[PATCH v6 40/64] KVM: arm64: nv: Trap and emulate AT instructions from virtual EL2

Alexandru Elisei alexandru.elisei at arm.com
Thu Feb 24 07:39:16 PST 2022


Hi,

On Fri, Jan 28, 2022 at 12:18:48PM +0000, Marc Zyngier wrote:
> From: Jintack Lim <jintack.lim at linaro.org>
> 
> When supporting nested virtualization a guest hypervisor executing AT
> instructions must be trapped and emulated by the host hypervisor,
> because untrapped AT instructions operating on S1E1 will use the wrong
> translation regieme (the one used to emulate virtual EL2 in EL1 instead

s/regieme/regime/

> of virtual EL1) and AT instructions operating on S12 will not work from
> EL1.
> 
> This patch does several things.

I think this is a good hint that the patch can be split into several
patches. The size of the patch plus the emulation logic  make this
patch rather tedious to review.

> 
> 1. List and define all AT system instructions to emulate and document
> the emulation design.
> 
> 2. Implement AT instruction handling logic in EL2. This will be used to
> emulate AT instructions executed in the virtual EL2.
> 
> AT instruction emulation works by loading the proper processor
> context, which depends on the trapped instruction and the virtual
> HCR_EL2, to the EL1 virtual memory control registers and executing AT
> instructions. Note that ctxt->hw_sys_regs is expected to have the
> proper processor context before calling the handling
> function(__kvm_at_insn) implemented in this patch.
> 
> 4. Emulate AT S1E[01] instructions by issuing the same instructions in

Hmm... where's point number 3?

> EL2. We set the physical EL1 registers, NV and NV1 bits as described in
> the AT instruction emulation overview.
> 
> 5. Emulate AT A12E[01] instructions in two steps: First, do the stage-1
                ^
I'm guessing that's AT S12E[01].

> translation by reusing the existing AT emulation functions.  Second, do
> the stage-2 translation by walking the guest hypervisor's stage-2 page
> table in software. Record the translation result to PAR_EL1.
> 
> 6. Emulate AT S1E2 instructions by issuing the corresponding S1E1
> instructions in EL2. We set the physical EL1 registers and the HCR_EL2
> register as described in the AT instruction emulation overview.
> 
> 7. Forward system instruction traps to the virtual EL2 if the corresponding
> virtual AT bit is set in the virtual HCR_EL2.

Looks like points 4-7 make good canditates for individual patches.

