mtd/nand: Add Intel Moorestown/Denali NAND support

Linux-MTD Mailing List linux-mtd at lists.infradead.org
Thu May 13 11:59:01 EDT 2010


Gitweb:     http://git.infradead.org/?p=mtd-2.6.git;a=commit;h=ce082596ae4308f67f0953a67db508bb085520fa
Commit:     ce082596ae4308f67f0953a67db508bb085520fa
Parent:     1cd2620ca9332943c9fff84c0c9240982534d840
Author:     Jason Roberts <jason.e.roberts at intel.com>
AuthorDate: Thu May 13 15:57:33 2010 +0100
Committer:  David Woodhouse <David.Woodhouse at intel.com>
CommitDate: Thu May 13 16:12:16 2010 +0100

    mtd/nand: Add Intel Moorestown/Denali NAND support
    
    There is more work to be done on this but it is basically working now.
    
    Signed-off-by: Jason Roberts <jason.e.roberts at intel.com>
    Signed-off-by: David Woodhouse <David.Woodhouse at intel.com>
---
 drivers/mtd/nand/Kconfig  |   17 +
 drivers/mtd/nand/Makefile |    1 +
 drivers/mtd/nand/denali.c | 2134 +++++++++++++++++++++++++++++++++++++++++++++
 drivers/mtd/nand/denali.h |  816 +++++++++++++++++
 4 files changed, 2968 insertions(+), 0 deletions(-)

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 8f402d4..98a04b3 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -50,6 +50,23 @@ config MTD_NAND_AUTCPU12
 	  This enables the driver for the autronix autcpu12 board to
 	  access the SmartMediaCard.
 
+config MTD_NAND_DENALI
+       depends on PCI
+        tristate "Support Denali NAND controller on Intel Moorestown"
+        help
+          Enable the driver for NAND flash on Intel Moorestown, using the
+          Denali NAND controller core.
+ 
+config MTD_NAND_DENALI_SCRATCH_REG_ADDR
+        hex "Denali NAND size scratch register address"
+        default "0xFF108018"
+        help
+          Some platforms place the NAND chip size in a scratch register
+          because (some versions of) the driver aren't able to automatically
+          determine the size of certain chips. Set the address of the
+          scratch register here to enable this feature. On Intel Moorestown
+          boards, the scratch register is at 0xFF108018.
+
 config MTD_NAND_EDB7312
 	tristate "Support for Cirrus Logic EBD7312 evaluation board"
 	depends on ARCH_EDB7312
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 04bccf9..e8ab884 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -11,6 +11,7 @@ obj-$(CONFIG_MTD_NAND_CAFE)		+= cafe_nand.o
 obj-$(CONFIG_MTD_NAND_SPIA)		+= spia.o
 obj-$(CONFIG_MTD_NAND_AMS_DELTA)	+= ams-delta.o
 obj-$(CONFIG_MTD_NAND_AUTCPU12)		+= autcpu12.o
+obj-$(CONFIG_MTD_NAND_DENALI)		+= denali.o
 obj-$(CONFIG_MTD_NAND_EDB7312)		+= edb7312.o
 obj-$(CONFIG_MTD_NAND_AU1550)		+= au1550nd.o
 obj-$(CONFIG_MTD_NAND_BF5XX)		+= bf5xx_nand.o
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
new file mode 100644
index 0000000..8a6ce0d
--- /dev/null
+++ b/drivers/mtd/nand/denali.c
@@ -0,0 +1,2134 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/wait.h>
+#include <linux/mutex.h>
+#include <linux/pci.h>
+#include <linux/mtd/mtd.h>
+#include <linux/module.h>
+
+#include "denali.h"
+
+MODULE_LICENSE("GPL");
+
+/* We define a module parameter that allows the user to override 
+ * the hardware and decide what timing mode should be used.
+ */
+#define NAND_DEFAULT_TIMINGS	-1
+
+static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+module_param(onfi_timing_mode, int, S_IRUGO);
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
+					" use default timings");
+
+#define DENALI_NAND_NAME    "denali-nand"
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
+			INTR_STATUS0__ECC_TRANSACTION_DONE | \
+			INTR_STATUS0__ECC_ERR | \
+			INTR_STATUS0__PROGRAM_FAIL | \
+			INTR_STATUS0__LOAD_COMP | \
+			INTR_STATUS0__PROGRAM_COMP | \
+			INTR_STATUS0__TIME_OUT | \
+			INTR_STATUS0__ERASE_FAIL | \
+			INTR_STATUS0__RST_COMP | \
+			INTR_STATUS0__ERASE_COMP)
+
+/* indicates whether or not the internal value for the flash bank is 
+   valid or not */
+#define CHIP_SELECT_INVALID 	-1
+
+#define SUPPORT_8BITECC		1
+
+/* This macro divides two integers and rounds fractional values up 
+ * to the nearest integer value. */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/* this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/* These constants are defined by the driver to enable common driver
+   configuration options. */
+#define SPARE_ACCESS		0x41
+#define MAIN_ACCESS		0x42
+#define MAIN_SPARE_ACCESS	0x43
+
+#define DENALI_READ	0
+#define DENALI_WRITE	0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE	0
+#define ADDR_CYCLE	1
+#define STATUS_CYCLE	2
+
+/* this is a helper macro that allows us to 
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+/* List of platforms this NAND controller has be integrated into */
+static const struct pci_device_id denali_pci_ids[] = {
+	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
+	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
+	{ /* end: all zeroes */ }
+};
+
+
+/* these are static lookup tables that give us easy access to 
+   registers in the NAND controller.  
+ */
+static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, 
+						  INTR_STATUS1, 
+					     	  INTR_STATUS2, 
+						  INTR_STATUS3};
+
+static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
+                                               DEVICE_RESET__BANK1,
+                                               DEVICE_RESET__BANK2,
+                                               DEVICE_RESET__BANK3};
+
+static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
+                        		      INTR_STATUS1__TIME_OUT,
+		                              INTR_STATUS2__TIME_OUT,
+		                              INTR_STATUS3__TIME_OUT};
+
+static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
+                		           INTR_STATUS1__RST_COMP,
+		                           INTR_STATUS2__RST_COMP,
+		                           INTR_STATUS3__RST_COMP};
+
+/* specifies the debug level of the driver */
+static int nand_debug_level = 0;
+
+/* forward declarations */
+static void clear_interrupts(struct denali_nand_info *denali);
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
+static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+#define DEBUG_DENALI 0
+
+/* This is a wrapper for writing to the denali registers.
+ * this allows us to create debug information so we can
+ * observe how the driver is programming the device. 
+ * it uses standard linux convention for (val, addr) */
+static void denali_write32(uint32_t value, void *addr)
+{
+	iowrite32(value, addr);	
+
+#if DEBUG_DENALI
+	printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
+#endif
+} 
+
+/* Certain operations for the denali NAND controller use an indexed mode to read/write 
+   data. The operation is performed by writing the address value of the command to 
+   the device memory followed by the data. This function abstracts this common 
+   operation. 
+*/
+static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
+{
+	denali_write32(address, denali->flash_mem);
+	denali_write32(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+				 uint32_t address, uint32_t *pdata)
+{
+	denali_write32(address, denali->flash_mem);
+	*pdata = ioread32(denali->flash_mem + 0x10);
+}
+
+/* We need to buffer some data for some of the NAND core routines. 
+ * The operations manage buffering that data. */
+static void reset_buf(struct denali_nand_info *denali)
+{
+	denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
+	denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+	uint32_t cmd = 0x0;
+
+	/* initialize the data buffer to store status */
+	reset_buf(denali);
+
+	/* initiate a device status read */
+	cmd = MODE_11 | BANK(denali->flash_bank); 
+	index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
+	denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
+
+	/* update buffer with status value */
+	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
+
+#if DEBUG_DENALI
+	printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
+#endif
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = reset_complete[denali->flash_bank] | 
+			    operation_timeout[denali->flash_bank];
+	int bank = 0;
+
+	clear_interrupts(denali);
+
+	bank = device_reset_banks[denali->flash_bank];
+	denali_write32(bank, denali->flash_reg + DEVICE_RESET);
+
+	irq_status = wait_for_irq(denali, irq_mask);
+	
+	if (irq_status & operation_timeout[denali->flash_bank])
+	{
+		printk(KERN_ERR "reset bank failed.\n");
+	}
+}
+
+/* Reset the flash controller */
+static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
+{
+	uint32_t i;
+
+	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
+		denali_write32(reset_complete[i] | operation_timeout[i],
+		denali->flash_reg + intr_status_addresses[i]);
+
+	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
+		denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
+		while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
+			(reset_complete[i] | operation_timeout[i])))
+			;
+		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
+			operation_timeout[i])
+			nand_dbg_print(NAND_DBG_WARN,
+			"NAND Reset operation timed out on bank %d\n", i);
+	}
+
+	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
+		denali_write32(reset_complete[i] | operation_timeout[i],
+			denali->flash_reg + intr_status_addresses[i]);
+
+	return PASS;
+}
+
+/* this routine calculates the ONFI timing values for a given mode and programs
+ * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
+   routine.
