[PATCH v4 2/9] ACPI/PPTT: Add Processor Properties Topology Table parsing
Xiongfeng Wang
wangxiongfeng2 at huawei.com
Wed Nov 15 01:27:24 PST 2017
Hi Jeremy,
On 2017/11/10 5:03, Jeremy Linton wrote:
> ACPI 6.2 adds a new table, which describes how processing units
> are related to each other in tree like fashion. Caches are
> also sprinkled throughout the tree and describe the properties
> of the caches in relation to other caches and processing units.
>
> Add the code to parse the cache hierarchy and report the total
> number of levels of cache for a given core using
> acpi_find_last_cache_level() as well as fill out the individual
> cores cache information with cache_setup_acpi() once the
> cpu_cacheinfo structure has been populated by the arch specific
> code.
>
> Further, report peers in the topology using setup_acpi_cpu_topology()
> to report a unique ID for each processing unit at a given level
> in the tree. These unique id's can then be used to match related
> processing units which exist as threads, COD (clusters
> on die), within a given package, etc.
>
> Signed-off-by: Jeremy Linton <jeremy.linton at arm.com>
> ---
> drivers/acpi/pptt.c | 452 ++++++++++++++++++++++++++++++++++++++++++++++++++++
> 1 file changed, 452 insertions(+)
> create mode 100644 drivers/acpi/pptt.c
>
> diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
> new file mode 100644
> index 000000000000..9c9b8b4660e0
> --- /dev/null
> +++ b/drivers/acpi/pptt.c
> @@ -0,0 +1,452 @@
> +/*
> + * Copyright (C) 2017, ARM
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms and conditions of the GNU General Public License,
> + * version 2, as published by the Free Software Foundation.
> + *
> + * This program is distributed in the hope it will be useful, but WITHOUT
> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
> + * more details.
> + *
> + * This file implements parsing of Processor Properties Topology Table (PPTT)
> + * which is optionally used to describe the processor and cache topology.
> + * Due to the relative pointers used throughout the table, this doesn't
> + * leverage the existing subtable parsing in the kernel.
> + *
> + * The PPTT structure is an inverted tree, with each node potentially
> + * holding one or two inverted tree data structures describing
> + * the caches available at that level. Each cache structure optionally
> + * contains properties describing the cache at that level which can be
> + * used to override hardware/probed values.
> + */
> +#define pr_fmt(fmt) "ACPI PPTT: " fmt
> +
> +#include <linux/acpi.h>
> +#include <linux/cacheinfo.h>
> +#include <acpi/processor.h>
> +
> +/*
> + * Given the PPTT table, find and verify that the subtable entry
> + * is located within the table
> + */
> +static struct acpi_subtable_header *fetch_pptt_subtable(
> + struct acpi_table_header *table_hdr, u32 pptt_ref)
> +{
> + struct acpi_subtable_header *entry;
> +
> + /* there isn't a subtable at reference 0 */
> + if (pptt_ref < sizeof(struct acpi_subtable_header))
> + return NULL;
> +
> + if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
> + return NULL;
> +
> + entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
> +
> + if (pptt_ref + entry->length > table_hdr->length)
> + return NULL;
> +
> + return entry;
> +}
> +
> +static struct acpi_pptt_processor *fetch_pptt_node(
> + struct acpi_table_header *table_hdr, u32 pptt_ref)
> +{
> + return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr,
> + pptt_ref);
> +}
> +
> +static struct acpi_pptt_cache *fetch_pptt_cache(
> + struct acpi_table_header *table_hdr, u32 pptt_ref)
> +{
> + return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr,
> + pptt_ref);
> +}
> +
> +static struct acpi_subtable_header *acpi_get_pptt_resource(
> + struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *node, int resource)
> +{
> + u32 *ref;
> +
> + if (resource >= node->number_of_priv_resources)
> + return NULL;
> +
> + ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
> + ref += resource;
> +
> + return fetch_pptt_subtable(table_hdr, *ref);
> +}
> +
> +/*
> + * Attempt to find a given cache level, while counting the max number
> + * of cache levels for the cache node.
> + *
> + * Given a pptt resource, verify that it is a cache node, then walk
> + * down each level of caches, counting how many levels are found
> + * as well as checking the cache type (icache, dcache, unified). If a
> + * level & type match, then we set found, and continue the search.
