[PATCH v10 8/8] Documentation: coresight: Panic support
Suzuki K Poulose
suzuki.poulose at arm.com
Thu Oct 3 06:43:10 PDT 2024
Hi Linu
On 16/09/2024 11:34, Linu Cherian wrote:
> Add documentation on using coresight during panic
> and watchdog.
Thank you so much for the documentation, this will be quite useful !
Some minor comments below.
>
> Signed-off-by: Linu Cherian <lcherian at marvell.com>
> ---
> Changelog from v9:
> This patch has been newly introduced.
>
> Documentation/trace/coresight/panic.rst | 356 ++++++++++++++++++++++++
> 1 file changed, 356 insertions(+)
> create mode 100644 Documentation/trace/coresight/panic.rst
>
> diff --git a/Documentation/trace/coresight/panic.rst b/Documentation/trace/coresight/panic.rst
> new file mode 100644
> index 000000000000..3b53d91cace8
> --- /dev/null
> +++ b/Documentation/trace/coresight/panic.rst
> @@ -0,0 +1,356 @@
> +===================================================
> +Using Coresight for Kernel panic and Watchdog reset
> +===================================================
> +
> +Introduction
> +------------
> +This documentation is about using Linux coresight trace support to
> +debug kernel panic and watchdog reset scenarios.
> +
> +Coresight trace during Kernel panic
> +-----------------------------------
> +From the coresight driver point of view, addressing the kernel panic
> +situation has four main requirements.
> +
> +a. Support for allocation of trace buffer pages from reserved memory area.
> + Platform can advertise this using a new device tree property added to
> + relevant coresight nodes.
> +
> +b. Support for stopping coresight blocks at the time of panic
> +
> +c. Saving required metadata in the specified format
> +
> +d. Support for reading trace data captured at the time of panic
> +
> +Allocation of trace buffer pages from reserved RAM
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +A new optional device tree property "memory-region" is added to the
> +ETR/ETF device nodes, that would give the base address and size of trace
ETR/ETF => CoreSight TMC
> +buffer.
> +
> +Static allocation of trace buffers would ensure that both IOMMU enabled
> +and disabled cases are handled. Also, platforms that support persistent
> +RAM will allow users to read trace data in the subsequent boot without
> +booting the crashdump kernel.
> +
> +Note:
> +For ETR sink devices, this reserved region will be used for both trace
> +capture and trace data retrieval.
> +For ETF sink devices, internal SRAM would be used for trace capture,
> +and they would be synced to reserved region for retrieval.
> +
> +
> +Disabling coresight blocks at the time of panic
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +In order to avoid the situation of losing relevant trace data after a
> +kernel panic, it would be desirable to stop the coresight blocks at the
> +time of panic.
> +
> +This can be achieved by configuring the comparator, CTI and sink
> +devices as below::
> +
> + Trigger on panic
> + Comparator --->External out --->CTI -->External In---->ETR/ETF stop
> +
> +Saving metadata at the time of kernel panic
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +Coresight metadata involves all additional data that are required for a
> +successful trace decode in addition to the trace data. This involves
> +ETR/ETF, ETE register snapshot etc.
s/ETE/ETB ?
> +
> +A new optional device property "memory-region" is added to
> +the ETR/ETF/ETE device nodes for this.
same here ^^
> +
> +Reading trace data captured at the time of panic
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +Trace data captured at the time of panic, can be read from rebooted kernel
> +or from crashdump kernel using a special device file /dev/crash_tmc_xxx.
> +This device file is created only when there is a valid crashdata available.
> +
> +General flow of trace capture and decode incase of kernel panic
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +1. Enable source and sink on all the cores using the sysfs interface.
> + ETR sinks should have trace buffers allocated from reserved memory,
> + by selecting "resrv" buffer mode from sysfs.
> +
> +2. Run relevant tests.
> +
> +3. On a kernel panic, all coresight blocks are disabled, necessary
> + metadata is synced by kernel panic handler.
> +
> + System would eventually reboot or boot a crashdump kernel.
> +
> +4. For platforms that supports crashdump kernel, raw trace data can be
> + dumped using the coresight sysfs interface from the crashdump kernel
> + itself. Persistent RAM is not a requirement in this case.
> +
> +5. For platforms that supports persistent RAM, trace data can be dumped
> + using the coresight sysfs interface in the subsequent Linux boot.
> + Crashdump kernel is not a requirement in this case. Persistent RAM
> + ensures that trace data is intact across reboot.
> +
> +Coresight trace during Watchdog reset
> +-------------------------------------
> +The main difference between addressing the watchdog reset and kernel panic
> +case are below,
> +
> +a. Saving coresight metadata need to be taken care by the
> + SCP(system control processor) firmware in the specified format,
> + instead of kernel.
> +
> +b. Reserved memory region given by firmware for trace buffer and metadata
> + has to be in persistent RAM.
> + Note: This is a requirement for watchdog reset case but optional
> + in kernel panic case.
> +
> +Watchdog reset can be supported only on platforms that meet the above
> +two requirements.
