mtd/nand: Add Intel Moorestown/Denali NAND support
Linux-MTD Mailing List
linux-mtd at lists.infradead.org
Thu May 13 11:59:01 EDT 2010
Gitweb: http://git.infradead.org/?p=mtd-2.6.git;a=commit;h=ce082596ae4308f67f0953a67db508bb085520fa
Commit: ce082596ae4308f67f0953a67db508bb085520fa
Parent: 1cd2620ca9332943c9fff84c0c9240982534d840
Author: Jason Roberts <jason.e.roberts at intel.com>
AuthorDate: Thu May 13 15:57:33 2010 +0100
Committer: David Woodhouse <David.Woodhouse at intel.com>
CommitDate: Thu May 13 16:12:16 2010 +0100
mtd/nand: Add Intel Moorestown/Denali NAND support
There is more work to be done on this but it is basically working now.
Signed-off-by: Jason Roberts <jason.e.roberts at intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse at intel.com>
---
drivers/mtd/nand/Kconfig | 17 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/denali.c | 2134 +++++++++++++++++++++++++++++++++++++++++++++
drivers/mtd/nand/denali.h | 816 +++++++++++++++++
4 files changed, 2968 insertions(+), 0 deletions(-)
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 8f402d4..98a04b3 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -50,6 +50,23 @@ config MTD_NAND_AUTCPU12
This enables the driver for the autronix autcpu12 board to
access the SmartMediaCard.
+config MTD_NAND_DENALI
+ depends on PCI
+ tristate "Support Denali NAND controller on Intel Moorestown"
+ help
+ Enable the driver for NAND flash on Intel Moorestown, using the
+ Denali NAND controller core.
+
+config MTD_NAND_DENALI_SCRATCH_REG_ADDR
+ hex "Denali NAND size scratch register address"
+ default "0xFF108018"
+ help
+ Some platforms place the NAND chip size in a scratch register
+ because (some versions of) the driver aren't able to automatically
+ determine the size of certain chips. Set the address of the
+ scratch register here to enable this feature. On Intel Moorestown
+ boards, the scratch register is at 0xFF108018.
+
config MTD_NAND_EDB7312
tristate "Support for Cirrus Logic EBD7312 evaluation board"
depends on ARCH_EDB7312
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 04bccf9..e8ab884 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -11,6 +11,7 @@ obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
obj-$(CONFIG_MTD_NAND_SPIA) += spia.o
obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o
obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o
+obj-$(CONFIG_MTD_NAND_DENALI) += denali.o
obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o
obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
new file mode 100644
index 0000000..8a6ce0d
--- /dev/null
+++ b/drivers/mtd/nand/denali.c
@@ -0,0 +1,2134 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/wait.h>
+#include <linux/mutex.h>
+#include <linux/pci.h>
+#include <linux/mtd/mtd.h>
+#include <linux/module.h>
+
+#include "denali.h"
+
+MODULE_LICENSE("GPL");
+
+/* We define a module parameter that allows the user to override
+ * the hardware and decide what timing mode should be used.
+ */
+#define NAND_DEFAULT_TIMINGS -1
+
+static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+module_param(onfi_timing_mode, int, S_IRUGO);
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
+ " use default timings");
+
+#define DENALI_NAND_NAME "denali-nand"
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
+ INTR_STATUS0__ECC_TRANSACTION_DONE | \
+ INTR_STATUS0__ECC_ERR | \
+ INTR_STATUS0__PROGRAM_FAIL | \
+ INTR_STATUS0__LOAD_COMP | \
+ INTR_STATUS0__PROGRAM_COMP | \
+ INTR_STATUS0__TIME_OUT | \
+ INTR_STATUS0__ERASE_FAIL | \
+ INTR_STATUS0__RST_COMP | \
+ INTR_STATUS0__ERASE_COMP)
+
+/* indicates whether or not the internal value for the flash bank is
+ valid or not */
+#define CHIP_SELECT_INVALID -1
+
+#define SUPPORT_8BITECC 1
+
+/* This macro divides two integers and rounds fractional values up
+ * to the nearest integer value. */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/* this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/* These constants are defined by the driver to enable common driver
+ configuration options. */
+#define SPARE_ACCESS 0x41
+#define MAIN_ACCESS 0x42
+#define MAIN_SPARE_ACCESS 0x43
+
+#define DENALI_READ 0
+#define DENALI_WRITE 0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE 0
+#define ADDR_CYCLE 1
+#define STATUS_CYCLE 2
+
+/* this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+/* List of platforms this NAND controller has be integrated into */
+static const struct pci_device_id denali_pci_ids[] = {
+ { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
+ { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
+ { /* end: all zeroes */ }
+};
+
+
+/* these are static lookup tables that give us easy access to
+ registers in the NAND controller.
+ */
+static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1,
+ INTR_STATUS2,
+ INTR_STATUS3};
+
+static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
+ DEVICE_RESET__BANK1,
+ DEVICE_RESET__BANK2,
+ DEVICE_RESET__BANK3};
+
+static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
+ INTR_STATUS1__TIME_OUT,
+ INTR_STATUS2__TIME_OUT,
+ INTR_STATUS3__TIME_OUT};
+
+static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
+ INTR_STATUS1__RST_COMP,
+ INTR_STATUS2__RST_COMP,
+ INTR_STATUS3__RST_COMP};
+
+/* specifies the debug level of the driver */
+static int nand_debug_level = 0;
+
+/* forward declarations */
+static void clear_interrupts(struct denali_nand_info *denali);
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
+static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+#define DEBUG_DENALI 0
+
+/* This is a wrapper for writing to the denali registers.
+ * this allows us to create debug information so we can
+ * observe how the driver is programming the device.
+ * it uses standard linux convention for (val, addr) */
+static void denali_write32(uint32_t value, void *addr)
+{
+ iowrite32(value, addr);
+
+#if DEBUG_DENALI
+ printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
+#endif
+}
+
+/* Certain operations for the denali NAND controller use an indexed mode to read/write
+ data. The operation is performed by writing the address value of the command to
+ the device memory followed by the data. This function abstracts this common
+ operation.
+*/
+static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
+{
+ denali_write32(address, denali->flash_mem);
+ denali_write32(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+ uint32_t address, uint32_t *pdata)
+{
+ denali_write32(address, denali->flash_mem);
+ *pdata = ioread32(denali->flash_mem + 0x10);
+}
+
+/* We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data. */
+static void reset_buf(struct denali_nand_info *denali)
+{
+ denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+ BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
+ denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+ uint32_t cmd = 0x0;
+
+ /* initialize the data buffer to store status */
+ reset_buf(denali);
+
+ /* initiate a device status read */
+ cmd = MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
+ denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
+
+ /* update buffer with status value */
+ write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
+
+#if DEBUG_DENALI
+ printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
+#endif
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+ uint32_t irq_status = 0;
+ uint32_t irq_mask = reset_complete[denali->flash_bank] |
+ operation_timeout[denali->flash_bank];
+ int bank = 0;
+
+ clear_interrupts(denali);
+
+ bank = device_reset_banks[denali->flash_bank];
+ denali_write32(bank, denali->flash_reg + DEVICE_RESET);
+
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status & operation_timeout[denali->flash_bank])
+ {
+ printk(KERN_ERR "reset bank failed.\n");
+ }
+}
+
+/* Reset the flash controller */
+static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
+{
+ uint32_t i;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
+ denali_write32(reset_complete[i] | operation_timeout[i],
+ denali->flash_reg + intr_status_addresses[i]);
+
+ for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
+ denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
+ while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
+ (reset_complete[i] | operation_timeout[i])))
+ ;
+ if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
+ operation_timeout[i])
+ nand_dbg_print(NAND_DBG_WARN,
+ "NAND Reset operation timed out on bank %d\n", i);
+ }
+
+ for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
+ denali_write32(reset_complete[i] | operation_timeout[i],
+ denali->flash_reg + intr_status_addresses[i]);
+
+ return PASS;
+}
+
+/* this routine calculates the ONFI timing values for a given mode and programs
+ * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
+ routine.