+ */
+static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
+{
+	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
+	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
+	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
+	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
+	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
+	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
+	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
+	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
+	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
+	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
+	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
+	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
+
+	uint16_t TclsRising = 1;
+	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+	uint16_t dv_window = 0;
+	uint16_t en_lo, en_hi;
+	uint16_t acc_clks;
+	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	en_lo = CEIL_DIV(Trp[mode], CLK_X);
+	en_hi = CEIL_DIV(Treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+	if ((en_hi * CLK_X) < (Treh[mode] + 2))
+		en_hi++;
+#endif
+
+	if ((en_lo + en_hi) * CLK_X < Trc[mode])
+		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
+
+	if ((en_lo + en_hi) < CLK_MULTI)
+		en_lo += CLK_MULTI - en_lo - en_hi;
+
+	while (dv_window < 8) {
+		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
+
+		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
+
+		data_invalid =
+		    data_invalid_rhoh <
+		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
+
+		dv_window = data_invalid - Trea[mode];
+
+		if (dv_window < 8)
+			en_lo++;
+	}
+
+	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
+
+	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
+		acc_clks++;
+
+	if ((data_invalid - acc_clks * CLK_X) < 2)
+		nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
+			__FILE__, __LINE__);
+
+	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
+	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
+	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
+	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
+	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
+	if (!TclsRising)
+		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
+	if (cs_cnt == 0)
+		cs_cnt = 1;
+
+	if (Tcea[mode]) {
+		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
+			cs_cnt++;
+	}
+
+#if MODE5_WORKAROUND
+	if (mode == 5)
+		acc_clks = 5;
+#endif
+
+	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
+		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
+		acc_clks = 6;
+
+	denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
+	denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
+	denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
+	denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
+	denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
+	denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
+	denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
+	denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+}
+
+/* configures the initial ECC settings for the controller */
+static void set_ecc_config(struct denali_nand_info *denali)
+{
+#if SUPPORT_8BITECC
+	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
+		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
+		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+
+	if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
+		== 1) {
+		denali->dev_info.wECCBytesPerSector = 4;
+		denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+		denali->dev_info.wNumPageSpareFlag =
+			denali->dev_info.wPageSpareSize -
+			denali->dev_info.wPageDataSize /
+			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
+			denali->dev_info.wECCBytesPerSector
+			- denali->dev_info.wSpareSkipBytes;
+	} else {
+		denali->dev_info.wECCBytesPerSector =
+			(ioread32(denali->flash_reg + ECC_CORRECTION) &
+			ECC_CORRECTION__VALUE) * 13 / 8;
+		if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
+			denali->dev_info.wECCBytesPerSector += 2;
+		else
+			denali->dev_info.wECCBytesPerSector += 1;
+
+		denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+		denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
+			denali->dev_info.wPageDataSize /
+			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
+			denali->dev_info.wECCBytesPerSector
+			- denali->dev_info.wSpareSkipBytes;
+	}
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+{
+	int i;
+	uint16_t blks_lun_l, blks_lun_h, n_of_luns;
+	uint32_t blockperlun, id;
+
+	denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
+
+	while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
+		INTR_STATUS0__RST_COMP) |
+		(ioread32(denali->flash_reg + INTR_STATUS0) &
+		INTR_STATUS0__TIME_OUT)))
+		;
+
+	if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
+		denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
+		while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
+			INTR_STATUS1__RST_COMP) |
+			(ioread32(denali->flash_reg + INTR_STATUS1) &
+			INTR_STATUS1__TIME_OUT)))
+			;
+
+		if (ioread32(denali->flash_reg + INTR_STATUS1) &
+			INTR_STATUS1__RST_COMP) {
+			denali_write32(DEVICE_RESET__BANK2,
+				denali->flash_reg + DEVICE_RESET);
+			while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
+				INTR_STATUS2__RST_COMP) |
+				(ioread32(denali->flash_reg + INTR_STATUS2) &
+				INTR_STATUS2__TIME_OUT)))
+				;
+
+			if (ioread32(denali->flash_reg + INTR_STATUS2) &
+				INTR_STATUS2__RST_COMP) {
+				denali_write32(DEVICE_RESET__BANK3,
+					denali->flash_reg + DEVICE_RESET);
+				while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
+					INTR_STATUS3__RST_COMP) |
+					(ioread32(denali->flash_reg + INTR_STATUS3) &
+					INTR_STATUS3__TIME_OUT)))
+					;
+			} else {
+				printk(KERN_ERR "Getting a time out for bank 2!\n");
+			}
+		} else {
+			printk(KERN_ERR "Getting a time out for bank 1!\n");
+		}
+	}
+
+	denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
+	denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
+	denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
+	denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
+
+	denali->dev_info.wONFIDevFeatures =
+		ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
+	denali->dev_info.wONFIOptCommands =
+		ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
+	denali->dev_info.wONFITimingMode =
+		ioread32(denali->flash_reg + ONFI_TIMING_MODE);
+	denali->dev_info.wONFIPgmCacheTimingMode =
+		ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
+
+	n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+		ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
+	blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
+	blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
+
+	blockperlun = (blks_lun_h << 16) | blks_lun_l;
+
+	denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
+
+	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+		ONFI_TIMING_MODE__VALUE))
+		return FAIL;
+
+	for (i = 5; i > 0; i--) {
+		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
+			break;
+	}
+
+	NAND_ONFi_Timing_Mode(denali, i);
+
+	index_addr(denali, MODE_11 | 0, 0x90);
+	index_addr(denali, MODE_11 | 1, 0);
+
+	for (i = 0; i < 3; i++)
+		index_addr_read_data(denali, MODE_11 | 2, &id);
+
+	nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
+
+	denali->dev_info.MLCDevice = id & 0x0C;
+
+	/* By now, all the ONFI devices we know support the page cache */
+	/* rw feature. So here we enable the pipeline_rw_ahead feature */
+	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
+	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
+
+	return PASS;
+}
+
+static void get_samsung_nand_para(struct denali_nand_info *denali)
+{
+	uint8_t no_of_planes;
+	uint32_t blk_size;
+	uint64_t plane_size, capacity;
+	uint32_t id_bytes[5];
+	int i;
+
+	index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
+	index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
+	for (i = 0; i < 5; i++)
+		index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
+
+	nand_dbg_print(NAND_DBG_DEBUG,
+		"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
+		id_bytes[0], id_bytes[1], id_bytes[2],
+		id_bytes[3], id_bytes[4]);
+
+	if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
+		/* Set timing register values according to datasheet */
+		denali_write32(5, denali->flash_reg + ACC_CLKS);
+		denali_write32(20, denali->flash_reg + RE_2_WE);
+		denali_write32(12, denali->flash_reg + WE_2_RE);
+		denali_write32(14, denali->flash_reg + ADDR_2_DATA);
+		denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
+		denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
+		denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
+	}
+
+	no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
+	plane_size  = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
+	blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
+	capacity = (uint64_t)128 * plane_size * no_of_planes;
+
+	do_div(capacity, blk_size);
+	denali->dev_info.wTotalBlocks = capacity;
+}
+
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
+{
+	void __iomem *scratch_reg;
+	uint32_t tmp;
+
+	/* Workaround to fix a controller bug which reports a wrong */
+	/* spare area size for some kind of Toshiba NAND device */
+	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+		denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
+			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+	}
+
+	/* As Toshiba NAND can not provide it's block number, */
+	/* so here we need user to provide the correct block */
+	/* number in a scratch register before the Linux NAND */
+	/* driver is loaded. If no valid value found in the scratch */
+	/* register, then we use default block number value */
+	scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+	if (!scratch_reg) {
+		printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+			__FILE__, __LINE__);
+		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+	} else {
+		nand_dbg_print(NAND_DBG_WARN,
+			"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+		denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
+		if (denali->dev_info.wTotalBlocks < 512)
+			denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+		iounmap(scratch_reg);
+	}
+}
+
+static void get_hynix_nand_para(struct denali_nand_info *denali)
+{
+	void __iomem *scratch_reg;
+	uint32_t main_size, spare_size;
+
+	switch (denali->dev_info.wDeviceID) {
+	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+		denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
+		denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+		denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
+		spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
+		denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+		denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
+		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+		denali->dev_info.MLCDevice  = 1;
+		break;
+	default:
+		nand_dbg_print(NAND_DBG_WARN,
+			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			denali->dev_info.wDeviceID);
+	}
+
+	scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+	if (!scratch_reg) {
+		printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+			__FILE__, __LINE__);
+		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+	} else {
+		nand_dbg_print(NAND_DBG_WARN,
+			"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+		denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
+		if (denali->dev_info.wTotalBlocks < 512)
+			denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+		iounmap(scratch_reg);
+	}
+}
+
+/* determines how many NAND chips are connected to the controller. Note for
+   Intel CE4100 devices we don't support more than one device. 
+ */
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+	uint32_t id[LLD_MAX_FLASH_BANKS];
+	int i;
+
+	denali->total_used_banks = 1;
+	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
+		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
+		index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+
+		nand_dbg_print(NAND_DBG_DEBUG,
+			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+		if (i == 0) {
+			if (!(id[i] & 0x0ff))
+				break; /* WTF? */
+		} else {
+			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+				denali->total_used_banks++;
+			else
+				break;
+		}
+	}
+
+	if (denali->platform == INTEL_CE4100)
+	{
+		/* Platform limitations of the CE4100 device limit
+		 * users to a single chip solution for NAND.
+                 * Multichip support is not enabled. 