> 
>   [ Much logic above has been reworked by Marc Zyngier ]
> 
> Signed-off-by: Jintack Lim <jintack.lim at linaro.org>
> Signed-off-by: Marc Zyngier <maz at kernel.org>
> Signed-off-by: Christoffer Dall <christoffer.dall at arm.com>
> ---
>  arch/arm64/include/asm/kvm_arm.h |   2 +
>  arch/arm64/include/asm/kvm_asm.h |   2 +
>  arch/arm64/include/asm/sysreg.h  |  17 +++
>  arch/arm64/kvm/Makefile          |   2 +-
>  arch/arm64/kvm/at.c              | 219 +++++++++++++++++++++++++++++
>  arch/arm64/kvm/hyp/vhe/switch.c  |  13 +-
>  arch/arm64/kvm/sys_regs.c        | 229 ++++++++++++++++++++++++++++++-
>  7 files changed, 478 insertions(+), 6 deletions(-)
>  create mode 100644 arch/arm64/kvm/at.c
> 
> diff --git a/arch/arm64/include/asm/kvm_arm.h b/arch/arm64/include/asm/kvm_arm.h
> index 3675879b53c6..aa3bdce1b166 100644
> --- a/arch/arm64/include/asm/kvm_arm.h
> +++ b/arch/arm64/include/asm/kvm_arm.h
> @@ -20,6 +20,7 @@
>  #define HCR_AMVOFFEN	(UL(1) << 51)
>  #define HCR_FIEN	(UL(1) << 47)
>  #define HCR_FWB		(UL(1) << 46)
> +#define HCR_AT		(UL(1) << 44)
>  #define HCR_NV1		(UL(1) << 43)
>  #define HCR_NV		(UL(1) << 42)
>  #define HCR_API		(UL(1) << 41)
> @@ -118,6 +119,7 @@
>  #define VTCR_EL2_TG0_16K	TCR_TG0_16K
>  #define VTCR_EL2_TG0_64K	TCR_TG0_64K
>  #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
> +#define VTCR_EL2_SH0_SHIFT	TCR_SH0_SHIFT
>  #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
>  #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
>  #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
> diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h
> index d5b0386ef765..e22861ece3c3 100644
> --- a/arch/arm64/include/asm/kvm_asm.h
> +++ b/arch/arm64/include/asm/kvm_asm.h
> @@ -208,6 +208,8 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
>  extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
>  
>  extern void __kvm_timer_set_cntvoff(u64 cntvoff);
> +extern void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
> +extern void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
>  
>  extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
>  
> diff --git a/arch/arm64/include/asm/sysreg.h b/arch/arm64/include/asm/sysreg.h
> index 61c990e5591a..ea17d1eabfc5 100644
> --- a/arch/arm64/include/asm/sysreg.h
> +++ b/arch/arm64/include/asm/sysreg.h
> @@ -658,6 +658,23 @@
>  
>  #define SYS_SP_EL2			sys_reg(3, 6,  4, 1, 0)
>  
> +/* AT instructions */
> +#define AT_Op0 1
> +#define AT_CRn 7
> +
> +#define OP_AT_S1E1R	sys_insn(AT_Op0, 0, AT_CRn, 8, 0)
> +#define OP_AT_S1E1W	sys_insn(AT_Op0, 0, AT_CRn, 8, 1)
> +#define OP_AT_S1E0R	sys_insn(AT_Op0, 0, AT_CRn, 8, 2)
> +#define OP_AT_S1E0W	sys_insn(AT_Op0, 0, AT_CRn, 8, 3)
> +#define OP_AT_S1E1RP	sys_insn(AT_Op0, 0, AT_CRn, 9, 0)
> +#define OP_AT_S1E1WP	sys_insn(AT_Op0, 0, AT_CRn, 9, 1)
> +#define OP_AT_S1E2R	sys_insn(AT_Op0, 4, AT_CRn, 8, 0)
> +#define OP_AT_S1E2W	sys_insn(AT_Op0, 4, AT_CRn, 8, 1)
> +#define OP_AT_S12E1R	sys_insn(AT_Op0, 4, AT_CRn, 8, 4)
> +#define OP_AT_S12E1W	sys_insn(AT_Op0, 4, AT_CRn, 8, 5)
> +#define OP_AT_S12E0R	sys_insn(AT_Op0, 4, AT_CRn, 8, 6)
> +#define OP_AT_S12E0W	sys_insn(AT_Op0, 4, AT_CRn, 8, 7)
> +
>  /* Common SCTLR_ELx flags. */
>  #define SCTLR_ELx_DSSBS	(BIT(44))
>  #define SCTLR_ELx_ATA	(BIT(43))
> diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile
> index dbaf42ff65f1..b800dcbd157f 100644
> --- a/arch/arm64/kvm/Makefile
> +++ b/arch/arm64/kvm/Makefile
> @@ -14,7 +14,7 @@ kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \
>  	 inject_fault.o va_layout.o handle_exit.o \
>  	 guest.o debug.o reset.o sys_regs.o \
>  	 vgic-sys-reg-v3.o fpsimd.o pmu.o pkvm.o \
> -	 arch_timer.o trng.o emulate-nested.o nested.o \
> +	 arch_timer.o trng.o emulate-nested.o nested.o at.o \
>  	 vgic/vgic.o vgic/vgic-init.o \
>  	 vgic/vgic-irqfd.o vgic/vgic-v2.o \
>  	 vgic/vgic-v3.o vgic/vgic-v4.o \
> diff --git a/arch/arm64/kvm/at.c b/arch/arm64/kvm/at.c
> new file mode 100644
> index 000000000000..574c664e984b
> --- /dev/null
> +++ b/arch/arm64/kvm/at.c
> @@ -0,0 +1,219 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (C) 2017 - Linaro Ltd
> + * Author: Jintack Lim <jintack.lim at linaro.org>
> + */
> +
> +#include <asm/kvm_hyp.h>
> +#include <asm/kvm_mmu.h>
> +
> +struct mmu_config {
> +	u64	ttbr0;
> +	u64	ttbr1;
> +	u64	tcr;
> +	u64	sctlr;
> +	u64	vttbr;
> +	u64	vtcr;
> +	u64	hcr;
> +};
> +
> +static void __mmu_config_save(struct mmu_config *config)
> +{
> +	config->ttbr0	= read_sysreg_el1(SYS_TTBR0);
> +	config->ttbr1	= read_sysreg_el1(SYS_TTBR1);
> +	config->tcr	= read_sysreg_el1(SYS_TCR);
> +	config->sctlr	= read_sysreg_el1(SYS_SCTLR);
> +	config->vttbr	= read_sysreg(vttbr_el2);
> +	config->vtcr	= read_sysreg(vtcr_el2);