+ */
+static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
+{
+ uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
+ uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
+ uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
+ uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
+ uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
+ uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
+ uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
+ uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
+ uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
+ uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
+ uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
+ uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
+
+ uint16_t TclsRising = 1;
+ uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+ uint16_t dv_window = 0;
+ uint16_t en_lo, en_hi;
+ uint16_t acc_clks;
+ uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ en_lo = CEIL_DIV(Trp[mode], CLK_X);
+ en_hi = CEIL_DIV(Treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+ if ((en_hi * CLK_X) < (Treh[mode] + 2))
+ en_hi++;
+#endif
+
+ if ((en_lo + en_hi) * CLK_X < Trc[mode])
+ en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
+
+ if ((en_lo + en_hi) < CLK_MULTI)
+ en_lo += CLK_MULTI - en_lo - en_hi;
+
+ while (dv_window < 8) {
+ data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
+
+ data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
+
+ data_invalid =
+ data_invalid_rhoh <
+ data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
+
+ dv_window = data_invalid - Trea[mode];
+
+ if (dv_window < 8)
+ en_lo++;
+ }
+
+ acc_clks = CEIL_DIV(Trea[mode], CLK_X);
+
+ while (((acc_clks * CLK_X) - Trea[mode]) < 3)
+ acc_clks++;
+
+ if ((data_invalid - acc_clks * CLK_X) < 2)
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
+ __FILE__, __LINE__);
+
+ addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
+ re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
+ re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
+ we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
+ cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
+ if (!TclsRising)
+ cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
+ if (cs_cnt == 0)
+ cs_cnt = 1;
+
+ if (Tcea[mode]) {
+ while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
+ cs_cnt++;
+ }
+
+#if MODE5_WORKAROUND
+ if (mode == 5)
+ acc_clks = 5;
+#endif
+
+ /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+ if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
+ (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
+ acc_clks = 6;
+
+ denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
+ denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
+ denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
+ denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
+ denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
+ denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
+ denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
+ denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+}
+
+/* configures the initial ECC settings for the controller */
+static void set_ecc_config(struct denali_nand_info *denali)
+{
+#if SUPPORT_8BITECC
+ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
+ (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
+ denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+
+ if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
+ == 1) {
+ denali->dev_info.wECCBytesPerSector = 4;
+ denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+ denali->dev_info.wNumPageSpareFlag =
+ denali->dev_info.wPageSpareSize -
+ denali->dev_info.wPageDataSize /
+ (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
+ denali->dev_info.wECCBytesPerSector
+ - denali->dev_info.wSpareSkipBytes;
+ } else {
+ denali->dev_info.wECCBytesPerSector =
+ (ioread32(denali->flash_reg + ECC_CORRECTION) &
+ ECC_CORRECTION__VALUE) * 13 / 8;
+ if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
+ denali->dev_info.wECCBytesPerSector += 2;
+ else
+ denali->dev_info.wECCBytesPerSector += 1;
+
+ denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+ denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
+ denali->dev_info.wPageDataSize /
+ (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
+ denali->dev_info.wECCBytesPerSector
+ - denali->dev_info.wSpareSkipBytes;
+ }
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+{
+ int i;
+ uint16_t blks_lun_l, blks_lun_h, n_of_luns;
+ uint32_t blockperlun, id;
+
+ denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
+
+ while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
+ INTR_STATUS0__RST_COMP) |
+ (ioread32(denali->flash_reg + INTR_STATUS0) &
+ INTR_STATUS0__TIME_OUT)))
+ ;
+
+ if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
+ denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
+ while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
+ INTR_STATUS1__RST_COMP) |
+ (ioread32(denali->flash_reg + INTR_STATUS1) &
+ INTR_STATUS1__TIME_OUT)))
+ ;
+
+ if (ioread32(denali->flash_reg + INTR_STATUS1) &
+ INTR_STATUS1__RST_COMP) {
+ denali_write32(DEVICE_RESET__BANK2,
+ denali->flash_reg + DEVICE_RESET);
+ while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
+ INTR_STATUS2__RST_COMP) |
+ (ioread32(denali->flash_reg + INTR_STATUS2) &
+ INTR_STATUS2__TIME_OUT)))
+ ;
+
+ if (ioread32(denali->flash_reg + INTR_STATUS2) &
+ INTR_STATUS2__RST_COMP) {
+ denali_write32(DEVICE_RESET__BANK3,
+ denali->flash_reg + DEVICE_RESET);
+ while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
+ INTR_STATUS3__RST_COMP) |
+ (ioread32(denali->flash_reg + INTR_STATUS3) &
+ INTR_STATUS3__TIME_OUT)))
+ ;
+ } else {
+ printk(KERN_ERR "Getting a time out for bank 2!\n");
+ }
+ } else {
+ printk(KERN_ERR "Getting a time out for bank 1!\n");
+ }
+ }
+
+ denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
+ denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
+ denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
+ denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
+
+ denali->dev_info.wONFIDevFeatures =
+ ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
+ denali->dev_info.wONFIOptCommands =
+ ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
+ denali->dev_info.wONFITimingMode =
+ ioread32(denali->flash_reg + ONFI_TIMING_MODE);
+ denali->dev_info.wONFIPgmCacheTimingMode =
+ ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
+
+ n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+ ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
+ blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
+ blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
+
+ blockperlun = (blks_lun_h << 16) | blks_lun_l;
+
+ denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
+
+ if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ ONFI_TIMING_MODE__VALUE))
+ return FAIL;
+
+ for (i = 5; i > 0; i--) {
+ if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
+ break;
+ }
+
+ NAND_ONFi_Timing_Mode(denali, i);
+
+ index_addr(denali, MODE_11 | 0, 0x90);
+ index_addr(denali, MODE_11 | 1, 0);
+
+ for (i = 0; i < 3; i++)
+ index_addr_read_data(denali, MODE_11 | 2, &id);
+
+ nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
+
+ denali->dev_info.MLCDevice = id & 0x0C;
+
+ /* By now, all the ONFI devices we know support the page cache */
+ /* rw feature. So here we enable the pipeline_rw_ahead feature */
+ /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
+ /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
+
+ return PASS;
+}
+
+static void get_samsung_nand_para(struct denali_nand_info *denali)
+{
+ uint8_t no_of_planes;
+ uint32_t blk_size;
+ uint64_t plane_size, capacity;
+ uint32_t id_bytes[5];
+ int i;
+
+ index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
+ index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
+ for (i = 0; i < 5; i++)
+ index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
+
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
+ id_bytes[0], id_bytes[1], id_bytes[2],
+ id_bytes[3], id_bytes[4]);
+
+ if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
+ /* Set timing register values according to datasheet */
+ denali_write32(5, denali->flash_reg + ACC_CLKS);
+ denali_write32(20, denali->flash_reg + RE_2_WE);
+ denali_write32(12, denali->flash_reg + WE_2_RE);
+ denali_write32(14, denali->flash_reg + ADDR_2_DATA);
+ denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
+ denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
+ denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
+ }
+
+ no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
+ plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
+ blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
+ capacity = (uint64_t)128 * plane_size * no_of_planes;
+
+ do_div(capacity, blk_size);
+ denali->dev_info.wTotalBlocks = capacity;
+}
+
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
+{
+ void __iomem *scratch_reg;
+ uint32_t tmp;
+
+ /* Workaround to fix a controller bug which reports a wrong */
+ /* spare area size for some kind of Toshiba NAND device */
+ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+ (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+ denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
+ ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+ denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+ denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+ }
+
+ /* As Toshiba NAND can not provide it's block number, */
+ /* so here we need user to provide the correct block */
+ /* number in a scratch register before the Linux NAND */
+ /* driver is loaded. If no valid value found in the scratch */
+ /* register, then we use default block number value */
+ scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+ if (!scratch_reg) {
+ printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+ __FILE__, __LINE__);
+ denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ } else {
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+ denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
+ if (denali->dev_info.wTotalBlocks < 512)
+ denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ iounmap(scratch_reg);
+ }
+}
+
+static void get_hynix_nand_para(struct denali_nand_info *denali)
+{
+ void __iomem *scratch_reg;
+ uint32_t main_size, spare_size;
+
+ switch (denali->dev_info.wDeviceID) {
+ case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+ denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
+ denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+ denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+ denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
+ denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+ denali_write32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+ denali->dev_info.MLCDevice = 1;
+ break;
+ default:
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+ "Will use default parameter values instead.\n",
+ denali->dev_info.wDeviceID);
+ }
+
+ scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
+ if (!scratch_reg) {
+ printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
+ __FILE__, __LINE__);
+ denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ } else {
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
+ denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
+ if (denali->dev_info.wTotalBlocks < 512)
+ denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ iounmap(scratch_reg);
+ }
+}
+
+/* determines how many NAND chips are connected to the controller. Note for
+ Intel CE4100 devices we don't support more than one device.
+ */
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+ uint32_t id[LLD_MAX_FLASH_BANKS];
+ int i;
+
+ denali->total_used_banks = 1;
+ for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
+ index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+ index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
+ index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+ if (i == 0) {
+ if (!(id[i] & 0x0ff))
+ break; /* WTF? */
+ } else {
+ if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+ denali->total_used_banks++;
+ else
+ break;
+ }
+ }
+
+ if (denali->platform == INTEL_CE4100)
+ {
+ /* Platform limitations of the CE4100 device limit
+ * users to a single chip solution for NAND.
+ * Multichip support is not enabled.
+ */
+ if (denali->total_used_banks != 1)
+ {
+ printk(KERN_ERR "Sorry, Intel CE4100 only supports "
+ "a single NAND device.\n");
+ BUG();
+ }
+ }
+ nand_dbg_print(NAND_DBG_DEBUG,
+ "denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+ if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+ if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
+ PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
+ denali->dev_info.wSpectraStartBlock =
+ ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
+ MIN_MAX_BANK_1__MIN_VALUE) *
+ denali->dev_info.wTotalBlocks)
+ +
+ (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
+ MIN_BLK_ADDR_1__VALUE);
+
+ denali->dev_info.wSpectraEndBlock =
+ (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
+ MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
+ denali->dev_info.wTotalBlocks)
+ +
+ (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
+ MAX_BLK_ADDR_1__VALUE);
+
+ denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+
+ if (denali->dev_info.wSpectraEndBlock >=
+ denali->dev_info.wTotalBlocks) {
+ denali->dev_info.wSpectraEndBlock =
+ denali->dev_info.wTotalBlocks - 1;
+ }
+
+ denali->dev_info.wDataBlockNum =
+ denali->dev_info.wSpectraEndBlock -
+ denali->dev_info.wSpectraStartBlock + 1;
+ } else {
+ denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+ denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+ denali->dev_info.wSpectraEndBlock =
+ denali->dev_info.wTotalBlocks - 1;
+ denali->dev_info.wDataBlockNum =
+ denali->dev_info.wSpectraEndBlock -
+ denali->dev_info.wSpectraStartBlock + 1;
+ }
+ } else {
+ denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+ denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+ denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
+ denali->dev_info.wDataBlockNum =
+ denali->dev_info.wSpectraEndBlock -
+ denali->dev_info.wSpectraStartBlock + 1;
+ }
+}
+
+static void dump_device_info(struct denali_nand_info *denali)
+{
+ nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
+ denali->dev_info.wDeviceMaker);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
+ denali->dev_info.wDeviceID);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
+ denali->dev_info.wDeviceType);
+ nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
+ denali->dev_info.wSpectraStartBlock);
+ nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
+ denali->dev_info.wSpectraEndBlock);
+ nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
+ denali->dev_info.wTotalBlocks);
+ nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
+ denali->dev_info.wPagesPerBlock);
+ nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
+ denali->dev_info.wPageSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
+ denali->dev_info.wPageDataSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
+ denali->dev_info.wPageSpareSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
+ denali->dev_info.wNumPageSpareFlag);
+ nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
+ denali->dev_info.wECCBytesPerSector);
+ nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
+ denali->dev_info.wBlockSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
+ denali->dev_info.wBlockDataSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
+ denali->dev_info.wDataBlockNum);
+ nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
+ denali->dev_info.bPlaneNum);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
+ denali->dev_info.wDeviceMainAreaSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
+ denali->dev_info.wDeviceSpareAreaSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
+ denali->dev_info.wDevicesConnected);
+ nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
+ denali->dev_info.wDeviceWidth);
+ nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
+ denali->dev_info.wHWRevision);
+ nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
+ denali->dev_info.wHWFeatures);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
+ denali->dev_info.wONFIDevFeatures);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
+ denali->dev_info.wONFIOptCommands);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
+ denali->dev_info.wONFITimingMode);
+ nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
+ denali->dev_info.wONFIPgmCacheTimingMode);
+ nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
+ denali->dev_info.MLCDevice ? "Yes" : "No");
+ nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
+ denali->dev_info.wSpareSkipBytes);
+ nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
+ denali->dev_info.nBitsInPageNumber);
+ nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
+ denali->dev_info.nBitsInPageDataSize);
+ nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
+ denali->dev_info.nBitsInBlockDataSize);
+}
+
+static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
+{
+ uint16_t status = PASS;
+ uint8_t no_of_planes;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
+ denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
+ denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
+ denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
+ denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
+
+ denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
+
+ if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+ ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+ if (FAIL == get_onfi_nand_para(denali))
+ return FAIL;
+ } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
+ get_samsung_nand_para(denali);
+ } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
+ get_toshiba_nand_para(denali);
+ } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
+ get_hynix_nand_para(denali);
+ } else {
+ denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ }
+
+ nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+ "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+ "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+ "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+ ioread32(denali->flash_reg + ACC_CLKS),
+ ioread32(denali->flash_reg + RE_2_WE),
+ ioread32(denali->flash_reg + WE_2_RE),
+ ioread32(denali->flash_reg + ADDR_2_DATA),
+ ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+ ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+ ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+ denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
+ denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
+
+ denali->dev_info.wDeviceMainAreaSize =
+ ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+ denali->dev_info.wDeviceSpareAreaSize =
+ ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+
+ denali->dev_info.wPageDataSize =
+ ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+
+ /* Note: When using the Micon 4K NAND device, the controller will report
+ * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
+ * And if force set it to 218 bytes, the controller can not work
+ * correctly. So just let it be. But keep in mind that this bug may
+ * cause
+ * other problems in future. - Yunpeng 2008-10-10
+ */
+ denali->dev_info.wPageSpareSize =
+ ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+
+ denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
+
+ denali->dev_info.wPageSize =
+ denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
+ denali->dev_info.wBlockSize =
+ denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
+ denali->dev_info.wBlockDataSize =
+ denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
+
+ denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
+ denali->dev_info.wDeviceType =
+ ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
+
+ denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+
+ denali->dev_info.wSpareSkipBytes =
+ ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
+ denali->dev_info.wDevicesConnected;
+
+ denali->dev_info.nBitsInPageNumber =
+ ilog2(denali->dev_info.wPagesPerBlock);
+ denali->dev_info.nBitsInPageDataSize =
+ ilog2(denali->dev_info.wPageDataSize);
+ denali->dev_info.nBitsInBlockDataSize =
+ ilog2(denali->dev_info.wBlockDataSize);
+
+ set_ecc_config(denali);
+
+ no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
+ NUMBER_OF_PLANES__VALUE;
+
+ switch (no_of_planes) {
+ case 0:
+ case 1:
+ case 3:
+ case 7:
+ denali->dev_info.bPlaneNum = no_of_planes + 1;
+ break;
+ default:
+ status = FAIL;
+ break;
+ }
+
+ find_valid_banks(denali);
+
+ detect_partition_feature(denali);
+
+ dump_device_info(denali);
+
+ /* If the user specified to override the default timings
+ * with a specific ONFI mode, we apply those changes here.
