[PATCH v2 05/20] arm64: capabilities: Add flags to handle the conflicts on late CPU
Suzuki K Poulose
suzuki.poulose at arm.com
Wed Jan 31 10:27:52 PST 2018
When a CPU is brought up, it is checked against the caps that are
known to be enabled on the system (via verify_local_cpu_capabilities()).
Based on the state of the capability on the CPU vs. that of System we
could have the following combinations of conflict.
x-----------------------------x
| Type | System | Late CPU |
|-----------------------------|
| a | y | n |
|-----------------------------|
| b | n | y |
x-----------------------------x
Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.
Case (b) is not permitted for errata work arounds which requires some work
around, which cannot be delayed. And we ignore (b) for features. Here, yet
again, KPTI is an exception, where if a late CPU needs KPTI we are too late
to enable it (because we change the allocation of ASIDs etc).
Add two different flags to indicate how the conflict should be handled.
ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability
ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability.
Now that we have the flags to describe the behavior of the errata and
the features, as we treat them, define types for ERRATUM and FEATURE.
Cc: Dave Martin <dave.martin at arm.com>
Cc: Will Deacon <will.deacon at arm.com>
Cc: Mark Rutland <mark.rutland at arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose at arm.com>
---
arch/arm64/include/asm/cpufeature.h | 61 ++++++++++++++++++++++++++++++++++++-
arch/arm64/kernel/cpu_errata.c | 8 ++---
arch/arm64/kernel/cpufeature.c | 30 +++++++++---------
3 files changed, 79 insertions(+), 20 deletions(-)
diff --git a/arch/arm64/include/asm/cpufeature.h b/arch/arm64/include/asm/cpufeature.h
index 05da54f1b4c7..7460b1f7e611 100644
--- a/arch/arm64/include/asm/cpufeature.h
+++ b/arch/arm64/include/asm/cpufeature.h
@@ -142,7 +142,8 @@ extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
* capabilities and if there is a conflict, the kernel takes an action, based
* on the severity (e.g, a CPU could be prevented from booting or cause a
* kernel panic). The CPU is allowed to "affect" the state of the capability,
- * if it has not been finalised already.
+ * if it has not been finalised already. See section 5 for more details on
+ * conflicts.
*
* 4) Action: As mentioned in (2), the kernel can take an action for each detected
* capability, on all CPUs on the system. This is always initiated only after
@@ -155,6 +156,32 @@ extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
* b) Any late CPU, brought up after (1), the action is triggered via:
* check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
*
+ * 5) Conflicts: Based on the state of the capability on a late CPU vs. the system
+ * state, we could have the following combinations :
+ *
+ * x-----------------------------x
+ * | Type | System | Late CPU |
+ * |-----------------------------|
+ * | a | y | n |
+ * |-----------------------------|
+ * | b | n | y |
+ * x-----------------------------x
+ *
+ * Case (a) is not permitted for capabilities which are usually system
+ * features, which the system expects all CPUs to have. While (a) is ignored
+ * for capabilities which represents an erratum work around.
+ *
+ * Case (b) is not permitted for erratum capabilities, which might require
+ * some work arounds which cannot be applied really late. Meanwhile, most
+ * of the features could safely ignore (b), as the system doesn't use it
+ * anyway.
+ *
+ * However, there are some exceptions to the assumptions and require each
+ * capability to define how the conflict should be addressed. So we use two
+ * separate flag bits to indicate whether the above cases should be treated
+ * as conflicts:
+ * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is safe
+ * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is safe
*/
@@ -165,6 +192,26 @@ extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
#define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
+/* Is it permitted for a late CPU to have this capability when system doesn't already have */
+#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
+/* Is it safe for a late CPU to miss this capability when system has it */
+#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
+
+/*
+ * CPU errata detected at boot time based on feature of one or more CPUs.
+ * It is not safe for a late CPU to have this feature when the system doesn't
+ * have it. But it is safe to miss the feature if the system has it.
+ */
+#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
+ (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
+/*
+ * CPU feature detected at boot time based on system-wide value of a feature.
+ * It is safe for a late CPU to have this feature even though the system doesn't
+ * have it already. But the CPU must have this feature if the system does.
