[RFC PATCH v6 1/2] arm64/sve: Split TIF_SVE into separate execute and register state flags
Mark Brown
broonie at kernel.org
Mon Jan 11 19:38:43 EST 2021
Currently we have a single flag TIF_SVE which says that a task is
allowed to execute SVE instructions without trapping and also that full
SVE register state is stored for the task. This results in us doing
extra work storing and restoring the full SVE register state even in
those cases where the ABI is that only the first 128 bits of the Z0-V31
registers which are shared with the FPSIMD V0-V31 are valid.
In order to allow us to avoid these overheads split TIF_SVE up so that
we have two separate flags, TIF_SVE_EXEC which allows execution of SVE
instructions without trapping and TIF_SVE_FULL_REGS which indicates that
the full SVE register state is stored. If both are set the behaviour is
as currently, if TIF_SVE_EXEC is set without TIF_SVE_FULL_REGS then we
save and restore only the FPSIMD registers until we return to userspace
with TIF_SVE_EXEC enabled at which point we convert the FPSIMD registers
to SVE. It is not meaningful to have TIF_SVE_FULL_REGS set without
TIF_SVE_EXEC.
This patch is intended only to split the flags, it does not take
avantage of the ability to set the flags independently and the new
state with TIF_SVE_EXEC only should not be observed.
This is based on earlier work by Julien Gral implementing a slightly
different approach.
Signed-off-by: Mark Brown <broonie at kernel.org>
---
arch/arm64/include/asm/thread_info.h | 3 +-
arch/arm64/kernel/fpsimd.c | 175 +++++++++++++++++++--------
arch/arm64/kernel/process.c | 7 +-
arch/arm64/kernel/ptrace.c | 8 +-
arch/arm64/kernel/signal.c | 15 ++-
arch/arm64/kernel/syscall.c | 3 +-
arch/arm64/kvm/fpsimd.c | 6 +-
7 files changed, 152 insertions(+), 65 deletions(-)
diff --git a/arch/arm64/include/asm/thread_info.h b/arch/arm64/include/asm/thread_info.h
index 9f4e3b266f21..c856159e071c 100644
--- a/arch/arm64/include/asm/thread_info.h
+++ b/arch/arm64/include/asm/thread_info.h
@@ -65,6 +65,7 @@ void arch_release_task_struct(struct task_struct *tsk);
#define TIF_UPROBE 4 /* uprobe breakpoint or singlestep */
#define TIF_MTE_ASYNC_FAULT 5 /* MTE Asynchronous Tag Check Fault */
#define TIF_NOTIFY_SIGNAL 6 /* signal notifications exist */
+#define TIF_SVE_EXEC 7 /* SVE instructions don't trap */
#define TIF_SYSCALL_TRACE 8 /* syscall trace active */
#define TIF_SYSCALL_AUDIT 9 /* syscall auditing */
#define TIF_SYSCALL_TRACEPOINT 10 /* syscall tracepoint for ftrace */
@@ -75,7 +76,7 @@ void arch_release_task_struct(struct task_struct *tsk);
#define TIF_RESTORE_SIGMASK 20
#define TIF_SINGLESTEP 21
#define TIF_32BIT 22 /* 32bit process */
-#define TIF_SVE 23 /* Scalable Vector Extension in use */
+#define TIF_SVE_FULL_REGS 23 /* Full SVE register set stored */
#define TIF_SVE_VL_INHERIT 24 /* Inherit sve_vl_onexec across exec */
#define TIF_SSBD 25 /* Wants SSB mitigation */
#define TIF_TAGGED_ADDR 26 /* Allow tagged user addresses */
diff --git a/arch/arm64/kernel/fpsimd.c b/arch/arm64/kernel/fpsimd.c
index 062b21f30f94..af01d23bc8cc 100644
--- a/arch/arm64/kernel/fpsimd.c
+++ b/arch/arm64/kernel/fpsimd.c
@@ -215,48 +215,70 @@ static bool have_cpu_fpsimd_context(void)
*/
static void __sve_free(struct task_struct *task)
{
+ /* SVE context will be zeroed when allocated. */
+ clear_tsk_thread_flag(task, TIF_SVE_FULL_REGS);
kfree(task->thread.sve_state);
task->thread.sve_state = NULL;
}
static void sve_free(struct task_struct *task)
{
- WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
+ WARN_ON(test_tsk_thread_flag(task, TIF_SVE_EXEC));
__sve_free(task);
}
/*
- * TIF_SVE controls whether a task can use SVE without trapping while
- * in userspace, and also the way a task's FPSIMD/SVE state is stored
- * in thread_struct.