+ */
+ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+ {
+ NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
+ }
+
+ return status;
+}
+
+static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
+ uint16_t INT_ENABLE)
+{
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ if (INT_ENABLE)
+ denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+ else
+ denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/* validation function to verify that the controlling software is making
+ a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+ return (flash_bank >= 0 && flash_bank < 4);
+}
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+ uint32_t int_mask = 0;
+
+ /* Disable global interrupts */
+ NAND_LLD_Enable_Disable_Interrupts(denali, false);
+
+ int_mask = DENALI_IRQ_ALL;
+
+ /* Clear all status bits */
+ denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
+ denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
+ denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
+ denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
+
+ denali_irq_enable(denali, int_mask);
+}
+
+static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+{
+ NAND_LLD_Enable_Disable_Interrupts(denali, false);
+ free_irq(irqnum, denali);
+}
+
+static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
+{
+ denali_write32(int_mask, denali->flash_reg + INTR_EN0);
+ denali_write32(int_mask, denali->flash_reg + INTR_EN1);
+ denali_write32(int_mask, denali->flash_reg + INTR_EN2);
+ denali_write32(int_mask, denali->flash_reg + INTR_EN3);
+}
+
+/* This function only returns when an interrupt that this driver cares about
+ * occurs. This is to reduce the overhead of servicing interrupts
+ */
+static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
+{
+ return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
+}
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+ uint32_t intr_status_reg = 0;
+
+ intr_status_reg = intr_status_addresses[denali->flash_bank];
+
+ denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(struct denali_nand_info *denali)
+{
+ uint32_t status = 0x0;
+ spin_lock_irq(&denali->irq_lock);
+
+ status = read_interrupt_status(denali);
+
+#if DEBUG_DENALI
+ denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
+ denali->idx %= 32;
+#endif
+
+ denali->irq_status = 0x0;
+ spin_unlock_irq(&denali->irq_lock);
+}
+
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+{
+ uint32_t intr_status_reg = 0;
+
+ intr_status_reg = intr_status_addresses[denali->flash_bank];
+
+ return ioread32(denali->flash_reg + intr_status_reg);
+}
+
+#if DEBUG_DENALI
+static void print_irq_log(struct denali_nand_info *denali)
+{
+ int i = 0;
+
+ printk("ISR debug log index = %X\n", denali->idx);
+ for (i = 0; i < 32; i++)
+ {
+ printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
+ }
+}
+#endif
+
+/* This is the interrupt service routine. It handles all interrupts
+ * sent to this device. Note that on CE4100, this is a shared
+ * interrupt.
+ */
+static irqreturn_t denali_isr(int irq, void *dev_id)
+{
+ struct denali_nand_info *denali = dev_id;
+ uint32_t irq_status = 0x0;
+ irqreturn_t result = IRQ_NONE;
+
+ spin_lock(&denali->irq_lock);
+
+ /* check to see if a valid NAND chip has
+ * been selected.
+ */
+ if (is_flash_bank_valid(denali->flash_bank))
+ {
+ /* check to see if controller generated
+ * the interrupt, since this is a shared interrupt */
+ if ((irq_status = denali_irq_detected(denali)) != 0)
+ {
+#if DEBUG_DENALI
+ denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
+ denali->idx %= 32;
+
+ printk("IRQ status = 0x%04x\n", irq_status);
+#endif
+ /* handle interrupt */
+ /* first acknowledge it */
+ clear_interrupt(denali, irq_status);
+ /* store the status in the device context for someone
+ to read */
+ denali->irq_status |= irq_status;
+ /* notify anyone who cares that it happened */
+ complete(&denali->complete);
+ /* tell the OS that we've handled this */
+ result = IRQ_HANDLED;
+ }
+ }
+ spin_unlock(&denali->irq_lock);
+ return result;
+}
+#define BANK(x) ((x) << 24)
+
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+ unsigned long comp_res = 0;
+ uint32_t intr_status = 0;
+ bool retry = false;
+ unsigned long timeout = msecs_to_jiffies(1000);
+
+ do
+ {
+#if DEBUG_DENALI
+ printk("waiting for 0x%x\n", irq_mask);
+#endif
+ comp_res = wait_for_completion_timeout(&denali->complete, timeout);
+ spin_lock_irq(&denali->irq_lock);
+ intr_status = denali->irq_status;
+
+#if DEBUG_DENALI
+ denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
+ denali->idx %= 32;
+#endif
+
+ if (intr_status & irq_mask)
+ {
+ denali->irq_status &= ~irq_mask;
+ spin_unlock_irq(&denali->irq_lock);
+#if DEBUG_DENALI
+ if (retry) printk("status on retry = 0x%x\n", intr_status);
+#endif
+ /* our interrupt was detected */
+ break;
+ }
+ else
+ {
+ /* these are not the interrupts you are looking for -
+ need to wait again */
+ spin_unlock_irq(&denali->irq_lock);
+#if DEBUG_DENALI
+ print_irq_log(denali);
+ printk("received irq nobody cared: irq_status = 0x%x,"
+ " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
+#endif
+ retry = true;
+ }
+ } while (comp_res != 0);
+
+ if (comp_res == 0)
+ {
+ /* timeout */
+ printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
+ intr_status, irq_mask);
+
+ intr_status = 0;
+ }
+ return intr_status;
+}
+
+/* This helper function setups the registers for ECC and whether or not
+ the spare area will be transfered. */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+ bool transfer_spare)
+{
+ int ecc_en_flag = 0, transfer_spare_flag = 0;
+
+ /* set ECC, transfer spare bits if needed */
+ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+ transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+ /* Enable spare area/ECC per user's request. */
+ denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+ denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+/* sends a pipeline command operation to the controller. See the Denali NAND
+ controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
+ bool transfer_spare, int access_type,
+ int op)
+{
+ int status = PASS;
+ uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
+ irq_mask = 0;
+
+ if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
+ else if (op == DENALI_WRITE) irq_mask = 0;
+ else BUG();
+
+ setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+#if DEBUG_DENALI
+ spin_lock_irq(&denali->irq_lock);
+ denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
+ denali->idx %= 32;
+ spin_unlock_irq(&denali->irq_lock);
+#endif
+
+
+ /* clear interrupts */
+ clear_interrupts(denali);
+
+ addr = BANK(denali->flash_bank) | denali->page;
+
+ if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
+ {
+ cmd = MODE_01 | addr;
+ denali_write32(cmd, denali->flash_mem);
+ }
+ else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
+ {
+ /* read spare area */
+ cmd = MODE_10 | addr;
+ index_addr(denali, (uint32_t)cmd, access_type);
+
+ cmd = MODE_01 | addr;
+ denali_write32(cmd, denali->flash_mem);
+ }
+ else if (op == DENALI_READ)
+ {
+ /* setup page read request for access type */
+ cmd = MODE_10 | addr;
+ index_addr(denali, (uint32_t)cmd, access_type);
+
+ /* page 33 of the NAND controller spec indicates we should not
+ use the pipeline commands in Spare area only mode. So we
+ don't.
