> + dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
> +
> + /* Fill in fsl_elbc_mtd structure */
> + priv->mtd.priv = chip;
> + priv->mtd.owner = THIS_MODULE;
> + priv->fmr = 0; /* rest filled in later */
> +
> + /* fill in nand_chip structure */
> + /* set up function call table */
> + chip->read_byte = fsl_elbc_read_byte;
> + chip->write_buf = fsl_elbc_write_buf;
> + chip->read_buf = fsl_elbc_read_buf;
> + chip->verify_buf = fsl_elbc_verify_buf;
> + chip->select_chip = fsl_elbc_select_chip;
> + chip->cmdfunc = fsl_elbc_cmdfunc;
> + chip->waitfunc = fsl_elbc_wait;
> + chip->late_init = fsl_elbc_chip_init_tail;
> +
> + /* set up nand options */
> + chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
> +
> + chip->controller = &ctrl->controller;
> + chip->priv = priv;
> +
> + chip->ecc.read_page = fsl_elbc_read_page;
> + chip->ecc.write_page = fsl_elbc_write_page;
> +
> + /* If CS Base Register selects full hardware ECC then use it */
> + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
> + BR_DECC_CHK_GEN) {
> + chip->ecc.mode = NAND_ECC_HW;
> + /* put in small page settings and adjust later if needed */
> + chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
> + &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
> + chip->ecc.size = 512;
> + chip->ecc.bytes = 3;
> + } else {
> + /* otherwise fall back to default software ECC */
> + chip->ecc.mode = NAND_ECC_SOFT;
> + }
> +
> + return 0;
> +}
> +
> +static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
> +{
> + struct fsl_elbc_ctrl *ctrl = priv->ctrl;
> +
> + nand_release(&priv->mtd);
> +
> + if (priv->vbase)
> + iounmap(priv->vbase);
> +
> + ctrl->chips[priv->bank] = NULL;
> + kfree(priv);
> +
> + return 0;
> +}
> +
> +static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
> + struct device_node *node)
> +{
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> + struct fsl_elbc_mtd *priv;
> + struct resource res;
> +#ifdef CONFIG_MTD_PARTITIONS
> + static const char *part_probe_types[]
> + = { "cmdlinepart", "RedBoot", NULL };
> + struct mtd_partition *parts;
> +#endif
> + int ret;
> + int bank;
> +
> + /* get, allocate and map the memory resource */
> + ret = of_address_to_resource(node, 0, &res);
> + if (ret) {
> + dev_err(ctrl->dev, "failed to get resource\n");
> + return ret;
> + }
> +
> + /* find which chip select it is connected to */
> + for (bank = 0; bank < MAX_BANKS; bank++)
> + if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
> + (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
> + (in_be32(&lbc->bank[bank].br) &
> + in_be32(&lbc->bank[bank].or) & BR_BA)
> + == res.start)
> + break;
> +
> + if (bank >= MAX_BANKS) {
> + dev_err(ctrl->dev, "address did not match any chip selects\n");
> + return -ENODEV;
> + }
> +
> + priv = kzalloc(sizeof(*priv), GFP_KERNEL);
> + if (!priv)
> + return -ENOMEM;
> +
> + ctrl->chips[bank] = priv;
> + priv->bank = bank;
> + priv->ctrl = ctrl;
> + priv->dev = ctrl->dev;
> +
> + priv->vbase = ioremap(res.start, res.end - res.start + 1);
> + if (!priv->vbase) {
> + dev_err(ctrl->dev, "failed to map chip region\n");
> + ret = -ENOMEM;
> + goto err;
> + }
> +
> + ret = fsl_elbc_chip_init(priv);
> + if (ret)
> + goto err;
> +
> + ret = nand_scan(&priv->mtd, 1);
> + if (ret)
> + goto err;
> +
> +#ifdef CONFIG_MTD_PARTITIONS
> + /* First look for RedBoot table or partitions on the command
> + * line, these take precedence over device tree information */
> + ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
> + if (ret < 0)
> + goto err;
> +
> +#ifdef CONFIG_MTD_OF_PARTS
> + if (ret == 0) {
> + ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
> + node, &parts);
> + if (ret < 0)
> + goto err;
> + }