+		 */ 
+		if (denali->total_used_banks != 1)
+		{
+			printk(KERN_ERR "Sorry, Intel CE4100 only supports "
+					"a single NAND device.\n");
+			BUG();
+		}
+	}
+	nand_dbg_print(NAND_DBG_DEBUG,
+		"denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
+			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
+			denali->dev_info.wSpectraStartBlock =
+			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
+			      MIN_MAX_BANK_1__MIN_VALUE) *
+			     denali->dev_info.wTotalBlocks)
+			    +
+			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
+			    MIN_BLK_ADDR_1__VALUE);
+
+			denali->dev_info.wSpectraEndBlock =
+			    (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
+			       MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
+			     denali->dev_info.wTotalBlocks)
+			    +
+			    (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
+			    MAX_BLK_ADDR_1__VALUE);
+
+			denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+
+			if (denali->dev_info.wSpectraEndBlock >=
+			    denali->dev_info.wTotalBlocks) {
+				denali->dev_info.wSpectraEndBlock =
+				    denali->dev_info.wTotalBlocks - 1;
+			}
+
+			denali->dev_info.wDataBlockNum =
+				denali->dev_info.wSpectraEndBlock -
+				denali->dev_info.wSpectraStartBlock + 1;
+		} else {
+			denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+			denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+			denali->dev_info.wSpectraEndBlock =
+				denali->dev_info.wTotalBlocks - 1;
+			denali->dev_info.wDataBlockNum =
+				denali->dev_info.wSpectraEndBlock -
+				denali->dev_info.wSpectraStartBlock + 1;
+		}
+	} else {
+		denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+		denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+		denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
+		denali->dev_info.wDataBlockNum =
+			denali->dev_info.wSpectraEndBlock -
+			denali->dev_info.wSpectraStartBlock + 1;
+	}
+}
+
+static void dump_device_info(struct denali_nand_info *denali)
+{
+	nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
+	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
+		denali->dev_info.wDeviceMaker);
+	nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
+		denali->dev_info.wDeviceID);
+	nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
+		denali->dev_info.wDeviceType);
+	nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
+		denali->dev_info.wSpectraStartBlock);
+	nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
+		denali->dev_info.wSpectraEndBlock);
+	nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
+		denali->dev_info.wTotalBlocks);
+	nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
+		denali->dev_info.wPagesPerBlock);
+	nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
+		denali->dev_info.wPageSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
+		denali->dev_info.wPageDataSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
+		denali->dev_info.wPageSpareSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
+		denali->dev_info.wNumPageSpareFlag);
+	nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
+		denali->dev_info.wECCBytesPerSector);
+	nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
+		denali->dev_info.wBlockSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
+		denali->dev_info.wBlockDataSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
+		denali->dev_info.wDataBlockNum);
+	nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
+		denali->dev_info.bPlaneNum);
+	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
+		denali->dev_info.wDeviceMainAreaSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
+		denali->dev_info.wDeviceSpareAreaSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
+		denali->dev_info.wDevicesConnected);
+	nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
+		denali->dev_info.wDeviceWidth);
+	nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
+		denali->dev_info.wHWRevision);
+	nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
+		denali->dev_info.wHWFeatures);
+	nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
+		denali->dev_info.wONFIDevFeatures);
+	nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
+		denali->dev_info.wONFIOptCommands);
+	nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
+		denali->dev_info.wONFITimingMode);
+	nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
+		denali->dev_info.wONFIPgmCacheTimingMode);
+	nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
+		denali->dev_info.MLCDevice ? "Yes" : "No");
+	nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
+		denali->dev_info.wSpareSkipBytes);
+	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
+		denali->dev_info.nBitsInPageNumber);
+	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
+		denali->dev_info.nBitsInPageDataSize);
+	nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
+		denali->dev_info.nBitsInBlockDataSize);
+}
+
+static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
+{
+	uint16_t status = PASS;
+	uint8_t no_of_planes;
+
+	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
+	denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
+	denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
+	denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
+	denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
+
+	denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
+
+	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+		if (FAIL == get_onfi_nand_para(denali))
+			return FAIL;
+	} else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
+		get_samsung_nand_para(denali);
+	} else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
+		get_toshiba_nand_para(denali);
+	} else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
+		get_hynix_nand_para(denali);
+	} else {
+		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+	}
+
+	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+			ioread32(denali->flash_reg + ACC_CLKS),
+			ioread32(denali->flash_reg + RE_2_WE),
+			ioread32(denali->flash_reg + WE_2_RE),
+			ioread32(denali->flash_reg + ADDR_2_DATA),
+			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+			ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+	denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
+	denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
+
+	denali->dev_info.wDeviceMainAreaSize =
+		ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	denali->dev_info.wDeviceSpareAreaSize =
+		ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+
+	denali->dev_info.wPageDataSize =
+		ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+
+	/* Note: When using the Micon 4K NAND device, the controller will report
+	 * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
+	 * And if force set it to 218 bytes, the controller can not work
+	 * correctly. So just let it be. But keep in mind that this bug may
+	 * cause
+	 * other problems in future.       - Yunpeng  2008-10-10
+	 */
+	denali->dev_info.wPageSpareSize =
+		ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+
+	denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
+
+	denali->dev_info.wPageSize =
+	    denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
+	denali->dev_info.wBlockSize =
+	    denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
+	denali->dev_info.wBlockDataSize =
+	    denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
+
+	denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
+	denali->dev_info.wDeviceType =
+		((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
+
+	denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+
+	denali->dev_info.wSpareSkipBytes =
+		ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
+		denali->dev_info.wDevicesConnected;
+
+	denali->dev_info.nBitsInPageNumber =
+		ilog2(denali->dev_info.wPagesPerBlock);
+	denali->dev_info.nBitsInPageDataSize =
+		ilog2(denali->dev_info.wPageDataSize);
+	denali->dev_info.nBitsInBlockDataSize =
+		ilog2(denali->dev_info.wBlockDataSize);
+
+	set_ecc_config(denali);
+
+	no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
+		NUMBER_OF_PLANES__VALUE;
+
+	switch (no_of_planes) {
+	case 0:
+	case 1:
+	case 3:
+	case 7:
+		denali->dev_info.bPlaneNum = no_of_planes + 1;
+		break;
+	default:
+		status = FAIL;
+		break;
+	}
+
+	find_valid_banks(denali);
+
+	detect_partition_feature(denali);
+
+	dump_device_info(denali);
+
+	/* If the user specified to override the default timings
+	 * with a specific ONFI mode, we apply those changes here. 
+	 */
+	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+	{
+		NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
+	}
+
+	return status;
+}
+
+static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
+					uint16_t INT_ENABLE)
+{
+	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	if (INT_ENABLE)
+		denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+	else
+		denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/* validation function to verify that the controlling software is making
+   a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+	return (flash_bank >= 0 && flash_bank < 4); 
+}
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+	uint32_t int_mask = 0;
+
+	/* Disable global interrupts */
+	NAND_LLD_Enable_Disable_Interrupts(denali, false);
+
+	int_mask = DENALI_IRQ_ALL;
+
+	/* Clear all status bits */
+	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
+	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
+	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
+	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
+
+	denali_irq_enable(denali, int_mask);
+}
+
+static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+{
+	NAND_LLD_Enable_Disable_Interrupts(denali, false);
+	free_irq(irqnum, denali);
+}
+
+static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
+{
+	denali_write32(int_mask, denali->flash_reg + INTR_EN0);
+	denali_write32(int_mask, denali->flash_reg + INTR_EN1);
+	denali_write32(int_mask, denali->flash_reg + INTR_EN2);
+	denali_write32(int_mask, denali->flash_reg + INTR_EN3);
+}
+
+/* This function only returns when an interrupt that this driver cares about
+ * occurs. This is to reduce the overhead of servicing interrupts 
+ */
+static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
+{
+	return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
+}
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+	uint32_t intr_status_reg = 0;
+
+	intr_status_reg = intr_status_addresses[denali->flash_bank];
+
+	denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(struct denali_nand_info *denali)
+{
+	uint32_t status = 0x0;
+	spin_lock_irq(&denali->irq_lock);
+
+	status = read_interrupt_status(denali);
+
+#if DEBUG_DENALI
+	denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
+	denali->idx %= 32;
+#endif
+
+	denali->irq_status = 0x0;
+	spin_unlock_irq(&denali->irq_lock);
+}
+
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+{
+	uint32_t intr_status_reg = 0;
+
+	intr_status_reg = intr_status_addresses[denali->flash_bank];
+
+	return ioread32(denali->flash_reg + intr_status_reg);
+}
+
+#if DEBUG_DENALI
+static void print_irq_log(struct denali_nand_info *denali)
+{
+	int i = 0;
+
+	printk("ISR debug log index = %X\n", denali->idx);
+	for (i = 0; i < 32; i++)
+	{
+		printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
+	}
+}
+#endif
+
+/* This is the interrupt service routine. It handles all interrupts 
+ * sent to this device. Note that on CE4100, this is a shared 
+ * interrupt. 
+ */
+static irqreturn_t denali_isr(int irq, void *dev_id)
+{
+	struct denali_nand_info *denali = dev_id;
+	uint32_t irq_status = 0x0;
+	irqreturn_t result = IRQ_NONE;
+
+	spin_lock(&denali->irq_lock);
+
+	/* check to see if a valid NAND chip has 
+         * been selected. 
+	 */
+	if (is_flash_bank_valid(denali->flash_bank))
+	{
+		/* check to see if controller generated 
+		 * the interrupt, since this is a shared interrupt */
+		if ((irq_status = denali_irq_detected(denali)) != 0)
+		{
+#if DEBUG_DENALI
+			denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
+			denali->idx %= 32;
+
+			printk("IRQ status = 0x%04x\n", irq_status);
+#endif
+			/* handle interrupt */
+			/* first acknowledge it */
+			clear_interrupt(denali, irq_status);
+			/* store the status in the device context for someone
+			   to read */
+			denali->irq_status |= irq_status;
+			/* notify anyone who cares that it happened */
+			complete(&denali->complete);
+			/* tell the OS that we've handled this */
+			result = IRQ_HANDLED;
+		}
+	}
+	spin_unlock(&denali->irq_lock);
+	return result;
+}
+#define BANK(x) ((x) << 24)
+
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+	unsigned long comp_res = 0;
+	uint32_t intr_status = 0;
+	bool retry = false;
+	unsigned long timeout = msecs_to_jiffies(1000);
+
+	do
+	{
+#if DEBUG_DENALI
+		printk("waiting for 0x%x\n", irq_mask);
+#endif
+		comp_res = wait_for_completion_timeout(&denali->complete, timeout);
+		spin_lock_irq(&denali->irq_lock);
+		intr_status = denali->irq_status;
+
+#if DEBUG_DENALI
+		denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
+		denali->idx %= 32;
+#endif
+
+		if (intr_status & irq_mask)
+		{
+			denali->irq_status &= ~irq_mask;
+			spin_unlock_irq(&denali->irq_lock);
+#if DEBUG_DENALI
+			if (retry) printk("status on retry = 0x%x\n", intr_status);
+#endif
+			/* our interrupt was detected */
+			break;
+		}
+		else 
+		{
+			/* these are not the interrupts you are looking for - 
+		           need to wait again */
+			spin_unlock_irq(&denali->irq_lock);
+#if DEBUG_DENALI
+			print_irq_log(denali);
+			printk("received irq nobody cared: irq_status = 0x%x,"
+				" irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
+#endif
+			retry = true;
+		}
+	} while (comp_res != 0);
+
+	if (comp_res == 0)
+	{
+		/* timeout */
+		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", 
+	       			intr_status, irq_mask);
+
+		intr_status = 0;
+	}
+	return intr_status;
+}
+
+/* This helper function setups the registers for ECC and whether or not 
+   the spare area will be transfered. */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, 
+				bool transfer_spare)
+{
+	int ecc_en_flag = 0, transfer_spare_flag = 0; 
+
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+	denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+/* sends a pipeline command operation to the controller. See the Denali NAND 
+   controller's user guide for more information (section 4.2.3.6). 
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, 
+					bool transfer_spare, int access_type, 
+					int op)
+{
+	int status = PASS;
+	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, 
+		 irq_mask = 0;
+
+	if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
+	else if (op == DENALI_WRITE) irq_mask = 0;
+	else BUG();
+
+	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+#if DEBUG_DENALI
+	spin_lock_irq(&denali->irq_lock);
+	denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
+	denali->idx %= 32;
+	spin_unlock_irq(&denali->irq_lock);
+#endif
+
+
+	/* clear interrupts */
+	clear_interrupts(denali);	
+
+	addr = BANK(denali->flash_bank) | denali->page;
+
+	if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
+	{
+		cmd = MODE_01 | addr; 
+		denali_write32(cmd, denali->flash_mem);
+	}
+	else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
+	{
+		/* read spare area */
+		cmd = MODE_10 | addr; 
+		index_addr(denali, (uint32_t)cmd, access_type);
+
+		cmd = MODE_01 | addr; 
+		denali_write32(cmd, denali->flash_mem);
+	}
+	else if (op == DENALI_READ)
+	{
+		/* setup page read request for access type */
+		cmd = MODE_10 | addr; 
+		index_addr(denali, (uint32_t)cmd, access_type);
+
+		/* page 33 of the NAND controller spec indicates we should not
+		   use the pipeline commands in Spare area only mode. So we 
+		   don't.