+ */
+ if (access_type == SPARE_ACCESS)
+ {
+ cmd = MODE_01 | addr;
+ denali_write32(cmd, denali->flash_mem);
+ }
+ else
+ {
+ index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
+
+ /* wait for command to be accepted
+ * can always use status0 bit as the mask is identical for each
+ * bank. */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0)
+ {
+ printk(KERN_ERR "cmd, page, addr on timeout "
+ "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
+ status = FAIL;
+ }
+ else
+ {
+ cmd = MODE_01 | addr;
+ denali_write32(cmd, denali->flash_mem);
+ }
+ }
+ }
+ return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
+ int len)
+{
+ uint32_t i = 0, *buf32;
+
+ /* verify that the len is a multiple of 4. see comment in
+ * read_data_from_flash_mem() */
+ BUG_ON((len % 4) != 0);
+
+ /* write the data to the flash memory */
+ buf32 = (uint32_t *)buf;
+ for (i = 0; i < len / 4; i++)
+ {
+ denali_write32(*buf32++, denali->flash_mem + 0x10);
+ }
+ return i*4; /* intent is to return the number of bytes read */
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
+ int len)
+{
+ uint32_t i = 0, *buf32;
+
+ /* we assume that len will be a multiple of 4, if not
+ * it would be nice to know about it ASAP rather than
+ * have random failures...
+ *
+ * This assumption is based on the fact that this
+ * function is designed to be used to read flash pages,
+ * which are typically multiples of 4...
+ */
+
+ BUG_ON((len % 4) != 0);
+
+ /* transfer the data from the flash */
+ buf32 = (uint32_t *)buf;
+ for (i = 0; i < len / 4; i++)
+ {
+ *buf32++ = ioread32(denali->flash_mem + 0x10);
+ }
+ return i*4; /* intent is to return the number of bytes read */
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t irq_status = 0;
+ uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
+ INTR_STATUS0__PROGRAM_FAIL;
+ int status = 0;
+
+ denali->page = page;
+
+ if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
+ DENALI_WRITE) == PASS)
+ {
+ write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+#if DEBUG_DENALI
+ spin_lock_irq(&denali->irq_lock);
+ denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
+ denali->idx %= 32;
+ spin_unlock_irq(&denali->irq_lock);
+#endif
+
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0)
+ {
+ printk(KERN_ERR "OOB write failed\n");
+ status = -EIO;
+ }
+ }
+ else
+ {
+ printk(KERN_ERR "unable to send pipeline command\n");
+ status = -EIO;
+ }
+ return status;
+}
+
+/* reads OOB data from the device */
+static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
+
+ denali->page = page;
+
+#if DEBUG_DENALI
+ printk("read_oob %d\n", page);
+#endif
+ if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+ DENALI_READ) == PASS)
+ {
+ read_data_from_flash_mem(denali, buf, mtd->oobsize);
+
+ /* wait for command to be accepted
+ * can always use status0 bit as the mask is identical for each
+ * bank. */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0)
+ {
+ printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
+ }
+
+ /* We set the device back to MAIN_ACCESS here as I observed
+ * instability with the controller if you do a block erase
+ * and the last transaction was a SPARE_ACCESS. Block erase
+ * is reliable (according to the MTD test infrastructure)
+ * if you are in MAIN_ACCESS.
+ */
+ addr = BANK(denali->flash_bank) | denali->page;
+ cmd = MODE_10 | addr;
+ index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+
+#if DEBUG_DENALI
+ spin_lock_irq(&denali->irq_lock);
+ denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
+ denali->idx %= 32;
+ spin_unlock_irq(&denali->irq_lock);
+#endif
+ }
+}
+
+/* this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+bool is_erased(uint8_t *buf, int len)
+{
+ int i = 0;
+ for (i = 0; i < len; i++)
+ {
+ if (buf[i] != 0xFF)
+ {
+ return false;
+ }
+ }
+ return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
+#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
+#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+ uint8_t *oobbuf, uint32_t irq_status)
+{
+ bool check_erased_page = false;
+
+ if (irq_status & INTR_STATUS0__ECC_ERR)
+ {
+ /* read the ECC errors. we'll ignore them for now */
+ uint32_t err_address = 0, err_correction_info = 0;
+ uint32_t err_byte = 0, err_sector = 0, err_device = 0;
+ uint32_t err_correction_value = 0;
+
+ do
+ {
+ err_address = ioread32(denali->flash_reg +
+ ECC_ERROR_ADDRESS);
+ err_sector = ECC_SECTOR(err_address);
+ err_byte = ECC_BYTE(err_address);
+
+
+ err_correction_info = ioread32(denali->flash_reg +
+ ERR_CORRECTION_INFO);
+ err_correction_value =
+ ECC_CORRECTION_VALUE(err_correction_info);
+ err_device = ECC_ERR_DEVICE(err_correction_info);
+
+ if (ECC_ERROR_CORRECTABLE(err_correction_info))
+ {
+ /* offset in our buffer is computed as:
+ sector number * sector size + offset in
+ sector
+ */
+ int offset = err_sector * ECC_SECTOR_SIZE +
+ err_byte;
+ if (offset < denali->mtd.writesize)
+ {
+ /* correct the ECC error */
+ buf[offset] ^= err_correction_value;
+ denali->mtd.ecc_stats.corrected++;
+ }
+ else
+ {
+ /* bummer, couldn't correct the error */
+ printk(KERN_ERR "ECC offset invalid\n");
+ denali->mtd.ecc_stats.failed++;
+ }
+ }
+ else
+ {
+ /* if the error is not correctable, need to
+ * look at the page to see if it is an erased page.
+ * if so, then it's not a real ECC error */
+ check_erased_page = true;
+ }
+
+#if DEBUG_DENALI
+ printk("Detected ECC error in page %d: err_addr = 0x%08x,"
+ " info to fix is 0x%08x\n", denali->page, err_address,
+ err_correction_info);
+#endif
+ } while (!ECC_LAST_ERR(err_correction_info));
+ }
+ return check_erased_page;
+}
+
+/* programs the controller to either enable/disable DMA transfers */
+static void enable_dma(struct denali_nand_info *denali, bool en)
+{
+ uint32_t reg_val = 0x0;
+
+ if (en) reg_val = DMA_ENABLE__FLAG;
+
+ denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
+ ioread32(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void setup_dma(struct denali_nand_info *denali, int op)
+{
+ uint32_t mode = 0x0;
+ const int page_count = 1;
+ dma_addr_t addr = denali->buf.dma_buf;
+
+ mode = MODE_10 | BANK(denali->flash_bank);
+
+ /* DMA is a four step process */
+
+ /* 1. setup transfer type and # of pages */
+ index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+ /* 2. set memory high address bits 23:8 */
+ index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+ /* 3. set memory low address bits 23:8 */
+ index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+ /* 4. interrupt when complete, burst len = 64 bytes*/
+ index_addr(denali, mode | 0x14000, 0x2400);
+}
+
+/* writes a page. user specifies type, and this function handles the
+ configuration details. */
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, bool raw_xfer)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ struct pci_dev *pci_dev = denali->dev;
+
+ dma_addr_t addr = denali->buf.dma_buf;
+ size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+ uint32_t irq_status = 0;
+ uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
+ INTR_STATUS0__PROGRAM_FAIL;
+
+ /* if it is a raw xfer, we want to disable ecc, and send
+ * the spare area.
+ * !raw_xfer - enable ecc
+ * raw_xfer - transfer spare
+ */
+ setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+ /* copy buffer into DMA buffer */
+ memcpy(denali->buf.buf, buf, mtd->writesize);
+
+ if (raw_xfer)
+ {
+ /* transfer the data to the spare area */
+ memcpy(denali->buf.buf + mtd->writesize,
+ chip->oob_poi,
+ mtd->oobsize);
+ }
+
+ pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
+
+ clear_interrupts(denali);
+ enable_dma(denali, true);
+
+ setup_dma(denali, DENALI_WRITE);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0)
+ {
+ printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
+ denali->status =
+ (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
+ PASS;
+ }
+
+ enable_dma(denali, false);
+ pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
+}
+
+/* NAND core entry points */
+
+/* this is the callback that the NAND core calls to write a page. Since
+ writing a page with ECC or without is similar, all the work is done
+ by write_page above. */
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ /* for regular page writes, we let HW handle all the ECC
+ * data written to the device. */
+ write_page(mtd, chip, buf, false);
+}
+
+/* This is the callback that the NAND core calls to write a page without ECC.
+ raw access is similiar to ECC page writes, so all the work is done in the
+ write_page() function above.
+ */
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ /* for raw page writes, we want to disable ECC and simply write
+ whatever data is in the buffer. */
+ write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int sndcmd)
+{
+ read_oob_data(mtd, chip->oob_poi, page);
+
+ return 0; /* notify NAND core to send command to
+ * NAND device. */
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ struct pci_dev *pci_dev = denali->dev;
+
+ dma_addr_t addr = denali->buf.dma_buf;
+ size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+ uint32_t irq_status = 0;
+ uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
+ INTR_STATUS0__ECC_ERR;
+ bool check_erased_page = false;
+
+ setup_ecc_for_xfer(denali, true, false);
+
+ enable_dma(denali, true);
+ pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+ clear_interrupts(denali);
+ setup_dma(denali, DENALI_READ);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+ memcpy(buf, denali->buf.buf, mtd->writesize);
+
+ check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
+ enable_dma(denali, false);
+
+ if (check_erased_page)
+ {
+ read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
+
+ /* check ECC failures that may have occurred on erased pages */
+ if (check_erased_page)
+ {
+ if (!is_erased(buf, denali->mtd.writesize))
+ {
+ denali->mtd.ecc_stats.failed++;
+ }
+ if (!is_erased(buf, denali->mtd.oobsize))
+ {
+ denali->mtd.ecc_stats.failed++;
+ }
+ }
+ }
+ return 0;
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ struct pci_dev *pci_dev = denali->dev;
+
+ dma_addr_t addr = denali->buf.dma_buf;
+ size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+ uint32_t irq_status = 0;
+ uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
+
+ setup_ecc_for_xfer(denali, false, true);
+ enable_dma(denali, true);
+
+ pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+ clear_interrupts(denali);
+ setup_dma(denali, DENALI_READ);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
+
+ enable_dma(denali, false);
+
+ memcpy(buf, denali->buf.buf, mtd->writesize);
+ memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+
+ return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint8_t result = 0xff;
+
+ if (denali->buf.head < denali->buf.tail)
+ {
+ result = denali->buf.buf[denali->buf.head++];
+ }
+
+#if DEBUG_DENALI
+ printk("read byte -> 0x%02x\n", result);
+#endif
+ return result;
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+#if DEBUG_DENALI
+ printk("denali select chip %d\n", chip);
+#endif
+ spin_lock_irq(&denali->irq_lock);
+ denali->flash_bank = chip;
+ spin_unlock_irq(&denali->irq_lock);
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ int status = denali->status;
+ denali->status = 0;
+
+#if DEBUG_DENALI
+ printk("waitfunc %d\n", status);
+#endif
+ return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+ uint32_t cmd = 0x0, irq_status = 0;
+
+#if DEBUG_DENALI
+ printk("erase page: %d\n", page);
+#endif
+ /* clear interrupts */
+ clear_interrupts(denali);
+
+ /* setup page read request for access type */
+ cmd = MODE_10 | BANK(denali->flash_bank) | page;
+ index_addr(denali, (uint32_t)cmd, 0x1);
+
+ /* wait for erase to complete or failure to occur */
+ irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
+ INTR_STATUS0__ERASE_FAIL);
+
+ denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
+ PASS;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+ int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+#if DEBUG_DENALI
+ printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
+#endif
+ switch (cmd)
+ {
+ case NAND_CMD_PAGEPROG:
+ break;
+ case NAND_CMD_STATUS:
+ read_status(denali);
+ break;
+ case NAND_CMD_READID:
+ reset_buf(denali);
+ if (denali->flash_bank < denali->total_used_banks)
+ {
+ /* write manufacturer information into nand
+ buffer for NAND subsystem to fetch.