+ * In order to avoid the expense of storing the SVE registers when not
+ * in active use by tasks we keep track of the task's SVE usage and
+ * only allocate space for SVE registers for tasks that need it. In
+ * addition since on first use and after every syscall only the portion
+ * of the SVE registers shared with FPSIMD are used we separately track
+ * if we need to actually save all that state.
*
- * The kernel uses this flag to track whether a user task is actively
- * using SVE, and therefore whether full SVE register state needs to
- * be tracked. If not, the cheaper FPSIMD context handling code can
- * be used instead of the more costly SVE equivalents.
+ * TIF_SVE_EXEC controls whether a task can use SVE without trapping
+ * while in userspace. TIF_SVE_FULL_REGS controls the way a task's
+ * FPSIMD/SVE state is stored in thread_struct. The kernel uses this
+ * flag to track whether a user task has active SVE state, and
+ * therefore whether full SVE register state needs to be tracked. If
+ * not, the cheaper FPSIMD context handling code can be used instead
+ * of the more costly SVE equivalents.
*
- * * TIF_SVE set:
+ * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
+ * irrespective of any flags, since these are not vector length
+ * dependent.
*
- * The task can execute SVE instructions while in userspace without
- * trapping to the kernel.
+ * * TIF_SVE_EXEC is not set:
*
- * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
- * corresponding Zn), P0-P15 and FFR are encoded in in
- * task->thread.sve_state, formatted appropriately for vector
- * length task->thread.sve_vl.
+ * An attempt by the user task to execute an SVE instruction causes
+ * do_sve_acc() to be called, which does some preparation and sets
+ * TIF_SVE_EXEC.
+ *
+ * When stored, FPSIMD registers V0-V31 are encoded in
+ * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
+ * logically zero but not stored anywhere; P0-P15 and FFR are not
+ * stored and have unspecified values from userspace's point of
+ * view. For hygiene purposes, the kernel zeroes them on next use,
+ * but userspace is discouraged from relying on this.
+ *
+ * task->thread.sve_state does not need to be non-NULL, valid or any
+ * particular size: it must not be dereferenced. TIF_SVE_FULL_REGS
+ * will have no effect and should never be set.
+ *
+ * * TIF_SVE_EXEC set:
+ *
+ * The task can execute SVE instructions while in userspace without
+ * trapping to the kernel. Storage of Z0-Z31 (incorporating Vn in
+ * bits[0-127]) is determined by TIF_SVE_FULL_REGS.
*
* task->thread.sve_state must point to a valid buffer at least
* sve_state_size(task) bytes in size.
*
- * During any syscall, the kernel may optionally clear TIF_SVE and
- * discard the vector state except for the FPSIMD subset.
- *
- * * TIF_SVE clear:
+ * During any syscall the ABI allows the kernel to discard the
+ * vector state other than the FPSIMD subset. When this is done
+ * both TIF_SVE_EXEC and TIF_SVE_FULL_REGS will be cleared.
*
- * An attempt by the user task to execute an SVE instruction causes
- * do_sve_acc() to be called, which does some preparation and then
- * sets TIF_SVE.
+ * * TIF_SVE_FULL_REGS is not set:
*
* When stored, FPSIMD registers V0-V31 are encoded in
* task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
@@ -265,12 +287,38 @@ static void sve_free(struct task_struct *task)
* view. For hygiene purposes, the kernel zeroes them on next use,
* but userspace is discouraged from relying on this.
*
- * task->thread.sve_state does not need to be non-NULL, valid or any
- * particular size: it must not be dereferenced.