> + * Once the entire cache branch has been walked return its max
> + * depth.
> + */
> +static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
> + int local_level,
> + struct acpi_subtable_header *res,
> + struct acpi_pptt_cache **found,
> + int level, int type)
> +{
> + struct acpi_pptt_cache *cache;
> +
> + if (res->type != ACPI_PPTT_TYPE_CACHE)
> + return 0;
> +
> + cache = (struct acpi_pptt_cache *) res;
> + while (cache) {
> + local_level++;
> +
> + if ((local_level == level) &&
> + (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) &&
> + ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) {
> + if ((*found != NULL) && (cache != *found))
> + pr_err("Found duplicate cache level/type unable to determine uniqueness\n");
> +
> + pr_debug("Found cache @ level %d\n", level);
> + *found = cache;
> + /*
> + * continue looking at this node's resource list
> + * to verify that we don't find a duplicate
> + * cache node.
> + */
> + }
> + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
> + }
> + return local_level;
> +}
> +
> +/*
> + * Given a CPU node look for cache levels that exist at this level, and then
> + * for each cache node, count how many levels exist below (logically above) it.
> + * If a level and type are specified, and we find that level/type, abort
> + * processing and return the acpi_pptt_cache structure.
> + */
> +static struct acpi_pptt_cache *acpi_find_cache_level(
> + struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *cpu_node,
> + int *starting_level, int level, int type)
> +{
> + struct acpi_subtable_header *res;
> + int number_of_levels = *starting_level;
> + int resource = 0;
> + struct acpi_pptt_cache *ret = NULL;
> + int local_level;
> +
> + /* walk down from processor node */
> + while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
> + resource++;
> +
> + local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
> + res, &ret, level, type);
> + /*
> + * we are looking for the max depth. Since its potentially
> + * possible for a given node to have resources with differing
> + * depths verify that the depth we have found is the largest.
> + */
> + if (number_of_levels < local_level)
> + number_of_levels = local_level;
> + }
> + if (number_of_levels > *starting_level)
> + *starting_level = number_of_levels;
> +
> + return ret;
> +}
> +
> +/*
> + * Given a processor node containing a processing unit, walk into it and count
> + * how many levels exist solely for it, and then walk up each level until we hit
> + * the root node (ignore the package level because it may be possible to have
> + * caches that exist across packages). Count the number of cache levels that
> + * exist at each level on the way up.
> + */
> +static int acpi_process_node(struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *cpu_node)
> +{
> + int total_levels = 0;
> +
> + do {
> + acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
> + } while (cpu_node);
> +
> + return total_levels;
> +}
> +
> +/*
> + * Determine if the *node parameter is a leaf node by iterating the
> + * PPTT table, looking for nodes which reference it.
> + * Return 0 if we find a node refrencing the passed node,
> + * or 1 if we don't.
> + */
> +static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
> + struct acpi_pptt_processor *node)
> +{
> + struct acpi_subtable_header *entry;
> + unsigned long table_end;
> + u32 node_entry;
> + struct acpi_pptt_processor *cpu_node;
> +
> + table_end = (unsigned long)table_hdr + table_hdr->length;
> + node_entry = ACPI_PTR_DIFF(node, table_hdr);
> + entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
> + sizeof(struct acpi_table_pptt));
> +
> + while ((unsigned long)(entry + 1) < table_end) {
> + cpu_node = (struct acpi_pptt_processor *)entry;
> + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) &&
> + (cpu_node->parent == node_entry))
> + return 0;
> + entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
> + entry->length);
> + }
> + return 1;
> +}
> +
> +/*
> + * Find the subtable entry describing the provided processor.
> + * This is done by iterating the PPTT table looking for processor nodes
> + * which have an acpi_processor_id that matches the acpi_cpu_id parameter
> + * passed into the function. If we find a node that matches this criteria
> + * we verify that its a leaf node in the topology rather than depending
> + * on the valid flag, which doesn't need to be set for leaf nodes.