+ */
+ write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
+ write_byte_to_buf(denali, denali->dev_info.wDeviceID);
+ write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
+ write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
+ write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
+ }
+ else
+ {
+ int i;
+ for (i = 0; i < 5; i++)
+ write_byte_to_buf(denali, 0xff);
+ }
+ break;
+ case NAND_CMD_READ0:
+ case NAND_CMD_SEQIN:
+ denali->page = page;
+ break;
+ case NAND_CMD_RESET:
+ reset_bank(denali);
+ break;
+ case NAND_CMD_READOOB:
+ /* TODO: Read OOB data */
+ break;
+ default:
+ printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
+ break;
+ }
+}
+
+/* stubs for ECC functions not used by the NAND core */
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
+ uint8_t *ecc_code)
+{
+ printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
+ BUG();
+ return -EIO;
+}
+
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
+ uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+ printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
+ BUG();
+ return -EIO;
+}
+
+static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+ printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
+ BUG();
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+ denali_irq_init(denali);
+ NAND_Flash_Reset(denali);
+ denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+ denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+
+ denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
+ denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+ /* Should set value for these registers when init */
+ denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+ denali_write32(1, denali->flash_reg + ECC_ENABLE);
+}
+
+/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
+#define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE)
+static struct nand_ecclayout nand_oob_slc = {
+ .eccbytes = 4,
+ .eccpos = { 0, 1, 2, 3 }, /* not used */
+ .oobfree = {{
+ .offset = ECC_BYTES_SLC,
+ .length = 64 - ECC_BYTES_SLC
+ }}
+};
+
+#define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE)
+static struct nand_ecclayout nand_oob_mlc_14bit = {
+ .eccbytes = 14,
+ .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
+ .oobfree = {{
+ .offset = ECC_BYTES_MLC,
+ .length = 64 - ECC_BYTES_MLC
+ }}
+};
+
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+/* initalize driver data structures */
+void denali_drv_init(struct denali_nand_info *denali)
+{
+ denali->idx = 0;
+
+ /* setup interrupt handler */
+ /* the completion object will be used to notify
+ * the callee that the interrupt is done */
+ init_completion(&denali->complete);
+
+ /* the spinlock will be used to synchronize the ISR
+ * with any element that might be access shared
+ * data (interrupt status) */
+ spin_lock_init(&denali->irq_lock);
+
+ /* indicate that MTD has not selected a valid bank yet */
+ denali->flash_bank = CHIP_SELECT_INVALID;
+
+ /* initialize our irq_status variable to indicate no interrupts */
+ denali->irq_status = 0;
+}
+
+/* driver entry point */
+static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+ int ret = -ENODEV;
+ resource_size_t csr_base, mem_base;
+ unsigned long csr_len, mem_len;
+ struct denali_nand_info *denali;
+
+ nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ denali = kzalloc(sizeof(*denali), GFP_KERNEL);
+ if (!denali)
+ return -ENOMEM;
+
+ ret = pci_enable_device(dev);
+ if (ret) {
+ printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
+ goto failed_enable;
+ }
+
+ if (id->driver_data == INTEL_CE4100) {
+ /* Due to a silicon limitation, we can only support
+ * ONFI timing mode 1 and below.
+ */
+ if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
+ {
+ printk("Intel CE4100 only supports ONFI timing mode 1 "
+ "or below\n");
+ ret = -EINVAL;
+ goto failed_enable;
+ }
+ denali->platform = INTEL_CE4100;
+ mem_base = pci_resource_start(dev, 0);
+ mem_len = pci_resource_len(dev, 1);
+ csr_base = pci_resource_start(dev, 1);
+ csr_len = pci_resource_len(dev, 1);
+ } else {
+ denali->platform = INTEL_MRST;
+ csr_base = pci_resource_start(dev, 0);
+ csr_len = pci_resource_start(dev, 0);
+ mem_base = pci_resource_start(dev, 1);
+ mem_len = pci_resource_len(dev, 1);
+ if (!mem_len) {
+ mem_base = csr_base + csr_len;
+ mem_len = csr_len;
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: No second BAR for PCI device; assuming %08Lx\n",
+ (uint64_t)csr_base);
+ }
+ }
+
+ /* Is 32-bit DMA supported? */
+ ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
+
+ if (ret)
+ {
+ printk(KERN_ERR "Spectra: no usable DMA configuration\n");
+ goto failed_enable;
+ }
+ denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
+ PCI_DMA_BIDIRECTIONAL);
+
+ if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
+ {
+ printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
+ goto failed_enable;
+ }
+
+ pci_set_master(dev);
+ denali->dev = dev;
+
+ ret = pci_request_regions(dev, DENALI_NAND_NAME);
+ if (ret) {
+ printk(KERN_ERR "Spectra: Unable to request memory regions\n");
+ goto failed_req_csr;
+ }
+
+ denali->flash_reg = ioremap_nocache(csr_base, csr_len);
+ if (!denali->flash_reg) {
+ printk(KERN_ERR "Spectra: Unable to remap memory region\n");
+ ret = -ENOMEM;
+ goto failed_remap_csr;
+ }
+ nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
+ (uint64_t)csr_base, denali->flash_reg, csr_len);
+
+ denali->flash_mem = ioremap_nocache(mem_base, mem_len);
+ if (!denali->flash_mem) {
+ printk(KERN_ERR "Spectra: ioremap_nocache failed!");
+ iounmap(denali->flash_reg);
+ ret = -ENOMEM;
+ goto failed_remap_csr;
+ }
+
+ nand_dbg_print(NAND_DBG_WARN,
+ "Spectra: Remapped flash base address: "
+ "0x%p, len: %ld\n",
+ denali->flash_mem, csr_len);
+
+ denali_hw_init(denali);
+ denali_drv_init(denali);
+
+ nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
+ if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
+ DENALI_NAND_NAME, denali)) {
+ printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
+ ret = -ENODEV;
+ goto failed_request_irq;
+ }
+
+ /* now that our ISR is registered, we can enable interrupts */
+ NAND_LLD_Enable_Disable_Interrupts(denali, true);
+
+ pci_set_drvdata(dev, denali);
+
+ NAND_Read_Device_ID(denali);
+
+ /* MTD supported page sizes vary by kernel. We validate our
+ kernel supports the device here.