> +
> +Sample commands for testing a Kernel panic case with ETR sink
> +-------------------------------------------------------------
> +
> +1. Boot Linux kernel with "crash_kexec_post_notifiers" added to the kernel
> + bootargs. This is mandatory if the user would like to read the tracedata
> + from the crashdump kernel.
> +
> +2. Enable the preloaded ETM configuration
> +
> + #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable
> +
> +3. Configure CTI using sysfs interface::
> +
> + #./cti_setup.sh
> +
> + #cat cti_setup.sh
> +
> +
> + cd /sys/bus/coresight/devices/
> +
> + ap_cti_config () {
> + #ETM trig out[0] trigger to Channel 0
> + echo 0 4 > channels/trigin_attach
> + }
> +
> + etf_cti_config () {
> + #ETF Flush in trigger from Channel 0
> + echo 0 1 > channels/trigout_attach
> + echo 1 > channels/trig_filter_enable
> + }
> +
> + etr_cti_config () {
> + #ETR Flush in from Channel 0
> + echo 0 1 > channels/trigout_attach
> + echo 1 > channels/trig_filter_enable
> + }
> +
> + ctidevs=`find . -name "cti*"`
> +
> + for i in $ctidevs
> + do
> + cd $i
> +
> + connection=`find . -name "ete*"`
minor nit: this could be ete or etm
> + if [ ! -z "$connection" ]
> + then
> + echo "AP CTI config for $i"
> + ap_cti_config
> + fi
> +
> + connection=`find . -name "tmc_etf*"`
> + if [ ! -z "$connection" ]
> + then
> + echo "ETF CTI config for $i"
> + etf_cti_config
> + fi
> +
> + connection=`find . -name "tmc_etr*"`
> + if [ ! -z "$connection" ]
> + then
> + echo "ETR CTI config for $i"
> + etr_cti_config
> + fi
> +
> + cd ..
> + done
> +
> +Note: CTI connections are SOC specific and hence the above script is
> +added just for reference.
> +
> +4. Choose reserved buffer mode for ETR buffer
> + #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred
> +
> +5. Enable stop on flush trigger configuration
> + #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush
> +
> +6. Start Coresight tracing on cores 1 and 2 using sysfs interface
> +
> +7. Run some application on core 1
> + #taskset -c 1 dd if=/dev/urandom of=/dev/null &
> +
> +8. Invoke kernel panic on core 2
> + #echo 1 > /proc/sys/kernel/panic
> + #taskset -c 2 echo c > /proc/sysrq-trigger
> +
> +9. From rebooted kernel or crashdump kernel, read crashdata
> +
> + #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin
> +
> +10. Run opencsd decoder tools/scripts to generate the instruction trace.
> +
> +Sample instruction trace dump
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +Core1 dump::
> +
> + A etm4_enable_hw: ffff800008ae1dd4
> + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4
> + I etm4_enable_hw: ffff800008ae1dd4:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1dd8:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1ddc:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1de0:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1de4:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1de8:
> + d503233f paciasp
> + I etm4_enable_hw: ffff800008ae1dec:
> + a9be7bfd stp x29, x30, [sp, #-32]!
> + I etm4_enable_hw: ffff800008ae1df0:
> + 910003fd mov x29, sp
> + I etm4_enable_hw: ffff800008ae1df4:
> + a90153f3 stp x19, x20, [sp, #16]
> + I etm4_enable_hw: ffff800008ae1df8:
> + 2a0003f4 mov w20, w0
> + I etm4_enable_hw: ffff800008ae1dfc:
> + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48>
> + I etm4_enable_hw: ffff800008ae1e00:
> + 910f4273 add x19, x19, #0x3d0
> + I etm4_enable_hw: ffff800008ae1e04:
> + f8747a60 ldr x0, [x19, x20, lsl #3]
> + E etm4_enable_hw: ffff800008ae1e08:
> + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50>
> + I 149.039572921 etm4_enable_hw: ffff800008ae1e30:
> + a94153f3 ldp x19, x20, [sp, #16]
> + I 149.039572921 etm4_enable_hw: ffff800008ae1e34:
> + 52800000 mov w0, #0x0 // #0
> + I 149.039572921 etm4_enable_hw: ffff800008ae1e38:
> + a8c27bfd ldp x29, x30, [sp], #32
> +
> + ..snip
> +
> + 149.052324811 chacha_block_generic: ffff800008642d80:
> + 9100a3e0 add x0,
> + I 149.052324811 chacha_block_generic: ffff800008642d84:
> + b86178a2 ldr w2, [x5, x1, lsl #2]
> + I 149.052324811 chacha_block_generic: ffff800008642d88:
> + 8b010803 add x3, x0, x1, lsl #2
> + I 149.052324811 chacha_block_generic: ffff800008642d8c:
> + b85fc063 ldur w3, [x3, #-4]
> + I 149.052324811 chacha_block_generic: ffff800008642d90:
> + 0b030042 add w2, w2, w3
> + I 149.052324811 chacha_block_generic: ffff800008642d94:
> + b8217882 str w2, [x4, x1, lsl #2]
> + I 149.052324811 chacha_block_generic: ffff800008642d98:
> + 91000421 add x1, x1, #0x1
> + I 149.052324811 chacha_block_generic: ffff800008642d9c:
> + f100443f cmp x1, #0x11
> +
> +
> +Core 2 dump::
> +
> + A etm4_enable_hw: ffff800008ae1dd4
> + CONTEXT EL2 etm4_enable_hw: ffff800008ae1dd4
> + I etm4_enable_hw: ffff800008ae1dd4:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1dd8:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1ddc:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1de0:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1de4:
> + d503201f nop
> + I etm4_enable_hw: ffff800008ae1de8:
> + d503233f paciasp
> + I etm4_enable_hw: ffff800008ae1dec:
> + a9be7bfd stp x29, x30, [sp, #-32]!