KVM saves VTCR_EL2, but the register is never changed between
__mmu_config_{save,restore} sequences. Another comment about this below.

> +	config->hcr	= read_sysreg(hcr_el2);
> +}
> +
> +static void __mmu_config_restore(struct mmu_config *config)
> +{
> +	write_sysreg_el1(config->ttbr0,	SYS_TTBR0);
> +	write_sysreg_el1(config->ttbr1,	SYS_TTBR1);
> +	write_sysreg_el1(config->tcr,	SYS_TCR);
> +	write_sysreg_el1(config->sctlr,	SYS_SCTLR);
> +	write_sysreg(config->vttbr,	vttbr_el2);
> +	write_sysreg(config->vtcr,	vtcr_el2);
> +	write_sysreg(config->hcr,	hcr_el2);
> +
> +	isb();
> +}
> +
> +void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
> +{
> +	struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
> +	struct mmu_config config;
> +	struct kvm_s2_mmu *mmu;
> +
> +	spin_lock(&vcpu->kvm->mmu_lock);
> +
> +	/*
> +	 * If HCR_EL2.{E2H,TGE} == {1,1}, the MMU context is already
> +	 * the right one (as we trapped from vEL2).
> +	 */
> +	if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))
> +		goto skip_mmu_switch;
> +
> +	/*
> +	 * FIXME: Obtaining the S2 MMU for a guest guest is horribly
> +	 * racy, and we may not find it (evicted by another vcpu, for
> +	 * example).
> +	 */

I think the "horribly racy" part deserves some elaboration. As far as I can tell
get_s2_mmu_nested() and lookup_s2_mmu() is always called with kvm->mmu_lock
held.

I suppose "evicted by another vcpu" means that get_s2_mmu_nested() decided
to reuse the MMU that KVM needs, in which case it's impossible to execute
the AT instruction, as there is no shadow stage 2 for the context.

I wonder if that's something that KVM should try to avoid, One obvious
solution would be never to reuse MMUs, but that comes at the cost of
allowing a L1 guest to eat up the L0 host's memory with kvm_s2_mmu structs
by creating many L2 guests.

Another solution would be to have a software stage 1 translation table
walker which populates the shadow S2 during the walk, if and only if the
IPA is present in the virtual stage 2 with the right permissions.

What do you think?

> +	mmu = lookup_s2_mmu(vcpu->kvm,
> +			    vcpu_read_sys_reg(vcpu, VTTBR_EL2),
> +			    vcpu_read_sys_reg(vcpu, HCR_EL2));
> +
> +	if (WARN_ON(!mmu))
> +		goto out;

If I'm not mistaken, in this case, guest PAR_EL1 is left untouched by KVM.
Shouldn't KVM set PAR_EL1 to SYS_PAR_EL1_F so the L1 guest doesn't treat
the stale PAR_EL1 value as valid?

> +
> +	/* We've trapped, so everything is live on the CPU. */
> +	__mmu_config_save(&config);
> +
> +	write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1),	SYS_TTBR0);
> +	write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1),	SYS_TTBR1);
> +	write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
> +	write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
> +	write_sysreg(kvm_get_vttbr(mmu),		vttbr_el2);
> +	/*
> +	 * REVISIT: do we need anything from the guest's VTCR_EL2? If
> +	 * looks like keeping the hosts configuration is the right
> +	 * thing to do at this stage (and we could avoid save/restore
> +	 * it. Keep the host's version for now.
> +	 */

I also don't think it's necessary to load the L1 guest's VTCR_EL2 register.
The register controls virtual stage 2, which is never used because KVM will
always use the shadow stage 2.