+ */
+ if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
+ {
+ ret = -ENODEV;
+ printk(KERN_ERR "Spectra: device size not supported by this "
+ "version of MTD.");
+ goto failed_nand;
+ }
+
+ nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
+ "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
+ "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
+ "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+ ioread32(denali->flash_reg + ACC_CLKS),
+ ioread32(denali->flash_reg + RE_2_WE),
+ ioread32(denali->flash_reg + WE_2_RE),
+ ioread32(denali->flash_reg + ADDR_2_DATA),
+ ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+ ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+ ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+ denali->mtd.name = "Denali NAND";
+ denali->mtd.owner = THIS_MODULE;
+ denali->mtd.priv = &denali->nand;
+
+ /* register the driver with the NAND core subsystem */
+ denali->nand.select_chip = denali_select_chip;
+ denali->nand.cmdfunc = denali_cmdfunc;
+ denali->nand.read_byte = denali_read_byte;
+ denali->nand.waitfunc = denali_waitfunc;
+
+ /* scan for NAND devices attached to the controller
+ * this is the first stage in a two step process to register
+ * with the nand subsystem */
+ if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
+ {
+ ret = -ENXIO;
+ goto failed_nand;
+ }
+
+ /* second stage of the NAND scan
+ * this stage requires information regarding ECC and
+ * bad block management. */
+
+ /* Bad block management */
+ denali->nand.bbt_td = &bbt_main_descr;
+ denali->nand.bbt_md = &bbt_mirror_descr;
+
+ /* skip the scan for now until we have OOB read and write support */
+ denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
+ denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+
+ if (denali->dev_info.MLCDevice)
+ {
+ denali->nand.ecc.layout = &nand_oob_mlc_14bit;
+ denali->nand.ecc.bytes = ECC_BYTES_MLC;
+ }
+ else /* SLC */
+ {
+ denali->nand.ecc.layout = &nand_oob_slc;
+ denali->nand.ecc.bytes = ECC_BYTES_SLC;
+ }
+
+ /* These functions are required by the NAND core framework, otherwise,
+ the NAND core will assert. However, we don't need them, so we'll stub
+ them out. */
+ denali->nand.ecc.calculate = denali_ecc_calculate;
+ denali->nand.ecc.correct = denali_ecc_correct;
+ denali->nand.ecc.hwctl = denali_ecc_hwctl;
+
+ /* override the default read operations */
+ denali->nand.ecc.size = denali->mtd.writesize;
+ denali->nand.ecc.read_page = denali_read_page;
+ denali->nand.ecc.read_page_raw = denali_read_page_raw;
+ denali->nand.ecc.write_page = denali_write_page;
+ denali->nand.ecc.write_page_raw = denali_write_page_raw;
+ denali->nand.ecc.read_oob = denali_read_oob;
+ denali->nand.ecc.write_oob = denali_write_oob;
+ denali->nand.erase_cmd = denali_erase;
+
+ if (nand_scan_tail(&denali->mtd))
+ {
+ ret = -ENXIO;
+ goto failed_nand;
+ }
+
+ ret = add_mtd_device(&denali->mtd);
+ if (ret) {
+ printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
+ goto failed_nand;
+ }
+ return 0;
+
+ failed_nand:
+ denali_irq_cleanup(dev->irq, denali);
+ failed_request_irq:
+ iounmap(denali->flash_reg);
+ iounmap(denali->flash_mem);
+ failed_remap_csr:
+ pci_release_regions(dev);
+ failed_req_csr:
+ pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+ PCI_DMA_BIDIRECTIONAL);
+ failed_enable:
+ kfree(denali);
+ return ret;
+}
+
+/* driver exit point */
+static void denali_pci_remove(struct pci_dev *dev)
+{
+ struct denali_nand_info *denali = pci_get_drvdata(dev);
+
+ nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ nand_release(&denali->mtd);
+ del_mtd_device(&denali->mtd);
+
+ denali_irq_cleanup(dev->irq, denali);
+
+ iounmap(denali->flash_reg);
+ iounmap(denali->flash_mem);
+ pci_release_regions(dev);
+ pci_disable_device(dev);
+ pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+ PCI_DMA_BIDIRECTIONAL);
+ pci_set_drvdata(dev, NULL);
+ kfree(denali);
+}
+
+MODULE_DEVICE_TABLE(pci, denali_pci_ids);
+
+static struct pci_driver denali_pci_driver = {
+ .name = DENALI_NAND_NAME,
+ .id_table = denali_pci_ids,
+ .probe = denali_pci_probe,
+ .remove = denali_pci_remove,
+};
+
+static int __devinit denali_init(void)
+{
+ printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
+ return pci_register_driver(&denali_pci_driver);
+}
+
+/* Free memory */
+static void __devexit denali_exit(void)
+{
+ pci_unregister_driver(&denali_pci_driver);
+}
+
+module_init(denali_init);
+module_exit(denali_exit);
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644
index 0000000..422a29a
--- /dev/null
+++ b/drivers/mtd/nand/denali.h
@@ -0,0 +1,816 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/mtd/nand.h>
+
+#define DEVICE_RESET 0x0
+#define DEVICE_RESET__BANK0 0x0001
+#define DEVICE_RESET__BANK1 0x0002
+#define DEVICE_RESET__BANK2 0x0004
+#define DEVICE_RESET__BANK3 0x0008
+
+#define TRANSFER_SPARE_REG 0x10
+#define TRANSFER_SPARE_REG__FLAG 0x0001
+
+#define LOAD_WAIT_CNT 0x20
+#define LOAD_WAIT_CNT__VALUE 0xffff
+
+#define PROGRAM_WAIT_CNT 0x30
+#define PROGRAM_WAIT_CNT__VALUE 0xffff
+
+#define ERASE_WAIT_CNT 0x40
+#define ERASE_WAIT_CNT__VALUE 0xffff
+
+#define INT_MON_CYCCNT 0x50
+#define INT_MON_CYCCNT__VALUE 0xffff
+
+#define RB_PIN_ENABLED 0x60
+#define RB_PIN_ENABLED__BANK0 0x0001
+#define RB_PIN_ENABLED__BANK1 0x0002
+#define RB_PIN_ENABLED__BANK2 0x0004
+#define RB_PIN_ENABLED__BANK3 0x0008
+
+#define MULTIPLANE_OPERATION 0x70
+#define MULTIPLANE_OPERATION__FLAG 0x0001
+
+#define MULTIPLANE_READ_ENABLE 0x80
+#define MULTIPLANE_READ_ENABLE__FLAG 0x0001
+
+#define COPYBACK_DISABLE 0x90
+#define COPYBACK_DISABLE__FLAG 0x0001
+
+#define CACHE_WRITE_ENABLE 0xa0
+#define CACHE_WRITE_ENABLE__FLAG 0x0001
+
+#define CACHE_READ_ENABLE 0xb0
+#define CACHE_READ_ENABLE__FLAG 0x0001
+
+#define PREFETCH_MODE 0xc0
+#define PREFETCH_MODE__PREFETCH_EN 0x0001
+#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0
+
+#define CHIP_ENABLE_DONT_CARE 0xd0
+#define CHIP_EN_DONT_CARE__FLAG 0x01
+
+#define ECC_ENABLE 0xe0
+#define ECC_ENABLE__FLAG 0x0001
+
+#define GLOBAL_INT_ENABLE 0xf0
+#define GLOBAL_INT_EN_FLAG 0x01
+
+#define WE_2_RE 0x100
+#define WE_2_RE__VALUE 0x003f
+
+#define ADDR_2_DATA 0x110
+#define ADDR_2_DATA__VALUE 0x003f
+
+#define RE_2_WE 0x120
+#define RE_2_WE__VALUE 0x003f
+
+#define ACC_CLKS 0x130
+#define ACC_CLKS__VALUE 0x000f
+
+#define NUMBER_OF_PLANES 0x140
+#define NUMBER_OF_PLANES__VALUE 0x0007
+
+#define PAGES_PER_BLOCK 0x150
+#define PAGES_PER_BLOCK__VALUE 0xffff
+
+#define DEVICE_WIDTH 0x160
+#define DEVICE_WIDTH__VALUE 0x0003
+
+#define DEVICE_MAIN_AREA_SIZE 0x170
+#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff
+
+#define DEVICE_SPARE_AREA_SIZE 0x180
+#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff
+
+#define TWO_ROW_ADDR_CYCLES 0x190
+#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT 0x1a0
+#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001
+
+#define ECC_CORRECTION 0x1b0
+#define ECC_CORRECTION__VALUE 0x001f
+
+#define READ_MODE 0x1c0
+#define READ_MODE__VALUE 0x000f
+
+#define WRITE_MODE 0x1d0
+#define WRITE_MODE__VALUE 0x000f
+
+#define COPYBACK_MODE 0x1e0
+#define COPYBACK_MODE__VALUE 0x000f
+
+#define RDWR_EN_LO_CNT 0x1f0
+#define RDWR_EN_LO_CNT__VALUE 0x001f
+
+#define RDWR_EN_HI_CNT 0x200
+#define RDWR_EN_HI_CNT__VALUE 0x001f
+
+#define MAX_RD_DELAY 0x210
+#define MAX_RD_DELAY__VALUE 0x000f
+
+#define CS_SETUP_CNT 0x220
+#define CS_SETUP_CNT__VALUE 0x001f
+
+#define SPARE_AREA_SKIP_BYTES 0x230
+#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f
+
+#define SPARE_AREA_MARKER 0x240
+#define SPARE_AREA_MARKER__VALUE 0xffff
+
+#define DEVICES_CONNECTED 0x250
+#define DEVICES_CONNECTED__VALUE 0x0007
+
+#define DIE_MASK 0x260
+#define DIE_MASK__VALUE 0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE 0x270
+#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff
+
+#define WRITE_PROTECT 0x280
+#define WRITE_PROTECT__FLAG 0x0001
+
+#define RE_2_RE 0x290
+#define RE_2_RE__VALUE 0x003f
+
+#define MANUFACTURER_ID 0x300
+#define MANUFACTURER_ID__VALUE 0x00ff
+
+#define DEVICE_ID 0x310
+#define DEVICE_ID__VALUE 0x00ff
+
+#define DEVICE_PARAM_0 0x320
+#define DEVICE_PARAM_0__VALUE 0x00ff
+
+#define DEVICE_PARAM_1 0x330
+#define DEVICE_PARAM_1__VALUE 0x00ff
+
+#define DEVICE_PARAM_2 0x340
+#define DEVICE_PARAM_2__VALUE 0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE 0x350
+#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE 0x360
+#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff
+
+#define REVISION 0x370
+#define REVISION__VALUE 0xffff
+
+#define ONFI_DEVICE_FEATURES 0x380
+#define ONFI_DEVICE_FEATURES__VALUE 0x003f
+
+#define ONFI_OPTIONAL_COMMANDS 0x390
+#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f
+
+#define ONFI_TIMING_MODE 0x3a0
+#define ONFI_TIMING_MODE__VALUE 0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0
+#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS 0x3c0
+#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff
+#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff
+
+#define FEATURES 0x3f0
+#define FEATURES__N_BANKS 0x0003
+#define FEATURES__ECC_MAX_ERR 0x003c
+#define FEATURES__DMA 0x0040
+#define FEATURES__CMD_DMA 0x0080