> + I etm4_enable_hw: ffff800008ae1df0:
> + 910003fd mov x29, sp
> + I etm4_enable_hw: ffff800008ae1df4:
> + a90153f3 stp x19, x20, [sp, #16]
> + I etm4_enable_hw: ffff800008ae1df8:
> + 2a0003f4 mov w20, w0
> + I etm4_enable_hw: ffff800008ae1dfc:
> + 900085b3 adrp x19, ffff800009b95000 <reserved_mem+0xc48>
> + I etm4_enable_hw: ffff800008ae1e00:
> + 910f4273 add x19, x19, #0x3d0
> + I etm4_enable_hw: ffff800008ae1e04:
> + f8747a60 ldr x0, [x19, x20, lsl #3]
> + E etm4_enable_hw: ffff800008ae1e08:
> + b4000140 cbz x0, ffff800008ae1e30 <etm4_starting_cpu+0x50>
> + I 149.046243445 etm4_enable_hw: ffff800008ae1e30:
> + a94153f3 ldp x19, x20, [sp, #16]
> + I 149.046243445 etm4_enable_hw: ffff800008ae1e34:
> + 52800000 mov w0, #0x0 // #0
> + I 149.046243445 etm4_enable_hw: ffff800008ae1e38:
> + a8c27bfd ldp x29, x30, [sp], #32
> + I 149.046243445 etm4_enable_hw: ffff800008ae1e3c:
> + d50323bf autiasp
> + E 149.046243445 etm4_enable_hw: ffff800008ae1e40:
> + d65f03c0 ret
> + A ete_sysreg_write: ffff800008adfa18
> +
> + ..snip
> +
> + I 149.05422547 panic: ffff800008096300:
> + a90363f7 stp x23, x24, [sp, #48]
> + I 149.05422547 panic: ffff800008096304:
> + 6b00003f cmp w1, w0
> + I 149.05422547 panic: ffff800008096308:
> + 3a411804 ccmn w0, #0x1, #0x4, ne // ne = any
> + N 149.05422547 panic: ffff80000809630c:
> + 540001e0 b.eq ffff800008096348 <panic+0xe0> // b.none
> + I 149.05422547 panic: ffff800008096310:
> + f90023f9 str x25, [sp, #64]
> + E 149.05422547 panic: ffff800008096314:
> + 97fe44ef bl ffff8000080276d0 <panic_smp_self_stop>
> + A panic: ffff80000809634c
> + I 149.05422547 panic: ffff80000809634c:
> + 910102d5 add x21, x22, #0x40
> + I 149.05422547 panic: ffff800008096350:
> + 52800020 mov w0, #0x1 // #1
> + E 149.05422547 panic: ffff800008096354:
> + 94166b8b bl ffff800008631180 <bust_spinlocks>
> + N 149.054225518 bust_spinlocks: ffff800008631180:
> + 340000c0 cbz w0, ffff800008631198 <bust_spinlocks+0x18>
> + I 149.054225518 bust_spinlocks: ffff800008631184:
> + f000a321 adrp x1, ffff800009a98000 <pbufs.0+0xbb8>
> + I 149.054225518 bust_spinlocks: ffff800008631188:
> + b9405c20 ldr w0, [x1, #92]
> + I 149.054225518 bust_spinlocks: ffff80000863118c:
> + 11000400 add w0, w0, #0x1
> + I 149.054225518 bust_spinlocks: ffff800008631190:
> + b9005c20 str w0, [x1, #92]
> + E 149.054225518 bust_spinlocks: ffff800008631194:
> + d65f03c0 ret
> + A panic: ffff800008096358
> +
> +Perf based testing
> +------------------
> +
> +Starting perf session
> +~~~~~~~~~~~~~~~~~~~~~
> +ETF:
> +perf record -e cs_etm/panicstop, at tmc_etf1/ -C 1
> +perf record -e cs_etm/panicstop, at tmc_etf2/ -C 2
> +
> +ETR:
> +perf record -e cs_etm/panicstop, at tmc_etr0/ -C 1,2
> +
> +Reading trace data after panic
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +Same sysfs based method explained above can be used to retrieve and
> +decode the trace data after the reboot on kernel panic.
More information about the linux-arm-kernel
mailing list