> +	write_sysreg((config.hcr & ~HCR_TGE) | HCR_VM,	hcr_el2);
> +
> +	isb();
> +
> +skip_mmu_switch:
> +
> +	switch (op) {
> +	case OP_AT_S1E1R:
> +	case OP_AT_S1E1RP:
> +		asm volatile("at s1e1r, %0" : : "r" (vaddr));
> +		break;
> +	case OP_AT_S1E1W:
> +	case OP_AT_S1E1WP:
> +		asm volatile("at s1e1w, %0" : : "r" (vaddr));
> +		break;
> +	case OP_AT_S1E0R:
> +		asm volatile("at s1e0r, %0" : : "r" (vaddr));
> +		break;
> +	case OP_AT_S1E0W:
> +		asm volatile("at s1e0w, %0" : : "r" (vaddr));
> +		break;
> +	default:
> +		WARN_ON_ONCE(1);
> +		break;
> +	}
> +
> +	isb();
> +
> +	ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
> +
> +	/*
> +	 * Failed? let's leave the building now.
> +	 *
> +	 * FIXME: how about a failed translation because the shadow S2
> +	 * wasn't populated? We may need to perform a SW PTW,
> +	 * populating our shadow S2 and retry the instruction.
> +	 */
> +	if (ctxt_sys_reg(ctxt, PAR_EL1) & 1)
> +		goto nopan;
> +
> +	/* No PAN? No problem. */
> +	if (!(*vcpu_cpsr(vcpu) & PSR_PAN_BIT))
> +		goto nopan;
> +
> +	/*
> +	 * For PAN-involved AT operations, perform the same
> +	 * translation, using EL0 this time.
> +	 */

The description for FEAT_PAN is:

"When the value of this PAN state bit is 1, any privileged data access from
EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is
accessible to data accesses at EL0, generates a Permission fault."

I assume KVM executes the AT to make sure there is a valid translation
translation for the guest virtual address, right?

> +	switch (op) {
> +	case OP_AT_S1E1RP:
> +		asm volatile("at s1e0r, %0" : : "r" (vaddr));
> +		break;
> +	case OP_AT_S1E1WP:
> +		asm volatile("at s1e0w, %0" : : "r" (vaddr));
> +		break;
> +	default:
> +		goto nopan;
> +	}
> +
> +	/*
> +	 * If the EL0 translation has succeeded, we need to pretend
> +	 * the AT operation has failed, as the PAN setting forbids
> +	 * such a translation.

Hmm.. according to the description of FEAT_PAN, the AT translation fails
because of PAN=1 when CurrentEL=EL2 && HCR_EL2.E2H=1. So if the VCPU is at
virtual EL2 and virtual HCR_EL2.E2H=0, then it is allowed to succeed.