> + */
> +static struct acpi_pptt_processor *acpi_find_processor_node(
> + struct acpi_table_header *table_hdr,
> + u32 acpi_cpu_id)
> +{
> + struct acpi_subtable_header *entry;
> + unsigned long table_end;
> + struct acpi_pptt_processor *cpu_node;
> +
> + table_end = (unsigned long)table_hdr + table_hdr->length;
> + entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
> + sizeof(struct acpi_table_pptt));
> +
> + /* find the processor structure associated with this cpuid */
> + while ((unsigned long)(entry + 1) < table_end) {
> + cpu_node = (struct acpi_pptt_processor *)entry;
> +
> + if (entry->length == 0) {
> + pr_err("Invalid zero length subtable\n");
> + break;
> + }
> + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) &&
> + (acpi_cpu_id == cpu_node->acpi_processor_id) &&
> + acpi_pptt_leaf_node(table_hdr, cpu_node)) {
> + return (struct acpi_pptt_processor *)entry;
> + }
> +
> + entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
> + entry->length);
> + }
> +
> + return NULL;
> +}
> +
> +static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
> + u32 acpi_cpu_id)
> +{
> + int number_of_levels = 0;
> + struct acpi_pptt_processor *cpu;
> +
> + cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
> + if (cpu)
> + number_of_levels = acpi_process_node(table_hdr, cpu);
> +
> + return number_of_levels;
> +}
> +
> +/* Convert the linux cache_type to a ACPI PPTT cache type value */
> +static u8 acpi_cache_type(enum cache_type type)
> +{
> + switch (type) {
> + case CACHE_TYPE_DATA:
> + pr_debug("Looking for data cache\n");
> + return ACPI_PPTT_CACHE_TYPE_DATA;
> + case CACHE_TYPE_INST:
> + pr_debug("Looking for instruction cache\n");
> + return ACPI_PPTT_CACHE_TYPE_INSTR;
> + default:
> + case CACHE_TYPE_UNIFIED:
> + pr_debug("Looking for unified cache\n");
> + /*
> + * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
> + * contains the bit pattern that will match both
> + * ACPI unified bit patterns because we use it later
> + * to match both cases.
> + */
> + return ACPI_PPTT_CACHE_TYPE_UNIFIED;
> + }
> +}
> +
> +/* find the ACPI node describing the cache type/level for the given CPU */
> +static struct acpi_pptt_cache *acpi_find_cache_node(
> + struct acpi_table_header *table_hdr, u32 acpi_cpu_id,
> + enum cache_type type, unsigned int level,
> + struct acpi_pptt_processor **node)
> +{
> + int total_levels = 0;
> + struct acpi_pptt_cache *found = NULL;
> + struct acpi_pptt_processor *cpu_node;
> + u8 acpi_type = acpi_cache_type(type);
> +
> + pr_debug("Looking for CPU %d's level %d cache type %d\n",
> + acpi_cpu_id, level, acpi_type);
> +
> + cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
> +
> + while ((cpu_node) && (!found)) {
> + found = acpi_find_cache_level(table_hdr, cpu_node,
> + &total_levels, level, acpi_type);
> + *node = cpu_node;
> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
> + }
> +
> + return found;
> +}
> +
> +/*
> + * The ACPI spec implies that the fields in the cache structures are used to
> + * extend and correct the information probed from the hardware. In the case
> + * of arm64 the CCSIDR probing has been removed because it might be incorrect.
> + */
> +static void update_cache_properties(struct cacheinfo *this_leaf,
> + struct acpi_pptt_cache *found_cache,
> + struct acpi_pptt_processor *cpu_node)
> +{
> + if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
> + this_leaf->size = found_cache->size;
> + if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
> + this_leaf->coherency_line_size = found_cache->line_size;
> + if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
> + this_leaf->number_of_sets = found_cache->number_of_sets;
> + if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
> + this_leaf->ways_of_associativity = found_cache->associativity;
> + if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID)
> + switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
> + case ACPI_PPTT_CACHE_POLICY_WT:
> + this_leaf->attributes = CACHE_WRITE_THROUGH;
> + break;
> + case ACPI_PPTT_CACHE_POLICY_WB:
> + this_leaf->attributes = CACHE_WRITE_BACK;
> + break;
> + }
> + if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID)
> + switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
> + case ACPI_PPTT_CACHE_READ_ALLOCATE:
> + this_leaf->attributes |= CACHE_READ_ALLOCATE;
> + break;
> + case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
> + this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
> + break;
> + case ACPI_PPTT_CACHE_RW_ALLOCATE:
> + case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
> + this_leaf->attributes |=
> + CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
> + break;
> + }
> +}
> +
I test this patch on our platform, and the result is that 'type' property of L3Cache
is not displayed.