+		 */
+		if (access_type == SPARE_ACCESS)
+		{
+			cmd = MODE_01 | addr;
+			denali_write32(cmd, denali->flash_mem);
+		}
+		else
+		{
+			index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
+	
+			/* wait for command to be accepted  
+			 * can always use status0 bit as the mask is identical for each
+			 * bank. */
+			irq_status = wait_for_irq(denali, irq_mask);
+
+			if (irq_status == 0)
+			{
+				printk(KERN_ERR "cmd, page, addr on timeout "
+					"(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
+				status = FAIL;
+			}
+			else
+			{
+				cmd = MODE_01 | addr;
+				denali_write32(cmd, denali->flash_mem);
+			}
+		}
+	}
+	return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, 
+					int len) 
+{
+	uint32_t i = 0, *buf32;
+
+	/* verify that the len is a multiple of 4. see comment in 
+	 * read_data_from_flash_mem() */	
+	BUG_ON((len % 4) != 0);
+
+	/* write the data to the flash memory */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+	{
+		denali_write32(*buf32++, denali->flash_mem + 0x10);
+	}
+	return i*4; /* intent is to return the number of bytes read */ 
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, 
+					int len)
+{
+	uint32_t i = 0, *buf32;
+
+	/* we assume that len will be a multiple of 4, if not
+	 * it would be nice to know about it ASAP rather than
+	 * have random failures... 
+         *	
+	 * This assumption is based on the fact that this 
+	 * function is designed to be used to read flash pages, 
+	 * which are typically multiples of 4...
+	 */
+
+	BUG_ON((len % 4) != 0);
+
+	/* transfer the data from the flash */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+	{
+		*buf32++ = ioread32(denali->flash_mem + 0x10);
+	}
+	return i*4; /* intent is to return the number of bytes read */ 
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | 
+						INTR_STATUS0__PROGRAM_FAIL;
+	int status = 0;
+
+	denali->page = page;
+
+	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, 
+							DENALI_WRITE) == PASS) 
+	{
+		write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+#if DEBUG_DENALI
+		spin_lock_irq(&denali->irq_lock);
+		denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
+		denali->idx %= 32;
+		spin_unlock_irq(&denali->irq_lock);
+#endif
+
+	
+		/* wait for operation to complete */
+		irq_status = wait_for_irq(denali, irq_mask);
+
+		if (irq_status == 0)
+		{
+			printk(KERN_ERR "OOB write failed\n");
+			status = -EIO;
+		}
+	}
+	else 
+	{ 	
+		printk(KERN_ERR "unable to send pipeline command\n");
+		status = -EIO; 
+	}
+	return status;
+}
+
+/* reads OOB data from the device */
+static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
+
+	denali->page = page;
+
+#if DEBUG_DENALI
+	printk("read_oob %d\n", page);
+#endif
+	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, 
+							DENALI_READ) == PASS) 
+	{
+		read_data_from_flash_mem(denali, buf, mtd->oobsize);	
+
+		/* wait for command to be accepted  
+		 * can always use status0 bit as the mask is identical for each
+		 * bank. */
+		irq_status = wait_for_irq(denali, irq_mask);
+
+		if (irq_status == 0)
+		{
+			printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
+		}
+
+		/* We set the device back to MAIN_ACCESS here as I observed
+		 * instability with the controller if you do a block erase
+		 * and the last transaction was a SPARE_ACCESS. Block erase
+		 * is reliable (according to the MTD test infrastructure)
+		 * if you are in MAIN_ACCESS. 
+		 */
+		addr = BANK(denali->flash_bank) | denali->page;
+		cmd = MODE_10 | addr; 
+		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+
+#if DEBUG_DENALI
+		spin_lock_irq(&denali->irq_lock);
+		denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
+		denali->idx %= 32;
+		spin_unlock_irq(&denali->irq_lock);
+#endif
+	}
+}
+
+/* this function examines buffers to see if they contain data that 
+ * indicate that the buffer is part of an erased region of flash.
+ */
+bool is_erased(uint8_t *buf, int len)
+{
+	int i = 0;
+	for (i = 0; i < len; i++)
+	{	
+		if (buf[i] != 0xFF)
+		{
+			return false;
+		}
+	}
+	return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
+#define ECC_ERR_DEVICE(x)	((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
+#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, 
+			uint8_t *oobbuf, uint32_t irq_status)
+{
+	bool check_erased_page = false;
+
+	if (irq_status & INTR_STATUS0__ECC_ERR)
+	{
+		/* read the ECC errors. we'll ignore them for now */
+		uint32_t err_address = 0, err_correction_info = 0;
+		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
+		uint32_t err_correction_value = 0;
+
+		do 
+		{
+			err_address = ioread32(denali->flash_reg + 
+						ECC_ERROR_ADDRESS);
+			err_sector = ECC_SECTOR(err_address);
+			err_byte = ECC_BYTE(err_address);
+
+
+			err_correction_info = ioread32(denali->flash_reg + 
+						ERR_CORRECTION_INFO);
+			err_correction_value = 
+				ECC_CORRECTION_VALUE(err_correction_info);
+			err_device = ECC_ERR_DEVICE(err_correction_info);
+
+			if (ECC_ERROR_CORRECTABLE(err_correction_info))
+			{
+				/* offset in our buffer is computed as:
+				   sector number * sector size + offset in 
+				   sector
+				 */
+				int offset = err_sector * ECC_SECTOR_SIZE + 
+								err_byte;
+				if (offset < denali->mtd.writesize)
+				{
+					/* correct the ECC error */
+					buf[offset] ^= err_correction_value;
+					denali->mtd.ecc_stats.corrected++;
+				}
+				else
+				{
+					/* bummer, couldn't correct the error */
+					printk(KERN_ERR "ECC offset invalid\n");
+					denali->mtd.ecc_stats.failed++;
+				}
+			}
+			else
+			{
+				/* if the error is not correctable, need to 
+				 * look at the page to see if it is an erased page.
+				 * if so, then it's not a real ECC error */	
+				check_erased_page = true;
+			}
+
+#if DEBUG_DENALI 
+			printk("Detected ECC error in page %d: err_addr = 0x%08x,"
+				" info to fix is 0x%08x\n", denali->page, err_address, 
+				err_correction_info);
+#endif
+		} while (!ECC_LAST_ERR(err_correction_info));
+	}
+	return check_erased_page;
+}
+
+/* programs the controller to either enable/disable DMA transfers */
+static void enable_dma(struct denali_nand_info *denali, bool en)
+{
+	uint32_t reg_val = 0x0;
+
+	if (en) reg_val = DMA_ENABLE__FLAG;
+
+	denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
+	ioread32(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void setup_dma(struct denali_nand_info *denali, int op)
+{
+	uint32_t mode = 0x0;
+	const int page_count = 1;
+	dma_addr_t addr = denali->buf.dma_buf;
+
+	mode = MODE_10 | BANK(denali->flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+	/* 4.  interrupt when complete, burst len = 64 bytes*/
+	index_addr(denali, mode | 0x14000, 0x2400);
+}
+
+/* writes a page. user specifies type, and this function handles the 
+   configuration details. */
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip, 
+			const uint8_t *buf, bool raw_xfer)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct pci_dev *pci_dev = denali->dev;
+
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | 
+						INTR_STATUS0__PROGRAM_FAIL;
+
+	/* if it is a raw xfer, we want to disable ecc, and send
+	 * the spare area.
+	 * !raw_xfer - enable ecc
+	 * raw_xfer - transfer spare
+	 */
+	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+	/* copy buffer into DMA buffer */
+	memcpy(denali->buf.buf, buf, mtd->writesize);
+
+	if (raw_xfer)
+	{
+		/* transfer the data to the spare area */
+		memcpy(denali->buf.buf + mtd->writesize, 
+			chip->oob_poi, 
+			mtd->oobsize); 
+	}
+
+	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
+
+	clear_interrupts(denali);
+	enable_dma(denali, true);	
+
+	setup_dma(denali, DENALI_WRITE);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	if (irq_status == 0)
+	{
+		printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
+		denali->status = 
+	   	   (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : 
+						   	     PASS;
+	}
+
+	enable_dma(denali, false);	
+	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
+}
+
+/* NAND core entry points */
+
+/* this is the callback that the NAND core calls to write a page. Since 
+   writing a page with ECC or without is similar, all the work is done 
+   by write_page above.   */
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, 
+				const uint8_t *buf)
+{
+	/* for regular page writes, we let HW handle all the ECC
+         * data written to the device. */
+	write_page(mtd, chip, buf, false);
+}
+
+/* This is the callback that the NAND core calls to write a page without ECC. 
+   raw access is similiar to ECC page writes, so all the work is done in the
+   write_page() function above. 
+ */
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 
+					const uint8_t *buf)
+{
+	/* for raw page writes, we want to disable ECC and simply write 
+	   whatever data is in the buffer. */
+	write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, 
+			    int page)
+{
+	return write_oob_data(mtd, chip->oob_poi, page);	
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, 
+			   int page, int sndcmd)
+{
+	read_oob_data(mtd, chip->oob_poi, page);
+
+	return 0; /* notify NAND core to send command to 
+                   * NAND device. */
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct pci_dev *pci_dev = denali->dev;
+
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | 
+			    INTR_STATUS0__ECC_ERR;
+	bool check_erased_page = false;
+
+	setup_ecc_for_xfer(denali, true, false);
+
+	enable_dma(denali, true);
+	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+	clear_interrupts(denali);
+	setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+	memcpy(buf, denali->buf.buf, mtd->writesize);
+	
+	check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
+	enable_dma(denali, false);
+
+	if (check_erased_page)
+	{
+		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
+
+		/* check ECC failures that may have occurred on erased pages */
+		if (check_erased_page)
+		{
+			if (!is_erased(buf, denali->mtd.writesize))
+			{
+				denali->mtd.ecc_stats.failed++;
+			}
+			if (!is_erased(buf, denali->mtd.oobsize))
+			{
+				denali->mtd.ecc_stats.failed++;
+			}
+		}	
+	}
+	return 0;
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct pci_dev *pci_dev = denali->dev;
+
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
+						
+	setup_ecc_for_xfer(denali, false, true);
+	enable_dma(denali, true);
+
+	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+	clear_interrupts(denali);
+	setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+	enable_dma(denali, false);
+
+	memcpy(buf, denali->buf.buf, mtd->writesize);
+	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+
+	return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint8_t result = 0xff;
+
+	if (denali->buf.head < denali->buf.tail)
+	{
+		result = denali->buf.buf[denali->buf.head++];
+	}
+
+#if DEBUG_DENALI
+	printk("read byte -> 0x%02x\n", result);
+#endif
+	return result;
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+#if DEBUG_DENALI
+	printk("denali select chip %d\n", chip);
+#endif
+	spin_lock_irq(&denali->irq_lock);
+	denali->flash_bank = chip;
+	spin_unlock_irq(&denali->irq_lock);
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int status = denali->status;
+	denali->status = 0;
+
+#if DEBUG_DENALI
+	printk("waitfunc %d\n", status);
+#endif
+	return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	uint32_t cmd = 0x0, irq_status = 0;
+
+#if DEBUG_DENALI
+	printk("erase page: %d\n", page);
+#endif
+	/* clear interrupts */
+	clear_interrupts(denali);	
+
+	/* setup page read request for access type */
+	cmd = MODE_10 | BANK(denali->flash_bank) | page;
+	index_addr(denali, (uint32_t)cmd, 0x1);
+
+	/* wait for erase to complete or failure to occur */
+	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | 
+					INTR_STATUS0__ERASE_FAIL);
+
+	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : 
+								 PASS;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, 
+			   int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+#if DEBUG_DENALI
+	printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
+#endif
+	switch (cmd)
+	{ 
+		case NAND_CMD_PAGEPROG:
+			break;
+		case NAND_CMD_STATUS:
+			read_status(denali);
+			break;
+		case NAND_CMD_READID:
+			reset_buf(denali);
+			if (denali->flash_bank < denali->total_used_banks)
+			{
+				/* write manufacturer information into nand 
+				   buffer for NAND subsystem to fetch.