Thanks,
Alex

> +	 *
> +	 * FIXME: we hardcode a Level-3 permission fault. We really
> +	 * should return the real fault level.
> +	 */
> +	if (!(read_sysreg(par_el1) & 1))
> +		ctxt_sys_reg(ctxt, PAR_EL1) = 0x1f;
> +
> +nopan:
> +	if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
> +		__mmu_config_restore(&config);
> +
> +out:
> +	spin_unlock(&vcpu->kvm->mmu_lock);
> +}
> +
> +void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
> +{
> +	struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
> +	struct mmu_config config;
> +	struct kvm_s2_mmu *mmu;
> +	u64 val;
> +
> +	spin_lock(&vcpu->kvm->mmu_lock);
> +
> +	mmu = &vcpu->kvm->arch.mmu;
> +
> +	/* We've trapped, so everything is live on the CPU. */
> +	__mmu_config_save(&config);
> +
> +	if (vcpu_el2_e2h_is_set(vcpu)) {
> +		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2),	SYS_TTBR0);
> +		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL2),	SYS_TTBR1);
> +		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL2),	SYS_TCR);
> +		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL2),	SYS_SCTLR);
> +
> +		val = config.hcr;
> +	} else {
> +		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2),	SYS_TTBR0);
> +		val = translate_tcr_el2_to_tcr_el1(ctxt_sys_reg(ctxt, TCR_EL2));
> +		write_sysreg_el1(val, SYS_TCR);
> +		val = translate_sctlr_el2_to_sctlr_el1(ctxt_sys_reg(ctxt, SCTLR_EL2));
> +		write_sysreg_el1(val, SYS_SCTLR);
> +
> +		val = config.hcr | HCR_NV | HCR_NV1;
> +	}
> +
> +	write_sysreg(kvm_get_vttbr(mmu),		vttbr_el2);
> +	/* FIXME: write S2 MMU VTCR_EL2? */
> +	write_sysreg((val & ~HCR_TGE) | HCR_VM,		hcr_el2);
> +
> +	isb();
> +
> +	switch (op) {
> +	case OP_AT_S1E2R:
> +		asm volatile("at s1e1r, %0" : : "r" (vaddr));
> +		break;
> +	case OP_AT_S1E2W:
> +		asm volatile("at s1e1w, %0" : : "r" (vaddr));
> +		break;
> +	default:
> +		WARN_ON_ONCE(1);
> +		break;
> +	}
> +
> +	isb();
> +
> +	/* FIXME: handle failed translation due to shadow S2 */
> +	ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
> +
> +	__mmu_config_restore(&config);
> +	spin_unlock(&vcpu->kvm->mmu_lock);
> +}
> diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c
> index 28845f907cfc..b7790d3c4122 100644
> --- a/arch/arm64/kvm/hyp/vhe/switch.c
> +++ b/arch/arm64/kvm/hyp/vhe/switch.c
> @@ -41,9 +41,10 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
>  		if (!vcpu_el2_e2h_is_set(vcpu)) {
>  			/*
>  			 * For a guest hypervisor on v8.0, trap and emulate
> -			 * the EL1 virtual memory control register accesses.
> +			 * the EL1 virtual memory control register accesses
> +			 * as well as the AT S1 operations.
>  			 */
> -			hcr |= HCR_TVM | HCR_TRVM | HCR_NV1;
> +			hcr |= HCR_TVM | HCR_TRVM | HCR_AT | HCR_NV1;
>  		} else {
>  			/*
>  			 * For a guest hypervisor on v8.1 (VHE), allow to
> @@ -68,6 +69,14 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
>  			hcr &= ~HCR_TVM;
>  
>  			hcr |= vhcr_el2 & (HCR_TVM | HCR_TRVM);
> +
> +			/*
> +			 * If we're using the EL1 translation regime
> +			 * (TGE clear), then ensure that AT S1 ops are
> +			 * trapped too.
> +			 */
> +			if (!vcpu_el2_tge_is_set(vcpu))
> +				hcr |= HCR_AT;
>  		}
>  	}
>  
> diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
> index f669618f966b..7be57e1b7019 100644
> --- a/arch/arm64/kvm/sys_regs.c
> +++ b/arch/arm64/kvm/sys_regs.c
> @@ -1704,7 +1704,6 @@ static bool access_sp_el1(struct kvm_vcpu *vcpu,
>  	return true;
>  }
>  
> -
>  static bool access_elr(struct kvm_vcpu *vcpu,
>  		       struct sys_reg_params *p,
>  		       const struct sys_reg_desc *r)
> @@ -2236,12 +2235,236 @@ static const struct sys_reg_desc sys_reg_descs[] = {
>  	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
>  };
>  
> -#define SYS_INSN_TO_DESC(insn, access_fn, forward_fn)	\
> -	{ SYS_DESC((insn)), (access_fn), NULL, 0, 0, NULL, NULL, (forward_fn) }
> +static bool handle_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
> +			 const struct sys_reg_desc *r)
> +{
> +	int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