+ */
+#define ARM64_CPUCAP_SYSTEM_FEATURE \
+ (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
+
struct arm64_cpu_capabilities {
const char *desc;
u16 capability;
@@ -198,6 +245,18 @@ static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}
+static inline bool
+cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
+{
+ return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
+}
+
+static inline bool
+cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
+{
+ return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
+}
+
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
extern struct static_key_false arm64_const_caps_ready;
diff --git a/arch/arm64/kernel/cpu_errata.c b/arch/arm64/kernel/cpu_errata.c
index 328c5a031e45..22ec3960a0c5 100644
--- a/arch/arm64/kernel/cpu_errata.c
+++ b/arch/arm64/kernel/cpu_errata.c
@@ -175,14 +175,14 @@ static void qcom_enable_link_stack_sanitization(
#endif /* CONFIG_HARDEN_BRANCH_PREDICTOR */
#define MIDR_RANGE(model, min, max) \
- .type = ARM64_CPUCAP_SCOPE_LOCAL_CPU, \
+ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
.matches = is_affected_midr_range, \
.midr_model = model, \
.midr_range_min = min, \
.midr_range_max = max
#define MIDR_ALL_VERSIONS(model) \
- .type = ARM64_CPUCAP_SCOPE_LOCAL_CPU, \
+ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
.matches = is_affected_midr_range, \
.midr_model = model, \
.midr_range_min = 0, \
@@ -286,7 +286,7 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
.desc = "Mismatched cache line size",
.capability = ARM64_MISMATCHED_CACHE_LINE_SIZE,
.matches = has_mismatched_cache_line_size,
- .type = ARM64_CPUCAP_SCOPE_LOCAL_CPU,
+ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.cpu_enable = cpu_enable_trap_ctr_access,
},
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
@@ -300,7 +300,7 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
{
.desc = "Qualcomm Technologies Kryo erratum 1003",
.capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
- .type = ARM64_CPUCAP_SCOPE_LOCAL_CPU,
+ .type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.midr_model = MIDR_QCOM_KRYO,
.matches = is_kryo_midr,
},
diff --git a/arch/arm64/kernel/cpufeature.c b/arch/arm64/kernel/cpufeature.c
index 8d22f0ef0927..1b29b3f0a1bc 100644
--- a/arch/arm64/kernel/cpufeature.c
+++ b/arch/arm64/kernel/cpufeature.c
@@ -921,7 +921,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "GIC system register CPU interface",
.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_useable_gicv3_cpuif,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.field_pos = ID_AA64PFR0_GIC_SHIFT,
@@ -932,7 +932,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "Privileged Access Never",
.capability = ARM64_HAS_PAN,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64MMFR1_EL1,
.field_pos = ID_AA64MMFR1_PAN_SHIFT,
@@ -945,7 +945,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "LSE atomic instructions",
.capability = ARM64_HAS_LSE_ATOMICS,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR0_EL1,
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
@@ -956,14 +956,14 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "Software prefetching using PRFM",
.capability = ARM64_HAS_NO_HW_PREFETCH,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_no_hw_prefetch,
},
#ifdef CONFIG_ARM64_UAO
{
.desc = "User Access Override",
.capability = ARM64_HAS_UAO,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64MMFR2_EL1,
.field_pos = ID_AA64MMFR2_UAO_SHIFT,
@@ -977,21 +977,21 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
#ifdef CONFIG_ARM64_PAN
{
.capability = ARM64_ALT_PAN_NOT_UAO,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = cpufeature_pan_not_uao,
},
#endif /* CONFIG_ARM64_PAN */
{
.desc = "Virtualization Host Extensions",
.capability = ARM64_HAS_VIRT_HOST_EXTN,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = runs_at_el2,
.cpu_enable = cpu_copy_el2regs,
},
{
.desc = "32-bit EL0 Support",
.capability = ARM64_HAS_32BIT_EL0,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
@@ -1001,21 +1001,21 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "Reduced HYP mapping offset",
.capability = ARM64_HYP_OFFSET_LOW,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = hyp_offset_low,
},
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
{
.desc = "Kernel page table isolation (KPTI)",
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = unmap_kernel_at_el0,
},
#endif
{
/* FP/SIMD is not implemented */
.capability = ARM64_HAS_NO_FPSIMD,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.min_field_value = 0,
.matches = has_no_fpsimd,
},
@@ -1023,7 +1023,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "Data cache clean to Point of Persistence",
.capability = ARM64_HAS_DCPOP,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64ISAR1_EL1,
.field_pos = ID_AA64ISAR1_DPB_SHIFT,
@@ -1033,7 +1033,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
#ifdef CONFIG_ARM64_SVE
{
.desc = "Scalable Vector Extension",
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.capability = ARM64_SVE,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
@@ -1047,7 +1047,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
{
.desc = "RAS Extension Support",
.capability = ARM64_HAS_RAS_EXTN,
- .type = ARM64_CPUCAP_SCOPE_SYSTEM,
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_cpuid_feature,
.sys_reg = SYS_ID_AA64PFR0_EL1,
.sign = FTR_UNSIGNED,
@@ -1062,7 +1062,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
{ \
.desc = #cap, \
- .type = ARM64_CPUCAP_SCOPE_SYSTEM, \
+ .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
.matches = has_cpuid_feature, \
.sys_reg = reg, \
.field_pos = field, \
--
2.14.3
More information about the linux-arm-kernel
mailing list