+  			         */ 
+	                        write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
+	                        write_byte_to_buf(denali, denali->dev_info.wDeviceID);
+	                        write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
+	                        write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
+	                        write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
+			}
+			else 
+			{
+				int i;
+				for (i = 0; i < 5; i++) 
+					write_byte_to_buf(denali, 0xff);
+			}
+			break;
+		case NAND_CMD_READ0:
+		case NAND_CMD_SEQIN:
+			denali->page = page;
+			break;
+		case NAND_CMD_RESET:
+			reset_bank(denali);
+			break;
+		case NAND_CMD_READOOB:
+			/* TODO: Read OOB data */
+			break;
+		default:
+			printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
+			break;
+	}
+}
+
+/* stubs for ECC functions not used by the NAND core */
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, 
+				uint8_t *ecc_code)
+{
+	printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
+	BUG();
+	return -EIO;
+}
+
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, 
+				uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
+	BUG();
+	return -EIO;
+}
+
+static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+	printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
+	BUG();
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+	denali_irq_init(denali);
+	NAND_Flash_Reset(denali);
+	denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+	denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+
+	denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
+	denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+	/* Should set value for these registers when init */
+	denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+	denali_write32(1, denali->flash_reg + ECC_ENABLE);
+}
+
+/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
+#define ECC_BYTES_SLC   4 * (2048 / ECC_SECTOR_SIZE)
+static struct nand_ecclayout nand_oob_slc = {
+	.eccbytes = 4,
+	.eccpos = { 0, 1, 2, 3 }, /* not used */
+	.oobfree = {{ 
+			.offset = ECC_BYTES_SLC, 
+			.length = 64 - ECC_BYTES_SLC  
+		   }}
+};
+
+#define ECC_BYTES_MLC   14 * (2048 / ECC_SECTOR_SIZE)
+static struct nand_ecclayout nand_oob_mlc_14bit = {
+	.eccbytes = 14,
+	.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
+	.oobfree = {{ 
+			.offset = ECC_BYTES_MLC, 
+			.length = 64 - ECC_BYTES_MLC  
+		   }}
+};
+
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/* initalize driver data structures */
+void denali_drv_init(struct denali_nand_info *denali)
+{
+	denali->idx = 0;
+
+	/* setup interrupt handler */
+	/* the completion object will be used to notify 
+	 * the callee that the interrupt is done */
+	init_completion(&denali->complete);
+
+	/* the spinlock will be used to synchronize the ISR
+	 * with any element that might be access shared 
+	 * data (interrupt status) */
+	spin_lock_init(&denali->irq_lock);
+
+	/* indicate that MTD has not selected a valid bank yet */
+	denali->flash_bank = CHIP_SELECT_INVALID;
+
+	/* initialize our irq_status variable to indicate no interrupts */
+	denali->irq_status = 0;
+}
+
+/* driver entry point */
+static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+	int ret = -ENODEV;
+	resource_size_t csr_base, mem_base;
+	unsigned long csr_len, mem_len;
+	struct denali_nand_info *denali;
+
+	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
+	if (!denali)
+		return -ENOMEM;
+
+	ret = pci_enable_device(dev);
+	if (ret) {
+		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
+		goto failed_enable;
+	}
+
+	if (id->driver_data == INTEL_CE4100) {
+		/* Due to a silicon limitation, we can only support 
+		 * ONFI timing mode 1 and below. 
+		 */ 
+		if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
+		{
+			printk("Intel CE4100 only supports ONFI timing mode 1 "
+				"or below\n");
+			ret = -EINVAL;
+			goto failed_enable;
+		}
+		denali->platform = INTEL_CE4100;
+		mem_base = pci_resource_start(dev, 0);
+		mem_len = pci_resource_len(dev, 1);
+		csr_base = pci_resource_start(dev, 1);
+		csr_len = pci_resource_len(dev, 1);
+	} else {
+		denali->platform = INTEL_MRST;
+		csr_base = pci_resource_start(dev, 0);
+		csr_len = pci_resource_start(dev, 0);
+		mem_base = pci_resource_start(dev, 1);
+		mem_len = pci_resource_len(dev, 1);
+		if (!mem_len) {
+			mem_base = csr_base + csr_len;
+			mem_len = csr_len;
+			nand_dbg_print(NAND_DBG_WARN,
+				       "Spectra: No second BAR for PCI device; assuming %08Lx\n",
+				       (uint64_t)csr_base);
+		}
+	}
+
+	/* Is 32-bit DMA supported? */
+	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
+
+	if (ret)
+	{
+		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
+		goto failed_enable;
+	}
+	denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, 
+					 PCI_DMA_BIDIRECTIONAL);
+
+	if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
+	{
+		printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
+		goto failed_enable;
+	}
+
+	pci_set_master(dev);
+	denali->dev = dev;
+
+	ret = pci_request_regions(dev, DENALI_NAND_NAME);
+	if (ret) {
+		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
+		goto failed_req_csr;
+	}
+
+	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
+	if (!denali->flash_reg) {
+		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
+		ret = -ENOMEM;
+		goto failed_remap_csr;
+	}
+	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
+		       (uint64_t)csr_base, denali->flash_reg, csr_len);
+
+	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
+	if (!denali->flash_mem) {
+		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
+		iounmap(denali->flash_reg);
+		ret = -ENOMEM;
+		goto failed_remap_csr;
+	}
+
+	nand_dbg_print(NAND_DBG_WARN,
+		"Spectra: Remapped flash base address: "
+		"0x%p, len: %ld\n",
+		denali->flash_mem, csr_len);
+
+	denali_hw_init(denali);
+	denali_drv_init(denali);
+
+	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
+	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
+			DENALI_NAND_NAME, denali)) {
+		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
+		ret = -ENODEV;
+		goto failed_request_irq;
+	}
+
+	/* now that our ISR is registered, we can enable interrupts */
+	NAND_LLD_Enable_Disable_Interrupts(denali, true);
+
+	pci_set_drvdata(dev, denali);
+
+	NAND_Read_Device_ID(denali);
+
+	/* MTD supported page sizes vary by kernel. We validate our 
+           kernel supports the device here.
+	 */
+	if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
+	{
+		ret = -ENODEV;
+		printk(KERN_ERR "Spectra: device size not supported by this "
+			"version of MTD.");
+		goto failed_nand;
+	}
+
+	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+			ioread32(denali->flash_reg + ACC_CLKS),
+			ioread32(denali->flash_reg + RE_2_WE),
+			ioread32(denali->flash_reg + WE_2_RE),
+			ioread32(denali->flash_reg + ADDR_2_DATA),
+			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+			ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+	denali->mtd.name = "Denali NAND";
+	denali->mtd.owner = THIS_MODULE;
+	denali->mtd.priv = &denali->nand;
+
+	/* register the driver with the NAND core subsystem */
+	denali->nand.select_chip = denali_select_chip;
+	denali->nand.cmdfunc = denali_cmdfunc;
+	denali->nand.read_byte = denali_read_byte;
+	denali->nand.waitfunc = denali_waitfunc;
+
+	/* scan for NAND devices attached to the controller 
+	 * this is the first stage in a two step process to register
+	 * with the nand subsystem */	
+	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
+	{
+		ret = -ENXIO;
+		goto failed_nand;
+	}
+	
+	/* second stage of the NAND scan 
+	 * this stage requires information regarding ECC and 
+         * bad block management. */
+
+	/* Bad block management */
+	denali->nand.bbt_td = &bbt_main_descr;
+	denali->nand.bbt_md = &bbt_mirror_descr;
+
+	/* skip the scan for now until we have OOB read and write support */
+	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
+	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+
+	if (denali->dev_info.MLCDevice)
+	{
+		denali->nand.ecc.layout = &nand_oob_mlc_14bit;
+		denali->nand.ecc.bytes = ECC_BYTES_MLC;
+	}
+	else /* SLC */
+	{
+		denali->nand.ecc.layout = &nand_oob_slc;
+		denali->nand.ecc.bytes = ECC_BYTES_SLC;
+	}
+
+	/* These functions are required by the NAND core framework, otherwise, 
+           the NAND core will assert. However, we don't need them, so we'll stub 
+           them out. */
+	denali->nand.ecc.calculate = denali_ecc_calculate;
+	denali->nand.ecc.correct = denali_ecc_correct;
+	denali->nand.ecc.hwctl = denali_ecc_hwctl;
+
+	/* override the default read operations */
+	denali->nand.ecc.size = denali->mtd.writesize;
+	denali->nand.ecc.read_page = denali_read_page;
+	denali->nand.ecc.read_page_raw = denali_read_page_raw;
+	denali->nand.ecc.write_page = denali_write_page;
+	denali->nand.ecc.write_page_raw = denali_write_page_raw;
+	denali->nand.ecc.read_oob = denali_read_oob;
+	denali->nand.ecc.write_oob = denali_write_oob;
+	denali->nand.erase_cmd = denali_erase;
+
+	if (nand_scan_tail(&denali->mtd))
+	{
+		ret = -ENXIO;