> +
> +	if (vcpu_has_nv(vcpu) && forward_traps(vcpu, HCR_AT))
> +		return false;
> +
> +	__kvm_at_s1e01(vcpu, sys_encoding, p->regval);
> +
> +	return true;
> +}
> +
> +static bool handle_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
> +			const struct sys_reg_desc *r)
> +{
> +	int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
> +
> +	if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu))
> +		return false;
> +
> +	__kvm_at_s1e2(vcpu, sys_encoding, p->regval);
> +
> +	return true;
> +}
> +
> +static u64 setup_par_aborted(u32 esr)
> +{
> +	u64 par = 0;
> +
> +	/* S [9]: fault in the stage 2 translation */
> +	par |= (1 << 9);
> +	/* FST [6:1]: Fault status code  */
> +	par |= (esr << 1);
> +	/* F [0]: translation is aborted */
> +	par |= 1;
> +
> +	return par;
> +}
> +
> +static u64 setup_par_completed(struct kvm_vcpu *vcpu, struct kvm_s2_trans *out)
> +{
> +	u64 par, vtcr_sh0;
> +
> +	/* F [0]: Translation is completed successfully */
> +	par = 0;
> +	/* ATTR [63:56] */
> +	par |= out->upper_attr;
> +	/* PA [47:12] */
> +	par |= out->output & GENMASK_ULL(11, 0);
> +	/* RES1 [11] */
> +	par |= (1UL << 11);
> +	/* SH [8:7]: Shareability attribute */
> +	vtcr_sh0 = vcpu_read_sys_reg(vcpu, VTCR_EL2) & VTCR_EL2_SH0_MASK;
> +	par |= (vtcr_sh0 >> VTCR_EL2_SH0_SHIFT) << 7;
> +
> +	return par;
> +}
> +
> +static bool handle_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
> +		       const struct sys_reg_desc *r, bool write)
> +{
> +	u64 par, va;
> +	u32 esr, op;
> +	phys_addr_t ipa;
> +	struct kvm_s2_trans out;
> +	int ret;
> +
> +	if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu))
> +		return false;
> +
> +	/* Do the stage-1 translation */
> +	va = p->regval;
> +	op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
> +	switch (op) {
> +	case OP_AT_S12E1R:
> +		op = OP_AT_S1E1R;
> +		break;
> +	case OP_AT_S12E1W:
> +		op = OP_AT_S1E1W;
> +		break;
> +	case OP_AT_S12E0R:
> +		op = OP_AT_S1E0R;
> +		break;
> +	case OP_AT_S12E0W:
> +		op = OP_AT_S1E0W;
> +		break;
> +	default:
> +		WARN_ON_ONCE(1);
> +		return true;
> +	}
> +
> +	__kvm_at_s1e01(vcpu, op, va);
> +	par = vcpu_read_sys_reg(vcpu, PAR_EL1);
> +	if (par & 1) {
> +		/* The stage-1 translation aborted */
> +		return true;
> +	}
> +
> +	/* Do the stage-2 translation */
> +	ipa = (par & GENMASK_ULL(47, 12)) | (va & GENMASK_ULL(11, 0));
> +	out.esr = 0;
> +	ret = kvm_walk_nested_s2(vcpu, ipa, &out);
> +	if (ret < 0)
> +		return false;
> +
> +	/* Check if the stage-2 PTW is aborted */
> +	if (out.esr) {
> +		esr = out.esr;
> +		goto s2_trans_abort;
> +	}
> +
> +	/* Check the access permission */
> +	if ((!write && !out.readable) || (write && !out.writable)) {
> +		esr = ESR_ELx_FSC_PERM;
> +		esr |= out.level & 0x3;
> +		goto s2_trans_abort;
> +	}
> +
> +	vcpu_write_sys_reg(vcpu, setup_par_completed(vcpu, &out), PAR_EL1);
> +	return true;
> +
> +s2_trans_abort:
> +	vcpu_write_sys_reg(vcpu, setup_par_aborted(esr), PAR_EL1);
> +	return true;
> +}
> +
> +static bool handle_s12r(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
> +			const struct sys_reg_desc *r)
> +{
> +	return handle_s12(vcpu, p, r, false);
> +}
> +
> +static bool handle_s12w(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
> +			const struct sys_reg_desc *r)
> +{
> +	return handle_s12(vcpu, p, r, true);
> +}
> +
> +/*
> + * AT instruction emulation
> + *
> + * We emulate AT instructions executed in the virtual EL2.
> + * Basic strategy for the stage-1 translation emulation is to load proper
> + * context, which depends on the trapped instruction and the virtual HCR_EL2,
> + * to the EL1 virtual memory control registers and execute S1E[01] instructions
> + * in EL2. See below for more detail.
> + *
> + * For the stage-2 translation, which is necessary for S12E[01] emulation,
> + * we walk the guest hypervisor's stage-2 page table in software.
> + *
> + * The stage-1 translation emulations can be divided into two groups depending
> + * on the translation regime.
> + *
