[PATCH 10/10] locking/qspinlock: Elide back-to-back RELEASE operations with smp_wmb()
Will Deacon
will.deacon at arm.com
Thu Apr 5 09:59:07 PDT 2018
The qspinlock slowpath must ensure that the MCS node is fully initialised
before it can be reached by another other CPU. This is currently enforced
by using a RELEASE operation when updating the tail and also when linking
the node into the waitqueue (since the control dependency off xchg_tail
is insufficient to enforce sufficient ordering -- see 95bcade33a8a
("locking/qspinlock: Ensure node is initialised before updating prev->next")).
Back-to-back RELEASE operations may be expensive on some architectures,
particularly those that implement them using fences under the hood. We
can replace the two RELEASE operations with a single smp_wmb() fence and
use RELAXED operations for the subsequent publishing of the node.
Cc: Peter Zijlstra <peterz at infradead.org>
Cc: Ingo Molnar <mingo at kernel.org>
Signed-off-by: Will Deacon <will.deacon at arm.com>
---
kernel/locking/qspinlock.c | 32 +++++++++++++++-----------------
1 file changed, 15 insertions(+), 17 deletions(-)
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index 3ad8786a47e2..42c61f7b37c5 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -141,10 +141,10 @@ static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
/*
- * Use release semantics to make sure that the MCS node is properly
- * initialized before changing the tail code.
+ * We can use relaxed semantics since the caller ensures that the
+ * MCS node is properly initialized before updating the tail.
*/
- return (u32)xchg_release(&lock->tail,
+ return (u32)xchg_relaxed(&lock->tail,
tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
}
@@ -178,10 +178,11 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
for (;;) {
new = (val & _Q_LOCKED_PENDING_MASK) | tail;
/*
- * Use release semantics to make sure that the MCS node is
- * properly initialized before changing the tail code.
+ * We can use relaxed semantics since the caller ensures that
+ * the MCS node is properly initialized before updating the
+ * tail.
*/
- old = atomic_cmpxchg_release(&lock->val, val, new);
+ old = atomic_cmpxchg_relaxed(&lock->val, val, new);
if (old == val)
break;
@@ -340,12 +341,17 @@ void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
goto release;
/*
+ * Ensure that the initialisation of @node is complete before we
+ * publish the updated tail and potentially link @node into the
+ * waitqueue.
+ */
+ smp_wmb();
+
+ /*
* We have already touched the queueing cacheline; don't bother with
* pending stuff.
*
* p,*,* -> n,*,*
- *
- * RELEASE, such that the stores to @node must be complete.
*/
old = xchg_tail(lock, tail);
next = NULL;
@@ -356,15 +362,7 @@ void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
*/
if (old & _Q_TAIL_MASK) {
prev = decode_tail(old);
-
- /*
- * We must ensure that the stores to @node are observed before
- * the write to prev->next. The address dependency from
- * xchg_tail is not sufficient to ensure this because the read
- * component of xchg_tail is unordered with respect to the
- * initialisation of @node.
- */
- smp_store_release(&prev->next, node);
+ WRITE_ONCE(prev->next, node);
pv_wait_node(node, prev);
arch_mcs_spin_lock_contended(&node->locked);
--
2.1.4
More information about the linux-arm-kernel
mailing list