+		goto failed_nand;
+	}
+
+	ret = add_mtd_device(&denali->mtd);
+	if (ret) {
+		printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
+		goto failed_nand;
+	}
+	return 0;
+
+ failed_nand:
+	denali_irq_cleanup(dev->irq, denali);
+ failed_request_irq:
+	iounmap(denali->flash_reg);
+	iounmap(denali->flash_mem);
+ failed_remap_csr:
+	pci_release_regions(dev);
+ failed_req_csr:
+	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, 
+							PCI_DMA_BIDIRECTIONAL);
+ failed_enable:
+	kfree(denali);
+	return ret;
+}
+
+/* driver exit point */
+static void denali_pci_remove(struct pci_dev *dev)
+{
+	struct denali_nand_info *denali = pci_get_drvdata(dev);
+
+	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	nand_release(&denali->mtd);
+	del_mtd_device(&denali->mtd);
+
+	denali_irq_cleanup(dev->irq, denali);
+
+	iounmap(denali->flash_reg);
+	iounmap(denali->flash_mem);
+	pci_release_regions(dev);
+	pci_disable_device(dev);
+	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, 
+							PCI_DMA_BIDIRECTIONAL);
+	pci_set_drvdata(dev, NULL);
+	kfree(denali);
+}
+
+MODULE_DEVICE_TABLE(pci, denali_pci_ids);
+
+static struct pci_driver denali_pci_driver = {
+	.name = DENALI_NAND_NAME,
+	.id_table = denali_pci_ids,
+	.probe = denali_pci_probe,
+	.remove = denali_pci_remove,
+};
+
+static int __devinit denali_init(void)
+{
+	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
+	return pci_register_driver(&denali_pci_driver);
+}
+
+/* Free memory */
+static void __devexit denali_exit(void)
+{
+	pci_unregister_driver(&denali_pci_driver);
+}
+
+module_init(denali_init);
+module_exit(denali_exit);
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644
index 0000000..422a29a
--- /dev/null
+++ b/drivers/mtd/nand/denali.h
@@ -0,0 +1,816 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/mtd/nand.h> 
+
+#define DEVICE_RESET				0x0
+#define     DEVICE_RESET__BANK0				0x0001
+#define     DEVICE_RESET__BANK1				0x0002
+#define     DEVICE_RESET__BANK2				0x0004
+#define     DEVICE_RESET__BANK3				0x0008
+
+#define TRANSFER_SPARE_REG			0x10
+#define     TRANSFER_SPARE_REG__FLAG			0x0001
+
+#define LOAD_WAIT_CNT				0x20
+#define     LOAD_WAIT_CNT__VALUE				0xffff
+
+#define PROGRAM_WAIT_CNT			0x30
+#define     PROGRAM_WAIT_CNT__VALUE			0xffff
+
+#define ERASE_WAIT_CNT				0x40
+#define     ERASE_WAIT_CNT__VALUE			0xffff
+
+#define INT_MON_CYCCNT				0x50
+#define     INT_MON_CYCCNT__VALUE			0xffff
+
+#define RB_PIN_ENABLED				0x60
+#define     RB_PIN_ENABLED__BANK0			0x0001
+#define     RB_PIN_ENABLED__BANK1			0x0002
+#define     RB_PIN_ENABLED__BANK2			0x0004
+#define     RB_PIN_ENABLED__BANK3			0x0008
+
+#define MULTIPLANE_OPERATION			0x70
+#define     MULTIPLANE_OPERATION__FLAG			0x0001
+
+#define MULTIPLANE_READ_ENABLE			0x80
+#define     MULTIPLANE_READ_ENABLE__FLAG		0x0001
+
+#define COPYBACK_DISABLE			0x90
+#define     COPYBACK_DISABLE__FLAG			0x0001
+
+#define CACHE_WRITE_ENABLE			0xa0
+#define     CACHE_WRITE_ENABLE__FLAG			0x0001
+
+#define CACHE_READ_ENABLE			0xb0
+#define     CACHE_READ_ENABLE__FLAG			0x0001
+
+#define PREFETCH_MODE				0xc0
+#define     PREFETCH_MODE__PREFETCH_EN			0x0001
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	0xfff0
+
+#define CHIP_ENABLE_DONT_CARE			0xd0
+#define     CHIP_EN_DONT_CARE__FLAG			0x01
+
+#define ECC_ENABLE				0xe0
+#define     ECC_ENABLE__FLAG				0x0001
+
+#define GLOBAL_INT_ENABLE			0xf0
+#define     GLOBAL_INT_EN_FLAG				0x01
+
+#define WE_2_RE					0x100
+#define     WE_2_RE__VALUE				0x003f
+
+#define ADDR_2_DATA				0x110
+#define     ADDR_2_DATA__VALUE				0x003f
+
+#define RE_2_WE					0x120
+#define     RE_2_WE__VALUE				0x003f
+
+#define ACC_CLKS    				0x130
+#define     ACC_CLKS__VALUE				0x000f
+
+#define NUMBER_OF_PLANES			0x140
+#define     NUMBER_OF_PLANES__VALUE			0x0007
+
+#define PAGES_PER_BLOCK				0x150
+#define     PAGES_PER_BLOCK__VALUE			0xffff
+
+#define DEVICE_WIDTH				0x160
+#define     DEVICE_WIDTH__VALUE				0x0003
+
+#define DEVICE_MAIN_AREA_SIZE			0x170
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		0xffff
+
+#define DEVICE_SPARE_AREA_SIZE			0x180
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		0xffff
+
+#define TWO_ROW_ADDR_CYCLES			0x190
+#define     TWO_ROW_ADDR_CYCLES__FLAG			0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT		0x1a0
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		0x0001
+
+#define ECC_CORRECTION				0x1b0
+#define     ECC_CORRECTION__VALUE			0x001f
+
+#define READ_MODE				0x1c0
+#define     READ_MODE__VALUE				0x000f
+
+#define WRITE_MODE				0x1d0
+#define     WRITE_MODE__VALUE				0x000f
+
+#define COPYBACK_MODE				0x1e0
+#define     COPYBACK_MODE__VALUE			0x000f
+
+#define RDWR_EN_LO_CNT				0x1f0
+#define     RDWR_EN_LO_CNT__VALUE			0x001f
+
+#define RDWR_EN_HI_CNT				0x200
+#define     RDWR_EN_HI_CNT__VALUE			0x001f
+
+#define MAX_RD_DELAY				0x210
+#define     MAX_RD_DELAY__VALUE				0x000f
+
+#define CS_SETUP_CNT				0x220
+#define     CS_SETUP_CNT__VALUE				0x001f
+
+#define SPARE_AREA_SKIP_BYTES			0x230
+#define     SPARE_AREA_SKIP_BYTES__VALUE		0x003f
+
+#define SPARE_AREA_MARKER			0x240
+#define     SPARE_AREA_MARKER__VALUE			0xffff
+
+#define DEVICES_CONNECTED			0x250
+#define     DEVICES_CONNECTED__VALUE			0x0007
+
+#define DIE_MASK					0x260
+#define     DIE_MASK__VALUE				0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE		0x270
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		0xffff
+
+#define WRITE_PROTECT				0x280
+#define     WRITE_PROTECT__FLAG				0x0001
+
+#define RE_2_RE					0x290
+#define     RE_2_RE__VALUE				0x003f
+
+#define MANUFACTURER_ID			0x300
+#define     MANUFACTURER_ID__VALUE			0x00ff
+
+#define DEVICE_ID				0x310
+#define     DEVICE_ID__VALUE				0x00ff
+
+#define DEVICE_PARAM_0				0x320
+#define     DEVICE_PARAM_0__VALUE			0x00ff
+
+#define DEVICE_PARAM_1				0x330
+#define     DEVICE_PARAM_1__VALUE			0x00ff
+
+#define DEVICE_PARAM_2				0x340
+#define     DEVICE_PARAM_2__VALUE			0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE			0x350
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE			0x360
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		0xffff
+
+#define REVISION					0x370
+#define     REVISION__VALUE				0xffff
+
+#define ONFI_DEVICE_FEATURES			0x380
+#define     ONFI_DEVICE_FEATURES__VALUE			0x003f
+
+#define ONFI_OPTIONAL_COMMANDS		0x390
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		0x003f
+
+#define ONFI_TIMING_MODE			0x3a0
+#define     ONFI_TIMING_MODE__VALUE			0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS			0x3c0
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		0x00ff
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	0xffff
+
+#define FEATURES					0x3f0
+#define     FEATURES__N_BANKS				0x0003
+#define     FEATURES__ECC_MAX_ERR			0x003c
+#define     FEATURES__DMA					0x0040
+#define     FEATURES__CMD_DMA				0x0080
+#define     FEATURES__PARTITION				0x0100
+#define     FEATURES__XDMA_SIDEBAND			0x0200
+#define     FEATURES__GPREG				0x0400
+#define     FEATURES__INDEX_ADDR				0x0800
+
+#define TRANSFER_MODE				0x400
+#define     TRANSFER_MODE__VALUE			0x0003
+
+#define INTR_STATUS0				0x410
+#define     INTR_STATUS0__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_STATUS0__ECC_ERR			0x0002
+#define     INTR_STATUS0__DMA_CMD_COMP			0x0004
+#define     INTR_STATUS0__TIME_OUT			0x0008
+#define     INTR_STATUS0__PROGRAM_FAIL			0x0010
+#define     INTR_STATUS0__ERASE_FAIL			0x0020
+#define     INTR_STATUS0__LOAD_COMP			0x0040
+#define     INTR_STATUS0__PROGRAM_COMP			0x0080
+#define     INTR_STATUS0__ERASE_COMP			0x0100
+#define     INTR_STATUS0__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_STATUS0__LOCKED_BLK			0x0400
+#define     INTR_STATUS0__UNSUP_CMD			0x0800
+#define     INTR_STATUS0__INT_ACT			0x1000
+#define     INTR_STATUS0__RST_COMP			0x2000
+#define     INTR_STATUS0__PIPE_CMD_ERR			0x4000
+#define     INTR_STATUS0__PAGE_XFER_INC			0x8000
+
+#define INTR_EN0					0x420
+#define     INTR_EN0__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_EN0__ECC_ERR				0x0002
+#define     INTR_EN0__DMA_CMD_COMP			0x0004
+#define     INTR_EN0__TIME_OUT				0x0008
+#define     INTR_EN0__PROGRAM_FAIL			0x0010
+#define     INTR_EN0__ERASE_FAIL				0x0020
+#define     INTR_EN0__LOAD_COMP				0x0040
+#define     INTR_EN0__PROGRAM_COMP			0x0080
+#define     INTR_EN0__ERASE_COMP				0x0100
+#define     INTR_EN0__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_EN0__LOCKED_BLK				0x0400
+#define     INTR_EN0__UNSUP_CMD				0x0800
+#define     INTR_EN0__INT_ACT				0x1000
+#define     INTR_EN0__RST_COMP				0x2000
+#define     INTR_EN0__PIPE_CMD_ERR			0x4000
+#define     INTR_EN0__PAGE_XFER_INC			0x8000
+
+#define PAGE_CNT0				0x430
+#define     PAGE_CNT0__VALUE				0x00ff
+
+#define ERR_PAGE_ADDR0				0x440
+#define     ERR_PAGE_ADDR0__VALUE			0xffff
+
+#define ERR_BLOCK_ADDR0			0x450
+#define     ERR_BLOCK_ADDR0__VALUE			0xffff
+
+#define INTR_STATUS1				0x460
+#define     INTR_STATUS1__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_STATUS1__ECC_ERR			0x0002
+#define     INTR_STATUS1__DMA_CMD_COMP			0x0004
+#define     INTR_STATUS1__TIME_OUT			0x0008