+ * On entry to the kernel other than from a syscall the kernel must
+ * set TIF_SVE_FULL_REGS and save the full register state.
*
- * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
- * irrespective of whether TIF_SVE is clear or set, since these are
- * not vector length dependent.
+ * * TIF_SVE_FULL_REGS is set:
+ *
+ * This flag is only valid when TIF_SVE_EXEC is set.
+ *
+ * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
+ * corresponding Zn), P0-P15 and FFR are encoded in in
+ * task->thread.sve_state, formatted appropriately for vector
+ * length task->thread.sve_vl.
+ *
+ * On entry to the kernel from a syscall this flag and TIF_SVE_EXEC
+ * are cleared and only the FPSIMD subset of the register state is
+ * stored.
+ *
+ * In summary, combined with TIF_FOREIGN_FPSTATE:
+ *
+ * !SVE _EXEC _EXEC+_FULL_REGS
+ * +---------------+---------------+---------------+
+ * | Valid: FPSIMD | Valid: FPSIMD | Valid: SVE |
+ * !FFP | Trap: Yes | Trap: No | Trap: No |
+ * | Where: regs | Where: regs | Where: regs |
+ * +---------------+---------------+---------------+
+ * | Valid: FPSIMD | Valid: FPSIMD | Valid: SVE |
+ * FFP | Trap: Yes | Trap: No | Trap: No |
+ * | Where: memory | Where: memory | Where: memory |
+ * +---------------+---------------+---------------+
+ *
+ * Where valid indicates what state is valid, trap indicates if we
+ * should trap on executing a SVE instruction and where indicates
+ * where the current copy of the register state is.
*/
/*
@@ -279,18 +327,37 @@ static void sve_free(struct task_struct *task)
* This function should be called only when the FPSIMD/SVE state in
* thread_struct is known to be up to date, when preparing to enter
* userspace.
+ *
+ * When TIF_SVE_EXEC is set but TIF_SVE_FULL_REGS is not set the SVE
+ * state will be restored from the FPSIMD state.
*/
static void task_fpsimd_load(void)
{
+ unsigned int vl;
+
WARN_ON(!system_supports_fpsimd());
WARN_ON(!have_cpu_fpsimd_context());
- if (system_supports_sve() && test_thread_flag(TIF_SVE))
- sve_load_state(sve_pffr(¤t->thread),
- ¤t->thread.uw.fpsimd_state.fpsr,
- sve_vq_from_vl(current->thread.sve_vl) - 1);
- else
- fpsimd_load_state(¤t->thread.uw.fpsimd_state);
+ if (system_supports_sve() && test_thread_flag(TIF_SVE_EXEC)) {
+ vl = sve_vq_from_vl(current->thread.sve_vl) - 1;
+
+ /*
+ * We always return with the full register state, if
+ * there is no explicit SVE state load from the FPSIMD
+ * state instead.