+#define FEATURES__PARTITION 0x0100
+#define FEATURES__XDMA_SIDEBAND 0x0200
+#define FEATURES__GPREG 0x0400
+#define FEATURES__INDEX_ADDR 0x0800
+
+#define TRANSFER_MODE 0x400
+#define TRANSFER_MODE__VALUE 0x0003
+
+#define INTR_STATUS0 0x410
+#define INTR_STATUS0__ECC_TRANSACTION_DONE 0x0001
+#define INTR_STATUS0__ECC_ERR 0x0002
+#define INTR_STATUS0__DMA_CMD_COMP 0x0004
+#define INTR_STATUS0__TIME_OUT 0x0008
+#define INTR_STATUS0__PROGRAM_FAIL 0x0010
+#define INTR_STATUS0__ERASE_FAIL 0x0020
+#define INTR_STATUS0__LOAD_COMP 0x0040
+#define INTR_STATUS0__PROGRAM_COMP 0x0080
+#define INTR_STATUS0__ERASE_COMP 0x0100
+#define INTR_STATUS0__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_STATUS0__LOCKED_BLK 0x0400
+#define INTR_STATUS0__UNSUP_CMD 0x0800
+#define INTR_STATUS0__INT_ACT 0x1000
+#define INTR_STATUS0__RST_COMP 0x2000
+#define INTR_STATUS0__PIPE_CMD_ERR 0x4000
+#define INTR_STATUS0__PAGE_XFER_INC 0x8000
+
+#define INTR_EN0 0x420
+#define INTR_EN0__ECC_TRANSACTION_DONE 0x0001
+#define INTR_EN0__ECC_ERR 0x0002
+#define INTR_EN0__DMA_CMD_COMP 0x0004
+#define INTR_EN0__TIME_OUT 0x0008
+#define INTR_EN0__PROGRAM_FAIL 0x0010
+#define INTR_EN0__ERASE_FAIL 0x0020
+#define INTR_EN0__LOAD_COMP 0x0040
+#define INTR_EN0__PROGRAM_COMP 0x0080
+#define INTR_EN0__ERASE_COMP 0x0100
+#define INTR_EN0__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_EN0__LOCKED_BLK 0x0400
+#define INTR_EN0__UNSUP_CMD 0x0800
+#define INTR_EN0__INT_ACT 0x1000
+#define INTR_EN0__RST_COMP 0x2000
+#define INTR_EN0__PIPE_CMD_ERR 0x4000
+#define INTR_EN0__PAGE_XFER_INC 0x8000
+
+#define PAGE_CNT0 0x430
+#define PAGE_CNT0__VALUE 0x00ff
+
+#define ERR_PAGE_ADDR0 0x440
+#define ERR_PAGE_ADDR0__VALUE 0xffff
+
+#define ERR_BLOCK_ADDR0 0x450
+#define ERR_BLOCK_ADDR0__VALUE 0xffff
+
+#define INTR_STATUS1 0x460
+#define INTR_STATUS1__ECC_TRANSACTION_DONE 0x0001
+#define INTR_STATUS1__ECC_ERR 0x0002
+#define INTR_STATUS1__DMA_CMD_COMP 0x0004
+#define INTR_STATUS1__TIME_OUT 0x0008
+#define INTR_STATUS1__PROGRAM_FAIL 0x0010
+#define INTR_STATUS1__ERASE_FAIL 0x0020
+#define INTR_STATUS1__LOAD_COMP 0x0040
+#define INTR_STATUS1__PROGRAM_COMP 0x0080
+#define INTR_STATUS1__ERASE_COMP 0x0100
+#define INTR_STATUS1__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_STATUS1__LOCKED_BLK 0x0400
+#define INTR_STATUS1__UNSUP_CMD 0x0800
+#define INTR_STATUS1__INT_ACT 0x1000
+#define INTR_STATUS1__RST_COMP 0x2000
+#define INTR_STATUS1__PIPE_CMD_ERR 0x4000
+#define INTR_STATUS1__PAGE_XFER_INC 0x8000
+
+#define INTR_EN1 0x470
+#define INTR_EN1__ECC_TRANSACTION_DONE 0x0001
+#define INTR_EN1__ECC_ERR 0x0002
+#define INTR_EN1__DMA_CMD_COMP 0x0004
+#define INTR_EN1__TIME_OUT 0x0008
+#define INTR_EN1__PROGRAM_FAIL 0x0010
+#define INTR_EN1__ERASE_FAIL 0x0020
+#define INTR_EN1__LOAD_COMP 0x0040
+#define INTR_EN1__PROGRAM_COMP 0x0080
+#define INTR_EN1__ERASE_COMP 0x0100
+#define INTR_EN1__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_EN1__LOCKED_BLK 0x0400
+#define INTR_EN1__UNSUP_CMD 0x0800
+#define INTR_EN1__INT_ACT 0x1000
+#define INTR_EN1__RST_COMP 0x2000
+#define INTR_EN1__PIPE_CMD_ERR 0x4000
+#define INTR_EN1__PAGE_XFER_INC 0x8000
+
+#define PAGE_CNT1 0x480
+#define PAGE_CNT1__VALUE 0x00ff
+
+#define ERR_PAGE_ADDR1 0x490
+#define ERR_PAGE_ADDR1__VALUE 0xffff
+
+#define ERR_BLOCK_ADDR1 0x4a0
+#define ERR_BLOCK_ADDR1__VALUE 0xffff
+
+#define INTR_STATUS2 0x4b0
+#define INTR_STATUS2__ECC_TRANSACTION_DONE 0x0001
+#define INTR_STATUS2__ECC_ERR 0x0002
+#define INTR_STATUS2__DMA_CMD_COMP 0x0004
+#define INTR_STATUS2__TIME_OUT 0x0008
+#define INTR_STATUS2__PROGRAM_FAIL 0x0010
+#define INTR_STATUS2__ERASE_FAIL 0x0020
+#define INTR_STATUS2__LOAD_COMP 0x0040
+#define INTR_STATUS2__PROGRAM_COMP 0x0080
+#define INTR_STATUS2__ERASE_COMP 0x0100
+#define INTR_STATUS2__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_STATUS2__LOCKED_BLK 0x0400
+#define INTR_STATUS2__UNSUP_CMD 0x0800
+#define INTR_STATUS2__INT_ACT 0x1000
+#define INTR_STATUS2__RST_COMP 0x2000
+#define INTR_STATUS2__PIPE_CMD_ERR 0x4000
+#define INTR_STATUS2__PAGE_XFER_INC 0x8000
+
+#define INTR_EN2 0x4c0
+#define INTR_EN2__ECC_TRANSACTION_DONE 0x0001
+#define INTR_EN2__ECC_ERR 0x0002
+#define INTR_EN2__DMA_CMD_COMP 0x0004
+#define INTR_EN2__TIME_OUT 0x0008
+#define INTR_EN2__PROGRAM_FAIL 0x0010
+#define INTR_EN2__ERASE_FAIL 0x0020
+#define INTR_EN2__LOAD_COMP 0x0040
+#define INTR_EN2__PROGRAM_COMP 0x0080
+#define INTR_EN2__ERASE_COMP 0x0100
+#define INTR_EN2__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_EN2__LOCKED_BLK 0x0400
+#define INTR_EN2__UNSUP_CMD 0x0800
+#define INTR_EN2__INT_ACT 0x1000
+#define INTR_EN2__RST_COMP 0x2000
+#define INTR_EN2__PIPE_CMD_ERR 0x4000
+#define INTR_EN2__PAGE_XFER_INC 0x8000
+
+#define PAGE_CNT2 0x4d0
+#define PAGE_CNT2__VALUE 0x00ff
+
+#define ERR_PAGE_ADDR2 0x4e0
+#define ERR_PAGE_ADDR2__VALUE 0xffff
+
+#define ERR_BLOCK_ADDR2 0x4f0
+#define ERR_BLOCK_ADDR2__VALUE 0xffff
+
+#define INTR_STATUS3 0x500
+#define INTR_STATUS3__ECC_TRANSACTION_DONE 0x0001
+#define INTR_STATUS3__ECC_ERR 0x0002
+#define INTR_STATUS3__DMA_CMD_COMP 0x0004
+#define INTR_STATUS3__TIME_OUT 0x0008
+#define INTR_STATUS3__PROGRAM_FAIL 0x0010
+#define INTR_STATUS3__ERASE_FAIL 0x0020
+#define INTR_STATUS3__LOAD_COMP 0x0040
+#define INTR_STATUS3__PROGRAM_COMP 0x0080
+#define INTR_STATUS3__ERASE_COMP 0x0100
+#define INTR_STATUS3__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_STATUS3__LOCKED_BLK 0x0400
+#define INTR_STATUS3__UNSUP_CMD 0x0800
+#define INTR_STATUS3__INT_ACT 0x1000
+#define INTR_STATUS3__RST_COMP 0x2000
+#define INTR_STATUS3__PIPE_CMD_ERR 0x4000
+#define INTR_STATUS3__PAGE_XFER_INC 0x8000
+
+#define INTR_EN3 0x510
+#define INTR_EN3__ECC_TRANSACTION_DONE 0x0001
+#define INTR_EN3__ECC_ERR 0x0002
+#define INTR_EN3__DMA_CMD_COMP 0x0004
+#define INTR_EN3__TIME_OUT 0x0008
+#define INTR_EN3__PROGRAM_FAIL 0x0010
+#define INTR_EN3__ERASE_FAIL 0x0020
+#define INTR_EN3__LOAD_COMP 0x0040
+#define INTR_EN3__PROGRAM_COMP 0x0080
+#define INTR_EN3__ERASE_COMP 0x0100
+#define INTR_EN3__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_EN3__LOCKED_BLK 0x0400
+#define INTR_EN3__UNSUP_CMD 0x0800
+#define INTR_EN3__INT_ACT 0x1000
+#define INTR_EN3__RST_COMP 0x2000
+#define INTR_EN3__PIPE_CMD_ERR 0x4000
+#define INTR_EN3__PAGE_XFER_INC 0x8000
+
+#define PAGE_CNT3 0x520
+#define PAGE_CNT3__VALUE 0x00ff
+
+#define ERR_PAGE_ADDR3 0x530
+#define ERR_PAGE_ADDR3__VALUE 0xffff
+
+#define ERR_BLOCK_ADDR3 0x540
+#define ERR_BLOCK_ADDR3__VALUE 0xffff
+
+#define DATA_INTR 0x550
+#define DATA_INTR__WRITE_SPACE_AV 0x0001
+#define DATA_INTR__READ_DATA_AV 0x0002
+
+#define DATA_INTR_EN 0x560
+#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001
+#define DATA_INTR_EN__READ_DATA_AV 0x0002
+
+#define GPREG_0 0x570
+#define GPREG_0__VALUE 0xffff
+
+#define GPREG_1 0x580
+#define GPREG_1__VALUE 0xffff
+
+#define GPREG_2 0x590
+#define GPREG_2__VALUE 0xffff
+
+#define GPREG_3 0x5a0
+#define GPREG_3__VALUE 0xffff
+
+#define ECC_THRESHOLD 0x600
+#define ECC_THRESHOLD__VALUE 0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS 0x610
+#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS 0x620
+#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff
+#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000
+
+#define ECC_ERROR_ADDRESS 0x630
+#define ECC_ERROR_ADDRESS__OFFSET 0x0fff
+#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000
+
+#define ERR_CORRECTION_INFO 0x640
+#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff
+#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00
+#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000
+#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
+
+#define DMA_ENABLE 0x700
+#define DMA_ENABLE__FLAG 0x0001
+
+#define IGNORE_ECC_DONE 0x710
+#define IGNORE_ECC_DONE__FLAG 0x0001
+
+#define DMA_INTR 0x720
+#define DMA_INTR__TARGET_ERROR 0x0001
+#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002
+#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004
+#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008
+#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010
+#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
+
+#define DMA_INTR_EN 0x730
+#define DMA_INTR_EN__TARGET_ERROR 0x0001
+#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002
+#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004
+#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008
+#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010
+#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
+
+#define TARGET_ERR_ADDR_LO 0x740
+#define TARGET_ERR_ADDR_LO__VALUE 0xffff
+
+#define TARGET_ERR_ADDR_HI 0x750
+#define TARGET_ERR_ADDR_HI__VALUE 0xffff
+
+#define CHNL_ACTIVE 0x760
+#define CHNL_ACTIVE__CHANNEL0 0x0001
+#define CHNL_ACTIVE__CHANNEL1 0x0002
+#define CHNL_ACTIVE__CHANNEL2 0x0004
+#define CHNL_ACTIVE__CHANNEL3 0x0008
+
+#define ACTIVE_SRC_ID 0x800
+#define ACTIVE_SRC_ID__VALUE 0x00ff
+
+#define PTN_INTR 0x810
+#define PTN_INTR__CONFIG_ERROR 0x0001
+#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002
+#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004
+#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008