+#define     INTR_STATUS1__PROGRAM_FAIL			0x0010
+#define     INTR_STATUS1__ERASE_FAIL			0x0020
+#define     INTR_STATUS1__LOAD_COMP			0x0040
+#define     INTR_STATUS1__PROGRAM_COMP			0x0080
+#define     INTR_STATUS1__ERASE_COMP			0x0100
+#define     INTR_STATUS1__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_STATUS1__LOCKED_BLK			0x0400
+#define     INTR_STATUS1__UNSUP_CMD			0x0800
+#define     INTR_STATUS1__INT_ACT			0x1000
+#define     INTR_STATUS1__RST_COMP			0x2000
+#define     INTR_STATUS1__PIPE_CMD_ERR			0x4000
+#define     INTR_STATUS1__PAGE_XFER_INC			0x8000
+
+#define INTR_EN1					0x470
+#define     INTR_EN1__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_EN1__ECC_ERR				0x0002
+#define     INTR_EN1__DMA_CMD_COMP			0x0004
+#define     INTR_EN1__TIME_OUT				0x0008
+#define     INTR_EN1__PROGRAM_FAIL			0x0010
+#define     INTR_EN1__ERASE_FAIL				0x0020
+#define     INTR_EN1__LOAD_COMP				0x0040
+#define     INTR_EN1__PROGRAM_COMP			0x0080
+#define     INTR_EN1__ERASE_COMP				0x0100
+#define     INTR_EN1__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_EN1__LOCKED_BLK				0x0400
+#define     INTR_EN1__UNSUP_CMD				0x0800
+#define     INTR_EN1__INT_ACT				0x1000
+#define     INTR_EN1__RST_COMP				0x2000
+#define     INTR_EN1__PIPE_CMD_ERR			0x4000
+#define     INTR_EN1__PAGE_XFER_INC			0x8000
+
+#define PAGE_CNT1				0x480
+#define     PAGE_CNT1__VALUE				0x00ff
+
+#define ERR_PAGE_ADDR1				0x490
+#define     ERR_PAGE_ADDR1__VALUE			0xffff
+
+#define ERR_BLOCK_ADDR1			0x4a0
+#define     ERR_BLOCK_ADDR1__VALUE			0xffff
+
+#define INTR_STATUS2				0x4b0
+#define     INTR_STATUS2__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_STATUS2__ECC_ERR			0x0002
+#define     INTR_STATUS2__DMA_CMD_COMP			0x0004
+#define     INTR_STATUS2__TIME_OUT			0x0008
+#define     INTR_STATUS2__PROGRAM_FAIL			0x0010
+#define     INTR_STATUS2__ERASE_FAIL			0x0020
+#define     INTR_STATUS2__LOAD_COMP			0x0040
+#define     INTR_STATUS2__PROGRAM_COMP			0x0080
+#define     INTR_STATUS2__ERASE_COMP			0x0100
+#define     INTR_STATUS2__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_STATUS2__LOCKED_BLK			0x0400
+#define     INTR_STATUS2__UNSUP_CMD			0x0800
+#define     INTR_STATUS2__INT_ACT			0x1000
+#define     INTR_STATUS2__RST_COMP			0x2000
+#define     INTR_STATUS2__PIPE_CMD_ERR			0x4000
+#define     INTR_STATUS2__PAGE_XFER_INC			0x8000
+
+#define INTR_EN2					0x4c0
+#define     INTR_EN2__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_EN2__ECC_ERR				0x0002
+#define     INTR_EN2__DMA_CMD_COMP			0x0004
+#define     INTR_EN2__TIME_OUT				0x0008
+#define     INTR_EN2__PROGRAM_FAIL			0x0010
+#define     INTR_EN2__ERASE_FAIL				0x0020
+#define     INTR_EN2__LOAD_COMP				0x0040
+#define     INTR_EN2__PROGRAM_COMP			0x0080
+#define     INTR_EN2__ERASE_COMP				0x0100
+#define     INTR_EN2__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_EN2__LOCKED_BLK				0x0400
+#define     INTR_EN2__UNSUP_CMD				0x0800
+#define     INTR_EN2__INT_ACT				0x1000
+#define     INTR_EN2__RST_COMP				0x2000
+#define     INTR_EN2__PIPE_CMD_ERR			0x4000
+#define     INTR_EN2__PAGE_XFER_INC			0x8000
+
+#define PAGE_CNT2				0x4d0
+#define     PAGE_CNT2__VALUE				0x00ff
+
+#define ERR_PAGE_ADDR2				0x4e0
+#define     ERR_PAGE_ADDR2__VALUE			0xffff
+
+#define ERR_BLOCK_ADDR2			0x4f0
+#define     ERR_BLOCK_ADDR2__VALUE			0xffff
+
+#define INTR_STATUS3				0x500
+#define     INTR_STATUS3__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_STATUS3__ECC_ERR			0x0002
+#define     INTR_STATUS3__DMA_CMD_COMP			0x0004
+#define     INTR_STATUS3__TIME_OUT			0x0008
+#define     INTR_STATUS3__PROGRAM_FAIL			0x0010
+#define     INTR_STATUS3__ERASE_FAIL			0x0020
+#define     INTR_STATUS3__LOAD_COMP			0x0040
+#define     INTR_STATUS3__PROGRAM_COMP			0x0080
+#define     INTR_STATUS3__ERASE_COMP			0x0100
+#define     INTR_STATUS3__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_STATUS3__LOCKED_BLK			0x0400
+#define     INTR_STATUS3__UNSUP_CMD			0x0800
+#define     INTR_STATUS3__INT_ACT			0x1000
+#define     INTR_STATUS3__RST_COMP			0x2000
+#define     INTR_STATUS3__PIPE_CMD_ERR			0x4000
+#define     INTR_STATUS3__PAGE_XFER_INC			0x8000
+
+#define INTR_EN3					0x510
+#define     INTR_EN3__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_EN3__ECC_ERR				0x0002
+#define     INTR_EN3__DMA_CMD_COMP			0x0004
+#define     INTR_EN3__TIME_OUT				0x0008
+#define     INTR_EN3__PROGRAM_FAIL			0x0010
+#define     INTR_EN3__ERASE_FAIL				0x0020
+#define     INTR_EN3__LOAD_COMP				0x0040
+#define     INTR_EN3__PROGRAM_COMP			0x0080
+#define     INTR_EN3__ERASE_COMP				0x0100
+#define     INTR_EN3__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_EN3__LOCKED_BLK				0x0400
+#define     INTR_EN3__UNSUP_CMD				0x0800
+#define     INTR_EN3__INT_ACT				0x1000
+#define     INTR_EN3__RST_COMP				0x2000
+#define     INTR_EN3__PIPE_CMD_ERR			0x4000
+#define     INTR_EN3__PAGE_XFER_INC			0x8000
+
+#define PAGE_CNT3				0x520
+#define     PAGE_CNT3__VALUE				0x00ff
+
+#define ERR_PAGE_ADDR3				0x530
+#define     ERR_PAGE_ADDR3__VALUE			0xffff
+
+#define ERR_BLOCK_ADDR3			0x540
+#define     ERR_BLOCK_ADDR3__VALUE			0xffff
+
+#define DATA_INTR				0x550
+#define     DATA_INTR__WRITE_SPACE_AV			0x0001
+#define     DATA_INTR__READ_DATA_AV			0x0002
+
+#define DATA_INTR_EN				0x560
+#define     DATA_INTR_EN__WRITE_SPACE_AV		0x0001
+#define     DATA_INTR_EN__READ_DATA_AV			0x0002
+
+#define GPREG_0					0x570
+#define     GPREG_0__VALUE				0xffff
+
+#define GPREG_1					0x580
+#define     GPREG_1__VALUE				0xffff
+
+#define GPREG_2					0x590
+#define     GPREG_2__VALUE				0xffff
+
+#define GPREG_3					0x5a0
+#define     GPREG_3__VALUE				0xffff
+
+#define ECC_THRESHOLD				0x600
+#define     ECC_THRESHOLD__VALUE				0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS		0x610
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS			0x620
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		0x0fff
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		0xf000
+
+#define ECC_ERROR_ADDRESS			0x630
+#define     ECC_ERROR_ADDRESS__OFFSET			0x0fff
+#define     ECC_ERROR_ADDRESS__SECTOR_NR		0xf000
+
+#define ERR_CORRECTION_INFO			0x640
+#define     ERR_CORRECTION_INFO__BYTEMASK		0x00ff
+#define     ERR_CORRECTION_INFO__DEVICE_NR		0x0f00
+#define     ERR_CORRECTION_INFO__ERROR_TYPE		0x4000
+#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		0x8000
+
+#define DMA_ENABLE				0x700
+#define     DMA_ENABLE__FLAG				0x0001
+
+#define IGNORE_ECC_DONE				0x710
+#define     IGNORE_ECC_DONE__FLAG			0x0001
+
+#define DMA_INTR				0x720
+#define     DMA_INTR__TARGET_ERROR			0x0001
+#define     DMA_INTR__DESC_COMP_CHANNEL0		0x0002
+#define     DMA_INTR__DESC_COMP_CHANNEL1		0x0004
+#define     DMA_INTR__DESC_COMP_CHANNEL2		0x0008
+#define     DMA_INTR__DESC_COMP_CHANNEL3		0x0010
+#define     DMA_INTR__MEMCOPY_DESC_COMP		0x0020
+
+#define DMA_INTR_EN				0x730
+#define     DMA_INTR_EN__TARGET_ERROR			0x0001
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL0		0x0002
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL1		0x0004
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL2		0x0008
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL3		0x0010
+#define     DMA_INTR_EN__MEMCOPY_DESC_COMP		0x0020
+
+#define TARGET_ERR_ADDR_LO			0x740
+#define     TARGET_ERR_ADDR_LO__VALUE			0xffff
+
+#define TARGET_ERR_ADDR_HI			0x750
+#define     TARGET_ERR_ADDR_HI__VALUE			0xffff
+
+#define CHNL_ACTIVE				0x760
+#define     CHNL_ACTIVE__CHANNEL0			0x0001
+#define     CHNL_ACTIVE__CHANNEL1			0x0002
+#define     CHNL_ACTIVE__CHANNEL2			0x0004
+#define     CHNL_ACTIVE__CHANNEL3			0x0008
+
+#define ACTIVE_SRC_ID				0x800
+#define     ACTIVE_SRC_ID__VALUE				0x00ff
+
+#define PTN_INTR					0x810
+#define     PTN_INTR__CONFIG_ERROR			0x0001
+#define     PTN_INTR__ACCESS_ERROR_BANK0		0x0002
+#define     PTN_INTR__ACCESS_ERROR_BANK1		0x0004
+#define     PTN_INTR__ACCESS_ERROR_BANK2		0x0008
+#define     PTN_INTR__ACCESS_ERROR_BANK3		0x0010
+#define     PTN_INTR__REG_ACCESS_ERROR			0x0020
+
+#define PTN_INTR_EN				0x820
+#define     PTN_INTR_EN__CONFIG_ERROR			0x0001
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK0		0x0002
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK1		0x0004
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK2		0x0008
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK3		0x0010
+#define     PTN_INTR_EN__REG_ACCESS_ERROR		0x0020
+
+#define PERM_SRC_ID_0				0x830
+#define     PERM_SRC_ID_0__SRCID				0x00ff
+#define     PERM_SRC_ID_0__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_0__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_0__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_0__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_0				0x840
+#define     MIN_BLK_ADDR_0__VALUE			0xffff
+
+#define MAX_BLK_ADDR_0				0x850
+#define     MAX_BLK_ADDR_0__VALUE			0xffff
+
+#define MIN_MAX_BANK_0				0x860
+#define     MIN_MAX_BANK_0__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_0__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_1				0x870
+#define     PERM_SRC_ID_1__SRCID				0x00ff