+ */
+ if (test_and_set_thread_flag(TIF_SVE_FULL_REGS))
+ sve_load_state(sve_pffr(¤t->thread),
+ ¤t->thread.uw.fpsimd_state.fpsr,
+ vl);
+ else
+ sve_load_from_fpsimd_state(¤t->thread.uw.fpsimd_state,
+ vl);
+
+ return;
+ }
+
+ fpsimd_load_state(¤t->thread.uw.fpsimd_state);
}
/*
@@ -307,7 +374,7 @@ static void fpsimd_save(void)
WARN_ON(!have_cpu_fpsimd_context());
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
- if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
+ if (system_supports_sve() && test_thread_flag(TIF_SVE_EXEC)) {
if (WARN_ON(sve_get_vl() != last->sve_vl)) {
/*
* Can't save the user regs, so current would
@@ -321,6 +388,7 @@ static void fpsimd_save(void)
sve_save_state((char *)last->sve_state +
sve_ffr_offset(last->sve_vl),
&last->st->fpsr);
+ set_thread_flag(TIF_SVE_FULL_REGS);
} else
fpsimd_save_state(last->st);
}
@@ -536,7 +604,7 @@ void sve_alloc(struct task_struct *task)
*/
void fpsimd_sync_to_sve(struct task_struct *task)
{
- if (!test_tsk_thread_flag(task, TIF_SVE))
+ if (!test_tsk_thread_flag(task, TIF_SVE_FULL_REGS))
fpsimd_to_sve(task);
}
@@ -550,7 +618,7 @@ void fpsimd_sync_to_sve(struct task_struct *task)
*/
void sve_sync_to_fpsimd(struct task_struct *task)
{
- if (test_tsk_thread_flag(task, TIF_SVE))
+ if (test_tsk_thread_flag(task, TIF_SVE_FULL_REGS))
sve_to_fpsimd(task);
}
@@ -572,7 +640,7 @@ void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- if (!test_tsk_thread_flag(task, TIF_SVE))
+ if (!test_tsk_thread_flag(task, TIF_SVE_EXEC))
return;
vq = sve_vq_from_vl(task->thread.sve_vl);
@@ -627,8 +695,9 @@ int sve_set_vector_length(struct task_struct *task,
}
fpsimd_flush_task_state(task);
- if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
+ if (test_and_clear_tsk_thread_flag(task, TIF_SVE_FULL_REGS))
sve_to_fpsimd(task);
+ clear_thread_flag(TIF_SVE_EXEC);
if (task == current)
put_cpu_fpsimd_context();
@@ -926,13 +995,14 @@ void fpsimd_release_task(struct task_struct *dead_task)
* Trapped SVE access
*
* Storage is allocated for the full SVE state, the current FPSIMD
- * register contents are migrated across, and TIF_SVE is set so that
+ * register contents are migrated across, and TIF_SVE_EXEC is set so that
* the SVE access trap will be disabled the next time this task
* reaches ret_to_user.
*
- * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
- * would have disabled the SVE access trap for userspace during
- * ret_to_user, making an SVE access trap impossible in that case.
+ * TIF_SVE_EXEC should be clear on entry: otherwise,
+ * fpsimd_restore_current_state() would have disabled the SVE access
+ * trap for userspace during ret_to_user, making an SVE access trap
+ * impossible in that case.
*/
void do_sve_acc(unsigned int esr, struct pt_regs *regs)
{
@@ -952,8 +1022,9 @@ void do_sve_acc(unsigned int esr, struct pt_regs *regs)
fpsimd_flush_task_state(current);
fpsimd_to_sve(current);
- if (test_and_set_thread_flag(TIF_SVE))
+ if (test_and_set_thread_flag(TIF_SVE_EXEC))
WARN_ON(1); /* SVE access shouldn't have trapped */
+ set_thread_flag(TIF_SVE_FULL_REGS);
put_cpu_fpsimd_context();
}
@@ -1033,7 +1104,8 @@ void fpsimd_flush_thread(void)
sizeof(current->thread.uw.fpsimd_state));
if (system_supports_sve()) {
- clear_thread_flag(TIF_SVE);
+ clear_thread_flag(TIF_SVE_EXEC);
+ clear_thread_flag(TIF_SVE_FULL_REGS);
sve_free(current);
/*
@@ -1092,7 +1164,7 @@ void fpsimd_preserve_current_state(void)
void fpsimd_signal_preserve_current_state(void)
{
fpsimd_preserve_current_state();
- if (system_supports_sve() && test_thread_flag(TIF_SVE))
+ if (system_supports_sve() && test_thread_flag(TIF_SVE_FULL_REGS))
sve_to_fpsimd(current);
}
@@ -1114,7 +1186,7 @@ void fpsimd_bind_task_to_cpu(void)
if (system_supports_sve()) {
/* Toggle SVE trapping for userspace if needed */
- if (test_thread_flag(TIF_SVE))
+ if (test_thread_flag(TIF_SVE_EXEC))
sve_user_enable();
else
sve_user_disable();
@@ -1163,6 +1235,14 @@ void fpsimd_restore_current_state(void)
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
task_fpsimd_load();
fpsimd_bind_task_to_cpu();
+ } else {
+ /*
+ * Convert FPSIMD state to SVE if userspace can execute SVE
+ * but we have no explicit SVE state.