> + * 1. EL2 AT instructions: S1E2x
> + * +-----------------------------------------------------------------------+
> + * |                             |         Setting for the emulation       |
> + * | Virtual HCR_EL2.E2H on trap |-----------------------------------------+
> + * |                             | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
> + * |-----------------------------------------------------------------------|
> + * |             0               |     vEL2      |    (1, 1)    |    0     |
> + * |             1               |     vEL2      |    (0, 0)    |    0     |
> + * +-----------------------------------------------------------------------+
> + *
> + * We emulate the EL2 AT instructions by loading virtual EL2 context
> + * to the EL1 virtual memory control registers and executing corresponding
> + * EL1 AT instructions.
> + *
> + * We set physical NV and NV1 bits to use EL2 page table format for non-VHE
> + * guest hypervisor (i.e. HCR_EL2.E2H == 0). As a VHE guest hypervisor uses the
> + * EL1 page table format, we don't set those bits.
> + *
> + * We should clear physical TGE bit not to use the EL2 translation regime when
> + * the host uses the VHE feature.
> + *
> + *
> + * 2. EL0/EL1 AT instructions: S1E[01]x, S12E1x
> + * +----------------------------------------------------------------------+
> + * |   Virtual HCR_EL2 on trap  |        Setting for the emulation        |
> + * |----------------------------------------------------------------------+
> + * | (vE2H, vTGE) | (vNV, vNV1) | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
> + * |----------------------------------------------------------------------|
> + * |    (0, 0)*   |   (0, 0)    |      vEL1     |    (0, 0)    |    0     |
> + * |    (0, 0)    |   (1, 1)    |      vEL1     |    (1, 1)    |    0     |
> + * |    (1, 1)    |   (0, 0)    |      vEL2     |    (0, 0)    |    0     |
> + * |    (1, 1)    |   (1, 1)    |      vEL2     |    (1, 1)    |    0     |
> + * +----------------------------------------------------------------------+
> + *
> + * *For (0, 0) in the 'Virtual HCR_EL2 on trap' column, it actually means
> + *  (1, 1). Keep them (0, 0) just for the readability.
> + *
> + * We set physical EL1 virtual memory control registers depending on
> + * (vE2H, vTGE) pair. When the pair is (0, 0) where AT instructions are
> + * supposed to use EL0/EL1 translation regime, we load the EL1 registers with
> + * the virtual EL1 registers (i.e. EL1 registers from the guest hypervisor's
> + * point of view). When the pair is (1, 1), however, AT instructions are defined
> + * to apply EL2 translation regime. To emulate this behavior, we load the EL1
> + * registers with the virtual EL2 context. (i.e the shadow registers)
> + *
> + * We respect the virtual NV and NV1 bit for the emulation. When those bits are
> + * set, it means that a guest hypervisor would like to use EL2 page table format
> + * for the EL1 translation regime. We emulate this by setting the physical
> + * NV and NV1 bits.
> + */
> +
> +#define SYS_INSN(insn, access_fn)					\
> +	{								\
> +		SYS_DESC(OP_##insn),					\
> +		.access = (access_fn),					\
> +	}
> +
>  static struct sys_reg_desc sys_insn_descs[] = {
>  	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
> +
> +	SYS_INSN(AT_S1E1R, handle_s1e01),
> +	SYS_INSN(AT_S1E1W, handle_s1e01),
> +	SYS_INSN(AT_S1E0R, handle_s1e01),
> +	SYS_INSN(AT_S1E0W, handle_s1e01),
> +	SYS_INSN(AT_S1E1RP, handle_s1e01),
> +	SYS_INSN(AT_S1E1WP, handle_s1e01),
> +
>  	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
>  	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
> +
> +	SYS_INSN(AT_S1E2R, handle_s1e2),
> +	SYS_INSN(AT_S1E2W, handle_s1e2),
> +	SYS_INSN(AT_S12E1R, handle_s12r),
> +	SYS_INSN(AT_S12E1W, handle_s12w),
> +	SYS_INSN(AT_S12E0R, handle_s12r),
> +	SYS_INSN(AT_S12E0W, handle_s12w),
>  };
>  
>  static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
> -- 
> 2.30.2
> 



More information about the linux-arm-kernel mailing list