[PATCH v4 2/5] sched: Take cpufreq feedback into account

Qais Yousef qyousef at layalina.io
Mon Jan 29 16:26:52 PST 2024


On 01/09/24 17:46, Vincent Guittot wrote:
> Aggregate the different pressures applied on the capacity of CPUs and
> create a new function that returns the actual capacity of the CPU:
>   get_actual_cpu_capacity()
> 
> Signed-off-by: Vincent Guittot <vincent.guittot at linaro.org>
> Reviewed-by: Lukasz Luba <lukasz.luba at arm.com>
> ---
>  kernel/sched/fair.c | 45 +++++++++++++++++++++++++--------------------
>  1 file changed, 25 insertions(+), 20 deletions(-)
> 
> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
> index 9cc20855dc2b..e54bbf8b4936 100644
> --- a/kernel/sched/fair.c
> +++ b/kernel/sched/fair.c
> @@ -4910,13 +4910,22 @@ static inline void util_est_update(struct cfs_rq *cfs_rq,
>  	trace_sched_util_est_se_tp(&p->se);
>  }
>  
> +static inline unsigned long get_actual_cpu_capacity(int cpu)
> +{
> +	unsigned long capacity = arch_scale_cpu_capacity(cpu);
> +
> +	capacity -= max(thermal_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));

Does cpufreq_get_pressure() reflect thermally throttled frequency, or just the
policy->max being capped by user etc? I didn't see an update to cpufreq when we
topology_update_hw_pressure(). Not sure if it'll go through another path.

maxing with thermal_load_avg() will change the behavior below where we used to
compare against instantaneous pressure. The concern was that it not just can
appear quickly, but disappear quickly too. thermal_load_avg() will decay
slowly, no?  This means we'll lose a lot of opportunities for better task
placement until this decays which can take relatively long time.

So maxing handles the direction where a pressure suddenly appears. But it
doesn't handle where it disappears.

I suspect your thoughts are that if it was transient then thermal_load_avg()
should be small anyway - which I think makes sense.

I think we need a comment to explain these nuance differences.