+ */
+ if (test_thread_flag(TIF_SVE_EXEC) &&
+ !test_and_set_thread_flag(TIF_SVE_FULL_REGS))
+ sve_flush_live();
}
put_cpu_fpsimd_context();
@@ -1181,8 +1261,7 @@ void fpsimd_update_current_state(struct user_fpsimd_state const *state)
get_cpu_fpsimd_context();
current->thread.uw.fpsimd_state = *state;
- if (system_supports_sve() && test_thread_flag(TIF_SVE))
- fpsimd_to_sve(current);
+ clear_thread_flag(TIF_SVE_FULL_REGS);
task_fpsimd_load();
fpsimd_bind_task_to_cpu();
diff --git a/arch/arm64/kernel/process.c b/arch/arm64/kernel/process.c
index 6616486a58fe..71c8265b9139 100644
--- a/arch/arm64/kernel/process.c
+++ b/arch/arm64/kernel/process.c
@@ -364,13 +364,14 @@ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
* Detach src's sve_state (if any) from dst so that it does not
* get erroneously used or freed prematurely. dst's sve_state
* will be allocated on demand later on if dst uses SVE.
- * For consistency, also clear TIF_SVE here: this could be done
+ * For consistency, also clear TIF_SVE_* here: this could be done
* later in copy_process(), but to avoid tripping up future
- * maintainers it is best not to leave TIF_SVE and sve_state in
+ * maintainers it is best not to leave TIF_SVE_* and sve_state in
* an inconsistent state, even temporarily.
*/
dst->thread.sve_state = NULL;
- clear_tsk_thread_flag(dst, TIF_SVE);
+ clear_tsk_thread_flag(dst, TIF_SVE_EXEC);
+ clear_tsk_thread_flag(dst, TIF_SVE_FULL_REGS);
/* clear any pending asynchronous tag fault raised by the parent */
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
diff --git a/arch/arm64/kernel/ptrace.c b/arch/arm64/kernel/ptrace.c
index 8ac487c84e37..f0406b3dc389 100644
--- a/arch/arm64/kernel/ptrace.c
+++ b/arch/arm64/kernel/ptrace.c
@@ -719,7 +719,7 @@ static void sve_init_header_from_task(struct user_sve_header *header,
memset(header, 0, sizeof(*header));
- header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
+ header->flags = test_tsk_thread_flag(target, TIF_SVE_FULL_REGS) ?
SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
header->flags |= SVE_PT_VL_INHERIT;
@@ -827,7 +827,8 @@ static int sve_set(struct task_struct *target,
if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
SVE_PT_FPSIMD_OFFSET);
- clear_tsk_thread_flag(target, TIF_SVE);
+ clear_tsk_thread_flag(target, TIF_SVE_EXEC);
+ clear_tsk_thread_flag(target, TIF_SVE_FULL_REGS);
goto out;
}
@@ -851,7 +852,8 @@ static int sve_set(struct task_struct *target,
* unmodified.