+#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010
+#define PTN_INTR__REG_ACCESS_ERROR 0x0020
+
+#define PTN_INTR_EN 0x820
+#define PTN_INTR_EN__CONFIG_ERROR 0x0001
+#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002
+#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004
+#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008
+#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010
+#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
+
+#define PERM_SRC_ID_0 0x830
+#define PERM_SRC_ID_0__SRCID 0x00ff
+#define PERM_SRC_ID_0__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_0__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_0__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_0__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_0 0x840
+#define MIN_BLK_ADDR_0__VALUE 0xffff
+
+#define MAX_BLK_ADDR_0 0x850
+#define MAX_BLK_ADDR_0__VALUE 0xffff
+
+#define MIN_MAX_BANK_0 0x860
+#define MIN_MAX_BANK_0__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_0__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_1 0x870
+#define PERM_SRC_ID_1__SRCID 0x00ff
+#define PERM_SRC_ID_1__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_1__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_1__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_1__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_1 0x880
+#define MIN_BLK_ADDR_1__VALUE 0xffff
+
+#define MAX_BLK_ADDR_1 0x890
+#define MAX_BLK_ADDR_1__VALUE 0xffff
+
+#define MIN_MAX_BANK_1 0x8a0
+#define MIN_MAX_BANK_1__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_1__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_2 0x8b0
+#define PERM_SRC_ID_2__SRCID 0x00ff
+#define PERM_SRC_ID_2__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_2__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_2__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_2__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_2 0x8c0
+#define MIN_BLK_ADDR_2__VALUE 0xffff
+
+#define MAX_BLK_ADDR_2 0x8d0
+#define MAX_BLK_ADDR_2__VALUE 0xffff
+
+#define MIN_MAX_BANK_2 0x8e0
+#define MIN_MAX_BANK_2__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_2__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_3 0x8f0
+#define PERM_SRC_ID_3__SRCID 0x00ff
+#define PERM_SRC_ID_3__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_3__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_3__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_3__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_3 0x900
+#define MIN_BLK_ADDR_3__VALUE 0xffff
+
+#define MAX_BLK_ADDR_3 0x910
+#define MAX_BLK_ADDR_3__VALUE 0xffff
+
+#define MIN_MAX_BANK_3 0x920
+#define MIN_MAX_BANK_3__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_3__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_4 0x930
+#define PERM_SRC_ID_4__SRCID 0x00ff
+#define PERM_SRC_ID_4__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_4__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_4__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_4__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_4 0x940
+#define MIN_BLK_ADDR_4__VALUE 0xffff
+
+#define MAX_BLK_ADDR_4 0x950
+#define MAX_BLK_ADDR_4__VALUE 0xffff
+
+#define MIN_MAX_BANK_4 0x960
+#define MIN_MAX_BANK_4__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_4__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_5 0x970
+#define PERM_SRC_ID_5__SRCID 0x00ff
+#define PERM_SRC_ID_5__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_5__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_5__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_5__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_5 0x980
+#define MIN_BLK_ADDR_5__VALUE 0xffff
+
+#define MAX_BLK_ADDR_5 0x990
+#define MAX_BLK_ADDR_5__VALUE 0xffff
+
+#define MIN_MAX_BANK_5 0x9a0
+#define MIN_MAX_BANK_5__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_5__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_6 0x9b0
+#define PERM_SRC_ID_6__SRCID 0x00ff
+#define PERM_SRC_ID_6__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_6__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_6__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_6__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_6 0x9c0
+#define MIN_BLK_ADDR_6__VALUE 0xffff
+
+#define MAX_BLK_ADDR_6 0x9d0
+#define MAX_BLK_ADDR_6__VALUE 0xffff
+
+#define MIN_MAX_BANK_6 0x9e0
+#define MIN_MAX_BANK_6__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_6__MAX_VALUE 0x000c
+
+#define PERM_SRC_ID_7 0x9f0
+#define PERM_SRC_ID_7__SRCID 0x00ff
+#define PERM_SRC_ID_7__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID_7__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID_7__READ_ACTIVE 0x4000
+#define PERM_SRC_ID_7__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR_7 0xa00
+#define MIN_BLK_ADDR_7__VALUE 0xffff
+
+#define MAX_BLK_ADDR_7 0xa10
+#define MAX_BLK_ADDR_7__VALUE 0xffff
+
+#define MIN_MAX_BANK_7 0xa20
+#define MIN_MAX_BANK_7__MIN_VALUE 0x0003
+#define MIN_MAX_BANK_7__MAX_VALUE 0x000c
+
+/* flash.h */
+struct device_info_tag {
+ uint16_t wDeviceMaker;
+ uint16_t wDeviceID;
+ uint8_t bDeviceParam0;
+ uint8_t bDeviceParam1;
+ uint8_t bDeviceParam2;
+ uint32_t wDeviceType;
+ uint32_t wSpectraStartBlock;
+ uint32_t wSpectraEndBlock;
+ uint32_t wTotalBlocks;
+ uint16_t wPagesPerBlock;
+ uint16_t wPageSize;
+ uint16_t wPageDataSize;
+ uint16_t wPageSpareSize;
+ uint16_t wNumPageSpareFlag;
+ uint16_t wECCBytesPerSector;
+ uint32_t wBlockSize;
+ uint32_t wBlockDataSize;
+ uint32_t wDataBlockNum;
+ uint8_t bPlaneNum;
+ uint16_t wDeviceMainAreaSize;
+ uint16_t wDeviceSpareAreaSize;
+ uint16_t wDevicesConnected;
+ uint16_t wDeviceWidth;
+ uint16_t wHWRevision;
+ uint16_t wHWFeatures;
+
+ uint16_t wONFIDevFeatures;
+ uint16_t wONFIOptCommands;
+ uint16_t wONFITimingMode;
+ uint16_t wONFIPgmCacheTimingMode;
+
+ uint16_t MLCDevice;
+ uint16_t wSpareSkipBytes;
+
+ uint8_t nBitsInPageNumber;
+ uint8_t nBitsInPageDataSize;
+ uint8_t nBitsInBlockDataSize;
+};
+
+/* ffsdefs.h */
+#define CLEAR 0 /*use this to clear a field instead of "fail"*/
+#define SET 1 /*use this to set a field instead of "pass"*/
+#define FAIL 1 /*failed flag*/
+#define PASS 0 /*success flag*/
+#define ERR -1 /*error flag*/
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X 5
+#define CLK_MULTI 4
+
+/* ffsport.h */
+#define VERBOSE 1
+
+#define NAND_DBG_WARN 1
+#define NAND_DBG_DEBUG 2
+#define NAND_DBG_TRACE 3
+
+#ifdef VERBOSE
+#define nand_dbg_print(level, args...) \
+ do { \
+ if (level <= nand_debug_level) \
+ printk(KERN_ALERT args); \
+ } while (0)
+#else
+#define nand_dbg_print(level, args...)
+#endif
+
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID 0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK 3
+#define NUM_FREE_BLOCKS_GATE 30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE 64
+
+#define GLOB_HWCTL_DEFAULT_BLKS 2048
+
+#define SUPPORT_15BITECC 1
+#define SUPPORT_8BITECC 1
+
+#define CUSTOM_CONF_PARAMS 0
+
+#define ONFI_BLOOM_TIME 1
+#define MODE5_WORKAROUND 0
+
+/* lld_nand.h */
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef _LLD_NAND_
+#define _LLD_NAND_
+
+#define MODE_00 0x00000000
+#define MODE_01 0x04000000
+#define MODE_10 0x08000000
+#define MODE_11 0x0C000000
+
+
+#define DATA_TRANSFER_MODE 0
+#define PROTECTION_PER_BLOCK 1
+#define LOAD_WAIT_COUNT 2
+#define PROGRAM_WAIT_COUNT 3
+#define ERASE_WAIT_COUNT 4
+#define INT_MONITOR_CYCLE_COUNT 5
+#define READ_BUSY_PIN_ENABLED 6
+#define MULTIPLANE_OPERATION_SUPPORT 7
+#define PRE_FETCH_MODE 8
+#define CE_DONT_CARE_SUPPORT 9
+#define COPYBACK_SUPPORT 10
+#define CACHE_WRITE_SUPPORT 11
+#define CACHE_READ_SUPPORT 12
+#define NUM_PAGES_IN_BLOCK 13
+#define ECC_ENABLE_SELECT 14
+#define WRITE_ENABLE_2_READ_ENABLE 15
+#define ADDRESS_2_DATA 16
+#define READ_ENABLE_2_WRITE_ENABLE 17
+#define TWO_ROW_ADDRESS_CYCLES 18
+#define MULTIPLANE_ADDRESS_RESTRICT 19
+#define ACC_CLOCKS 20
+#define READ_WRITE_ENABLE_LOW_COUNT 21
+#define READ_WRITE_ENABLE_HIGH_COUNT 22
+
+#define ECC_SECTOR_SIZE 512
+#define LLD_MAX_FLASH_BANKS 4
+
+#define DENALI_BUF_SIZE NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE
+
+struct nand_buf
+{
+ int head;
+ int tail;
+ uint8_t buf[DENALI_BUF_SIZE];
+ dma_addr_t dma_buf;
+};
+
+#define INTEL_CE4100 1
+#define INTEL_MRST 2
+
+struct denali_nand_info {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ struct device_info_tag dev_info;
+ int flash_bank; /* currently selected chip */
+ int status;
+ int platform;
+ struct nand_buf buf;
+ struct pci_dev *dev;
+ int total_used_banks;
+ uint32_t block; /* stored for future use */
+ uint16_t page;
+ void __iomem *flash_reg; /* Mapped io reg base address */
+ void __iomem *flash_mem; /* Mapped io reg base address */
+
+ /* elements used by ISR */
+ struct completion complete;
+ spinlock_t irq_lock;
+ uint32_t irq_status;
+ int irq_debug_array[32];
+ int idx;
+};
+
+static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali);
+static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali);
+static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE);
+
+#endif /*_LLD_NAND_*/
+
More information about the linux-mtd-cvs
mailing list