> +
> +	return capacity;
> +}
> +
>  static inline int util_fits_cpu(unsigned long util,
>  				unsigned long uclamp_min,
>  				unsigned long uclamp_max,
>  				int cpu)
>  {
> -	unsigned long capacity_orig, capacity_orig_thermal;
>  	unsigned long capacity = capacity_of(cpu);
> +	unsigned long capacity_orig;
>  	bool fits, uclamp_max_fits;
>  
>  	/*
> @@ -4948,7 +4957,6 @@ static inline int util_fits_cpu(unsigned long util,
>  	 * goal is to cap the task. So it's okay if it's getting less.
>  	 */
>  	capacity_orig = arch_scale_cpu_capacity(cpu);
> -	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
>  
>  	/*
>  	 * We want to force a task to fit a cpu as implied by uclamp_max.
> @@ -5023,7 +5031,8 @@ static inline int util_fits_cpu(unsigned long util,
>  	 * handle the case uclamp_min > uclamp_max.
>  	 */
>  	uclamp_min = min(uclamp_min, uclamp_max);
> -	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
> +	if (fits && (util < uclamp_min) &&
> +	    (uclamp_min > get_actual_cpu_capacity(cpu)))
>  		return -1;
>  
>  	return fits;
> @@ -7404,7 +7413,7 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
>  		 * Look for the CPU with best capacity.
>  		 */
>  		else if (fits < 0)
> -			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
> +			cpu_cap = get_actual_cpu_capacity(cpu);
>  
>  		/*
>  		 * First, select CPU which fits better (-1 being better than 0).
> @@ -7897,8 +7906,8 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
>  	struct root_domain *rd = this_rq()->rd;
>  	int cpu, best_energy_cpu, target = -1;
>  	int prev_fits = -1, best_fits = -1;
> -	unsigned long best_thermal_cap = 0;
> -	unsigned long prev_thermal_cap = 0;
> +	unsigned long best_actual_cap = 0;
> +	unsigned long prev_actual_cap = 0;
>  	struct sched_domain *sd;
>  	struct perf_domain *pd;
>  	struct energy_env eenv;
> @@ -7928,7 +7937,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
>  
>  	for (; pd; pd = pd->next) {
>  		unsigned long util_min = p_util_min, util_max = p_util_max;
> -		unsigned long cpu_cap, cpu_thermal_cap, util;
> +		unsigned long cpu_cap, cpu_actual_cap, util;
>  		long prev_spare_cap = -1, max_spare_cap = -1;
>  		unsigned long rq_util_min, rq_util_max;
>  		unsigned long cur_delta, base_energy;
> @@ -7940,18 +7949,17 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
>  		if (cpumask_empty(cpus))
>  			continue;
>  
> -		/* Account thermal pressure for the energy estimation */
> +		/* Account external pressure for the energy estimation */
>  		cpu = cpumask_first(cpus);
> -		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
> -		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
> +		cpu_actual_cap = get_actual_cpu_capacity(cpu);
>  
> -		eenv.cpu_cap = cpu_thermal_cap;
> +		eenv.cpu_cap = cpu_actual_cap;
>  		eenv.pd_cap = 0;
>  
>  		for_each_cpu(cpu, cpus) {
>  			struct rq *rq = cpu_rq(cpu);
>  
> -			eenv.pd_cap += cpu_thermal_cap;
> +			eenv.pd_cap += cpu_actual_cap;
>  
>  			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
>  				continue;
> @@ -8022,7 +8030,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
>  			if (prev_delta < base_energy)
>  				goto unlock;
>  			prev_delta -= base_energy;
> -			prev_thermal_cap = cpu_thermal_cap;
> +			prev_actual_cap = cpu_actual_cap;
>  			best_delta = min(best_delta, prev_delta);
>  		}
>  
> @@ -8037,7 +8045,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
>  			 * but best energy cpu has better capacity.
>  			 */
>  			if ((max_fits < 0) &&
> -			    (cpu_thermal_cap <= best_thermal_cap))
> +			    (cpu_actual_cap <= best_actual_cap))
>  				continue;
>  
>  			cur_delta = compute_energy(&eenv, pd, cpus, p,
> @@ -8058,14 +8066,14 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
>  			best_delta = cur_delta;
>  			best_energy_cpu = max_spare_cap_cpu;
>  			best_fits = max_fits;
> -			best_thermal_cap = cpu_thermal_cap;
> +			best_actual_cap = cpu_actual_cap;
>  		}
>  	}
>  	rcu_read_unlock();
>  
>  	if ((best_fits > prev_fits) ||
>  	    ((best_fits > 0) && (best_delta < prev_delta)) ||
> -	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
> +	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
>  		target = best_energy_cpu;
>  
>  	return target;
> @@ -9441,8 +9449,8 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
>  
>  static unsigned long scale_rt_capacity(int cpu)
>  {
> +	unsigned long max = get_actual_cpu_capacity(cpu);
>  	struct rq *rq = cpu_rq(cpu);
> -	unsigned long max = arch_scale_cpu_capacity(cpu);
>  	unsigned long used, free;
>  	unsigned long irq;
>  
> @@ -9454,12 +9462,9 @@ static unsigned long scale_rt_capacity(int cpu)
>  	/*
>  	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
>  	 * (running and not running) with weights 0 and 1024 respectively.
> -	 * avg_thermal.load_avg tracks thermal pressure and the weighted
> -	 * average uses the actual delta max capacity(load).
>  	 */
>  	used = READ_ONCE(rq->avg_rt.util_avg);
>  	used += READ_ONCE(rq->avg_dl.util_avg);
> -	used += thermal_load_avg(rq);
>  
>  	if (unlikely(used >= max))
>  		return 1;
> -- 
> 2.34.1
> 



More information about the linux-arm-kernel mailing list