> +#endif
> +
> + if (ret > 0)
> + add_mtd_partitions(&priv->mtd, parts, ret);
> + else
> +#endif
> + add_mtd_device(&priv->mtd);
> +
> + printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
> + res.start, priv->bank);
> + return 0;
> +
> +err:
> + fsl_elbc_chip_remove(priv);
> + return ret;
> +}
> +
> +static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
> +{
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> +
> + /* clear event registers */
> + setbits32(&lbc->ltesr, LTESR_NAND_MASK);
> + out_be32(&lbc->lteatr, 0);
> +
> + /* Enable interrupts for any detected events */
> + out_be32(&lbc->lteir, LTESR_NAND_MASK);
> +
> + ctrl->read_bytes = 0;
> + ctrl->index = 0;
> + ctrl->addr = NULL;
> +
> + return 0;
> +}
> +
> +static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
> +{
> + struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
> + int i;
> +
> + for (i = 0; i < MAX_BANKS; i++)
> + if (ctrl->chips[i])
> + fsl_elbc_chip_remove(ctrl->chips[i]);
> +
> + if (ctrl->irq)
> + free_irq(ctrl->irq, ctrl);
> +
> + if (ctrl->regs)
> + iounmap(ctrl->regs);
> +
> + dev_set_drvdata(&ofdev->dev, NULL);
> + kfree(ctrl);
> + return 0;
> +}
> +
> +/* NOTE: This interrupt is also used to report other localbus events,
> + * such as transaction errors on other chipselects. If we want to
> + * capture those, we'll need to move the IRQ code into a shared
> + * LBC driver.
> + */
> +
> +static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
> +{
> + struct fsl_elbc_ctrl *ctrl = data;
> + struct elbc_regs __iomem *lbc = ctrl->regs;
> + __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
> +
> + if (status) {
> + out_be32(&lbc->ltesr, status);
> + out_be32(&lbc->lteatr, 0);
> +
> + ctrl->irq_status = status;
> + smp_wmb();
> + wake_up(&ctrl->irq_wait);
> +
> + return IRQ_HANDLED;
> + }
> +
> + return IRQ_NONE;
> +}
> +
> +/* fsl_elbc_ctrl_probe
> + *
> + * called by device layer when it finds a device matching
> + * one our driver can handled. This code allocates all of
> + * the resources needed for the controller only. The
> + * resources for the NAND banks themselves are allocated
> + * in the chip probe function.
> +*/
> +
> +static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
> + const struct of_device_id *match)
> +{
> + struct device_node *child;
> + struct fsl_elbc_ctrl *ctrl;
> + int ret;
> +
> + ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
> + if (!ctrl)
> + return -ENOMEM;
> +
> + dev_set_drvdata(&ofdev->dev, ctrl);
> +
> + spin_lock_init(&ctrl->controller.lock);
> + init_waitqueue_head(&ctrl->controller.wq);
> + init_waitqueue_head(&ctrl->irq_wait);
> +
> + ctrl->regs = of_iomap(ofdev->node, 0);
> + if (!ctrl->regs) {
> + dev_err(&ofdev->dev, "failed to get memory region\n");
> + ret = -ENODEV;
> + goto err;
> + }
> +
> + ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
> + if (ctrl->irq == NO_IRQ) {
> + dev_err(&ofdev->dev, "failed to get irq resource\n");
> + ret = -ENODEV;
> + goto err;
> + }
> +
> + ctrl->dev = &ofdev->dev;
> +
> + ret = fsl_elbc_ctrl_init(ctrl);
> + if (ret < 0)
> + goto err;
> +
> + ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
> + if (ret != 0) {
> + dev_err(&ofdev->dev, "failed to install irq (%d)\n",
> + ctrl->irq);
> + ret = ctrl->irq;
> + goto err;
> + }
> +
> + child = NULL;
> + while ((child = of_get_next_child(ofdev->node, child)))
> + if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
> + fsl_elbc_chip_probe(ctrl, child);
Don't you need some of_node_put calls here?
> +
> + return 0;
> +
> +err:
> + fsl_elbc_ctrl_remove(ofdev);
> + return ret;
You don't free ctrl if you get an error. Memory leak?
josh
More information about the linux-mtd
mailing list