+#define     PERM_SRC_ID_1__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_1__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_1__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_1__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_1				0x880
+#define     MIN_BLK_ADDR_1__VALUE			0xffff
+
+#define MAX_BLK_ADDR_1				0x890
+#define     MAX_BLK_ADDR_1__VALUE			0xffff
+
+#define MIN_MAX_BANK_1				0x8a0
+#define     MIN_MAX_BANK_1__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_1__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_2				0x8b0
+#define     PERM_SRC_ID_2__SRCID				0x00ff
+#define     PERM_SRC_ID_2__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_2__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_2__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_2__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_2				0x8c0
+#define     MIN_BLK_ADDR_2__VALUE			0xffff
+
+#define MAX_BLK_ADDR_2				0x8d0
+#define     MAX_BLK_ADDR_2__VALUE			0xffff
+
+#define MIN_MAX_BANK_2				0x8e0
+#define     MIN_MAX_BANK_2__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_2__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_3				0x8f0
+#define     PERM_SRC_ID_3__SRCID				0x00ff
+#define     PERM_SRC_ID_3__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_3__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_3__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_3__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_3				0x900
+#define     MIN_BLK_ADDR_3__VALUE			0xffff
+
+#define MAX_BLK_ADDR_3				0x910
+#define     MAX_BLK_ADDR_3__VALUE			0xffff
+
+#define MIN_MAX_BANK_3				0x920
+#define     MIN_MAX_BANK_3__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_3__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_4				0x930
+#define     PERM_SRC_ID_4__SRCID				0x00ff
+#define     PERM_SRC_ID_4__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_4__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_4__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_4__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_4				0x940
+#define     MIN_BLK_ADDR_4__VALUE			0xffff
+
+#define MAX_BLK_ADDR_4				0x950
+#define     MAX_BLK_ADDR_4__VALUE			0xffff
+
+#define MIN_MAX_BANK_4				0x960
+#define     MIN_MAX_BANK_4__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_4__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_5				0x970
+#define     PERM_SRC_ID_5__SRCID				0x00ff
+#define     PERM_SRC_ID_5__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_5__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_5__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_5__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_5				0x980
+#define     MIN_BLK_ADDR_5__VALUE			0xffff
+
+#define MAX_BLK_ADDR_5				0x990
+#define     MAX_BLK_ADDR_5__VALUE			0xffff
+
+#define MIN_MAX_BANK_5				0x9a0
+#define     MIN_MAX_BANK_5__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_5__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_6				0x9b0
+#define     PERM_SRC_ID_6__SRCID				0x00ff
+#define     PERM_SRC_ID_6__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_6__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_6__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_6__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_6				0x9c0
+#define     MIN_BLK_ADDR_6__VALUE			0xffff
+
+#define MAX_BLK_ADDR_6				0x9d0
+#define     MAX_BLK_ADDR_6__VALUE			0xffff
+
+#define MIN_MAX_BANK_6				0x9e0
+#define     MIN_MAX_BANK_6__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_6__MAX_VALUE			0x000c
+
+#define PERM_SRC_ID_7				0x9f0
+#define     PERM_SRC_ID_7__SRCID				0x00ff
+#define     PERM_SRC_ID_7__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID_7__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID_7__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID_7__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR_7				0xa00
+#define     MIN_BLK_ADDR_7__VALUE			0xffff
+
+#define MAX_BLK_ADDR_7				0xa10
+#define     MAX_BLK_ADDR_7__VALUE			0xffff
+
+#define MIN_MAX_BANK_7				0xa20
+#define     MIN_MAX_BANK_7__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK_7__MAX_VALUE			0x000c
+
+/* flash.h */
+struct device_info_tag {
+        uint16_t wDeviceMaker;
+        uint16_t wDeviceID;
+	uint8_t  bDeviceParam0;
+	uint8_t  bDeviceParam1;
+	uint8_t  bDeviceParam2;
+        uint32_t wDeviceType;
+        uint32_t wSpectraStartBlock;
+        uint32_t wSpectraEndBlock;
+        uint32_t wTotalBlocks;
+        uint16_t wPagesPerBlock;
+        uint16_t wPageSize;
+        uint16_t wPageDataSize;
+        uint16_t wPageSpareSize;
+        uint16_t wNumPageSpareFlag;
+        uint16_t wECCBytesPerSector;
+        uint32_t wBlockSize;
+        uint32_t wBlockDataSize;
+        uint32_t wDataBlockNum;
+        uint8_t bPlaneNum;
+        uint16_t wDeviceMainAreaSize;
+        uint16_t wDeviceSpareAreaSize;
+        uint16_t wDevicesConnected;
+        uint16_t wDeviceWidth;
+        uint16_t wHWRevision;
+        uint16_t wHWFeatures;
+
+        uint16_t wONFIDevFeatures;
+        uint16_t wONFIOptCommands;
+        uint16_t wONFITimingMode;
+        uint16_t wONFIPgmCacheTimingMode;
+
+        uint16_t MLCDevice;
+        uint16_t wSpareSkipBytes;
+
+        uint8_t nBitsInPageNumber;
+        uint8_t nBitsInPageDataSize;
+        uint8_t nBitsInBlockDataSize;
+};
+
+/* ffsdefs.h */
+#define CLEAR 0                 /*use this to clear a field instead of "fail"*/
+#define SET   1                 /*use this to set a field instead of "pass"*/
+#define FAIL 1                  /*failed flag*/
+#define PASS 0                  /*success flag*/
+#define ERR -1                  /*error flag*/
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X  5
+#define CLK_MULTI 4
+
+/* ffsport.h */
+#define VERBOSE    1
+
+#define NAND_DBG_WARN  1
+#define NAND_DBG_DEBUG 2
+#define NAND_DBG_TRACE 3
+
+#ifdef VERBOSE
+#define nand_dbg_print(level, args...)                  \
+        do {                                            \
+                if (level <= nand_debug_level)          \
+                        printk(KERN_ALERT args);        \
+        } while (0)
+#else
+#define nand_dbg_print(level, args...)
+#endif
+
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID    0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK     3
+#define NUM_FREE_BLOCKS_GATE    30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR    CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE    64
+
+#define GLOB_HWCTL_DEFAULT_BLKS    2048
+
+#define SUPPORT_15BITECC        1
+#define SUPPORT_8BITECC         1
+
+#define CUSTOM_CONF_PARAMS      0
+
+#define ONFI_BLOOM_TIME         1
+#define MODE5_WORKAROUND        0
+
+/* lld_nand.h */
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef _LLD_NAND_
+#define _LLD_NAND_
+
+#define MODE_00    0x00000000
+#define MODE_01    0x04000000
+#define MODE_10    0x08000000
+#define MODE_11    0x0C000000
+
+
+#define DATA_TRANSFER_MODE              0
+#define PROTECTION_PER_BLOCK            1
+#define LOAD_WAIT_COUNT                 2
+#define PROGRAM_WAIT_COUNT              3
+#define ERASE_WAIT_COUNT                4
+#define INT_MONITOR_CYCLE_COUNT         5
+#define READ_BUSY_PIN_ENABLED           6
+#define MULTIPLANE_OPERATION_SUPPORT    7
+#define PRE_FETCH_MODE                  8
+#define CE_DONT_CARE_SUPPORT            9
+#define COPYBACK_SUPPORT                10
+#define CACHE_WRITE_SUPPORT             11
+#define CACHE_READ_SUPPORT              12
+#define NUM_PAGES_IN_BLOCK              13
+#define ECC_ENABLE_SELECT               14
+#define WRITE_ENABLE_2_READ_ENABLE      15
+#define ADDRESS_2_DATA                  16
+#define READ_ENABLE_2_WRITE_ENABLE      17
+#define TWO_ROW_ADDRESS_CYCLES          18
+#define MULTIPLANE_ADDRESS_RESTRICT     19
+#define ACC_CLOCKS                      20
+#define READ_WRITE_ENABLE_LOW_COUNT     21
+#define READ_WRITE_ENABLE_HIGH_COUNT    22
+
+#define ECC_SECTOR_SIZE     512
+#define LLD_MAX_FLASH_BANKS     4
+
+#define DENALI_BUF_SIZE		NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE
+
+struct nand_buf
+{
+	int head;
+	int tail;
+	uint8_t buf[DENALI_BUF_SIZE];
+	dma_addr_t dma_buf;
+};
+
+#define INTEL_CE4100	1
+#define INTEL_MRST	2
+
+struct denali_nand_info {
+	struct mtd_info mtd;
+	struct nand_chip nand;
+	struct device_info_tag dev_info;
+	int flash_bank; /* currently selected chip */
+	int status;
+	int platform;
+	struct nand_buf buf;
+	struct pci_dev *dev;
+	int total_used_banks;
+	uint32_t block;  /* stored for future use */
+	uint16_t page;
+	void __iomem *flash_reg;  /* Mapped io reg base address */
+	void __iomem *flash_mem;  /* Mapped io reg base address */
+
+	/* elements used by ISR */
+	struct completion complete;
+	spinlock_t irq_lock;
+	uint32_t irq_status;
+	int irq_debug_array[32];
+	int idx;
+};
+
+static uint16_t  NAND_Flash_Reset(struct denali_nand_info *denali);
+static uint16_t  NAND_Read_Device_ID(struct denali_nand_info *denali);
+static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE);
+
+#endif /*_LLD_NAND_*/
+



More information about the linux-mtd-cvs mailing list