*/
fpsimd_sync_to_sve(target);
- set_tsk_thread_flag(target, TIF_SVE);
+ set_tsk_thread_flag(target, TIF_SVE_EXEC);
+ set_tsk_thread_flag(target, TIF_SVE_FULL_REGS);
BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
start = SVE_PT_SVE_OFFSET;
diff --git a/arch/arm64/kernel/signal.c b/arch/arm64/kernel/signal.c
index f71d6ce4673f..5d5610af7ea3 100644
--- a/arch/arm64/kernel/signal.c
+++ b/arch/arm64/kernel/signal.c
@@ -205,7 +205,8 @@ static int restore_fpsimd_context(struct fpsimd_context __user *ctx)
__get_user_error(fpsimd.fpsr, &ctx->fpsr, err);
__get_user_error(fpsimd.fpcr, &ctx->fpcr, err);
- clear_thread_flag(TIF_SVE);
+ clear_thread_flag(TIF_SVE_EXEC);
+ clear_thread_flag(TIF_SVE_FULL_REGS);
/* load the hardware registers from the fpsimd_state structure */
if (!err)
@@ -229,7 +230,7 @@ static int preserve_sve_context(struct sve_context __user *ctx)
unsigned int vl = current->thread.sve_vl;
unsigned int vq = 0;
- if (test_thread_flag(TIF_SVE))
+ if (test_thread_flag(TIF_SVE_EXEC))
vq = sve_vq_from_vl(vl);
memset(reserved, 0, sizeof(reserved));
@@ -241,7 +242,7 @@ static int preserve_sve_context(struct sve_context __user *ctx)
BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
- if (vq) {
+ if (vq && test_thread_flag(TIF_SVE_FULL_REGS)) {
/*
* This assumes that the SVE state has already been saved to
* the task struct by calling the function
@@ -269,7 +270,8 @@ static int restore_sve_fpsimd_context(struct user_ctxs *user)
return -EINVAL;
if (sve.head.size <= sizeof(*user->sve)) {
- clear_thread_flag(TIF_SVE);
+ clear_thread_flag(TIF_SVE_EXEC);
+ clear_thread_flag(TIF_SVE_FULL_REGS);
goto fpsimd_only;
}
@@ -296,7 +298,8 @@ static int restore_sve_fpsimd_context(struct user_ctxs *user)
if (err)
return -EFAULT;
- set_thread_flag(TIF_SVE);
+ set_thread_flag(TIF_SVE_EXEC);
+ set_thread_flag(TIF_SVE_FULL_REGS);
fpsimd_only:
/* copy the FP and status/control registers */
@@ -587,7 +590,7 @@ static int setup_sigframe_layout(struct rt_sigframe_user_layout *user,
if (system_supports_sve()) {
unsigned int vq = 0;
- if (add_all || test_thread_flag(TIF_SVE)) {
+ if (add_all || test_thread_flag(TIF_SVE_EXEC)) {
int vl = sve_max_vl;
if (!add_all)
diff --git a/arch/arm64/kernel/syscall.c b/arch/arm64/kernel/syscall.c
index f61e9d8cc55a..f8a2598730c2 100644
--- a/arch/arm64/kernel/syscall.c
+++ b/arch/arm64/kernel/syscall.c
@@ -186,7 +186,8 @@ static inline void sve_user_discard(void)
if (!system_supports_sve())
return;
- clear_thread_flag(TIF_SVE);
+ clear_thread_flag(TIF_SVE_EXEC);
+ clear_thread_flag(TIF_SVE_FULL_REGS);
/*
* task_fpsimd_load() won't be called to update CPACR_EL1 in
diff --git a/arch/arm64/kvm/fpsimd.c b/arch/arm64/kvm/fpsimd.c
index 3e081d556e81..1b7c0d03581b 100644
--- a/arch/arm64/kvm/fpsimd.c
+++ b/arch/arm64/kvm/fpsimd.c
@@ -67,7 +67,7 @@ void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
KVM_ARM64_HOST_SVE_ENABLED);
vcpu->arch.flags |= KVM_ARM64_FP_HOST;
- if (test_thread_flag(TIF_SVE))
+ if (test_thread_flag(TIF_SVE_EXEC))
vcpu->arch.flags |= KVM_ARM64_HOST_SVE_IN_USE;
if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN)
@@ -90,7 +90,7 @@ void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
vcpu->arch.sve_max_vl);
clear_thread_flag(TIF_FOREIGN_FPSTATE);
- update_thread_flag(TIF_SVE, vcpu_has_sve(vcpu));
+ update_thread_flag(TIF_SVE_EXEC, vcpu_has_sve(vcpu));
}
}
@@ -127,7 +127,7 @@ void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
sysreg_clear_set(CPACR_EL1, CPACR_EL1_ZEN_EL0EN, 0);
}
- update_thread_flag(TIF_SVE,
+ update_thread_flag(TIF_SVE_EXEC,
vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE);
local_irq_restore(flags);
--
2.20.1
More information about the linux-arm-kernel
mailing list