So I add some print to debug, and found out that ARM64 __populate_cache_leaves()
set this_cpu_ci->info_list[L3Cache_level].type to 0, bacause we can't get the type of
L3Cache from CLIDR.
Then cache_setup_acpi_cpu() try to find L3Cache from PPTT. Because L3Cache type read from
CLIDR is 0, so branch in acpi_cache_type falls into default: ACPI_PPTT_CACHE_TYPE_UNIFIED.
So we can find L3Cache in PPTT, then use update_cache_properties() to update L3Cache property.
But update_cache_properties() doesn't update the cache type, so this_cpu_ci->info_list[L3Cache_level].type
is still 0, cache_default_attrs_is_visible() returns 0, and 'type' property of L3Cache won't be displayed in sysfs.
Can we set this_cpu_ci->info_list[level].type to CACHE_TYPE_UNIFIED in __populate_cache_leaves() when level >= 3 ?
Or can we update cache type property in update_cache_properties() ?
Thanks,
Xiongfeng Wang
> +/*
> + * Update the kernel cache information for each level of cache
> + * associated with the given acpi cpu.
> + */
> +static void cache_setup_acpi_cpu(struct acpi_table_header *table,
> + unsigned int cpu)
> +{
> + struct acpi_pptt_cache *found_cache;
> + struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
> + u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
> + struct cacheinfo *this_leaf;
> + unsigned int index = 0;
> + struct acpi_pptt_processor *cpu_node = NULL;
> +
> + while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
> + this_leaf = this_cpu_ci->info_list + index;
> + found_cache = acpi_find_cache_node(table, acpi_cpu_id,
> + this_leaf->type,
> + this_leaf->level,
> + &cpu_node);
> + pr_debug("found = %p %p\n", found_cache, cpu_node);
> + if (found_cache)
> + update_cache_properties(this_leaf,
> + found_cache,
> + cpu_node);
> +
> + index++;
> + }
> +}
> +
> +/**
> + * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
> + * @cpu: Kernel logical cpu number
> + *
> + * Given a logical cpu number, returns the number of levels of cache represented
> + * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
> + * indicating we didn't find any cache levels.
> + *
> + * Return: Cache levels visible to this core.
> + */
> +int acpi_find_last_cache_level(unsigned int cpu)
> +{
> + u32 acpi_cpu_id;
> + struct acpi_table_header *table;
> + int number_of_levels = 0;
> + acpi_status status;
> +
> + pr_debug("Cache Setup find last level cpu=%d\n", cpu);
> +
> + acpi_cpu_id = get_acpi_id_for_cpu(cpu);
> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
> + if (ACPI_FAILURE(status)) {
> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
> + } else {
> + number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
> + acpi_put_table(table);
> + }
> + pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
> +
> + return number_of_levels;
> +}
> +
> +/**
> + * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
> + * @cpu: Kernel logical cpu number
> + *
> + * Updates the global cache info provided by cpu_get_cacheinfo()
> + * when there are valid properties in the acpi_pptt_cache nodes. A
> + * successful parse may not result in any updates if none of the
> + * cache levels have any valid flags set. Futher, a unique value is
> + * associated with each known CPU cache entry. This unique value
> + * can be used to determine whether caches are shared between cpus.
> + *
> + * Return: -ENOENT on failure to find table, or 0 on success
> + */
> +int cache_setup_acpi(unsigned int cpu)
> +{
> + struct acpi_table_header *table;
> + acpi_status status;
> +
> + pr_debug("Cache Setup ACPI cpu %d\n", cpu);
> +
> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
> + if (ACPI_FAILURE(status)) {
> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n");
> + return -ENOENT;
> + }
> +
> + cache_setup_acpi_cpu(table, cpu);
> + acpi_put_table(table);
> +
> + return status;
> +}
>
More information about the linux-arm-kernel
mailing list