[PATCH v6] arm: perf: Directly handle SMP platforms with one SPI
Will Deacon
will.deacon at arm.com
Tue Mar 31 09:20:41 PDT 2015
Hi Daniel,
On Wed, Mar 04, 2015 at 01:25:45PM +0000, Daniel Thompson wrote:
> Some ARM platforms mux the PMU interrupt of every core into a single
> SPI. On such platforms if the PMU of any core except 0 raises an interrupt
> then it cannot be serviced and eventually, if you are lucky, the spurious
> irq detection might forcefully disable the interrupt.
>
> On these SoCs it is not possible to determine which core raised the
> interrupt so workaround this issue by queuing irqwork on the other
> cores whenever the primary interrupt handler is unable to service the
> interrupt.
>
> The u8500 platform has an alternative workaround that dynamically alters
> the affinity of the PMU interrupt. This workaround logic is no longer
> required so the original code is removed as is the hook it relied upon.
>
> Tested on imx6q (which has fours cores/PMUs all muxed to a single SPI)
> using a simple soak, combined perf and CPU hotplug soak and using
> perf fuzzer's fast_repro.sh.
[...]
> diff --git a/arch/arm/include/asm/pmu.h b/arch/arm/include/asm/pmu.h
> index b1596bd59129..dfef7904b790 100644
> --- a/arch/arm/include/asm/pmu.h
> +++ b/arch/arm/include/asm/pmu.h
> @@ -87,6 +87,14 @@ struct pmu_hw_events {
> * already have to allocate this struct per cpu.
> */
> struct arm_pmu *percpu_pmu;
> +
> +#ifdef CONFIG_SMP
> + /*
> + * This is used to schedule workaround logic on platforms where all
> + * the PMUs are attached to a single SPI.
> + */
> + struct irq_work work;
> +#endif
> };
>
> struct arm_pmu {
> @@ -117,6 +125,10 @@ struct arm_pmu {
> struct platform_device *plat_device;
> struct pmu_hw_events __percpu *hw_events;
> struct notifier_block hotplug_nb;
> +#ifdef CONFIG_SMP
> + int muxed_spi_workaround_irq;
> + atomic_t remaining_irq_work;
> +#endif
> };
>
> #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
> diff --git a/arch/arm/kernel/perf_event.c b/arch/arm/kernel/perf_event.c
> index 557e128e4df0..e3fc1a0ce969 100644
> --- a/arch/arm/kernel/perf_event.c
> +++ b/arch/arm/kernel/perf_event.c
> @@ -305,8 +305,6 @@ validate_group(struct perf_event *event)
> static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
> {
> struct arm_pmu *armpmu;
> - struct platform_device *plat_device;
> - struct arm_pmu_platdata *plat;
> int ret;
> u64 start_clock, finish_clock;
>
> @@ -317,14 +315,9 @@ static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
> * dereference.
> */
> armpmu = *(void **)dev;
> - plat_device = armpmu->plat_device;
> - plat = dev_get_platdata(&plat_device->dev);
>
> start_clock = sched_clock();
> - if (plat && plat->handle_irq)
> - ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
> - else
> - ret = armpmu->handle_irq(irq, armpmu);
> + ret = armpmu->handle_irq(irq, armpmu);
> finish_clock = sched_clock();
>
> perf_sample_event_took(finish_clock - start_clock);
> diff --git a/arch/arm/kernel/perf_event_cpu.c b/arch/arm/kernel/perf_event_cpu.c
> index 61b53c46edfa..d5bbd79abd4c 100644
> --- a/arch/arm/kernel/perf_event_cpu.c
> +++ b/arch/arm/kernel/perf_event_cpu.c
> @@ -59,6 +59,116 @@ int perf_num_counters(void)
> }
> EXPORT_SYMBOL_GPL(perf_num_counters);
>
> +#ifdef CONFIG_SMP
> +
> +static cpumask_t down_prepare_cpu_mask;
> +static DEFINE_SPINLOCK(down_prepare_cpu_lock);
> +
> +/*
> + * Workaround logic that is distributed to all cores if the PMU has only
> + * a single IRQ and the CPU receiving that IRQ cannot handle it. Its
> + * job is to try to service the interrupt on the current CPU. It will
> + * also enable the IRQ again if all the other CPUs have already tried to
> + * service it.
> + */
> +static void cpu_pmu_do_percpu_work(struct irq_work *w)
> +{
> + struct pmu_hw_events *hw_events =
> + container_of(w, struct pmu_hw_events, work);
> + struct arm_pmu *cpu_pmu = hw_events->percpu_pmu;
> +
> + /* Ignore the return code, we can do nothing useful with it */
> + (void) cpu_pmu->handle_irq(0, cpu_pmu);
> +
> + if (atomic_dec_and_test(&cpu_pmu->remaining_irq_work))
> + enable_irq(cpu_pmu->muxed_spi_workaround_irq);
> +}
> +
> +/*
> + * Workaround for systems where all PMU interrupts are targeting a
> + * single SPI.
> + *
> + * The workaround will disable the interrupt and distribute irqwork to all
> + * the other processors in the system. Hopefully one of them will clear the
> + * interrupt...
> + *
> + * The workaround is only deployed when all PMU interrupts are aimed
> + * at a single core. As a result the workaround is never re-entered
> + * making it safe for us to use static data to maintain state.
> + */
> +static void cpu_pmu_deploy_muxed_spi_workaround(struct arm_pmu *cpu_pmu)
> +{
> + static cpumask_t irqwork_mask;
> + int cpu;
> +
> + disable_irq_nosync(cpu_pmu->muxed_spi_workaround_irq);
> + spin_lock(&down_prepare_cpu_lock);
> +
> + /*
> + * Combining cpu_online_mask and down_prepare_cpu_mask gives
> + * us the CPUs that are currently online and cannot die until
> + * we release down_prepare_cpu_lock.
> + */
> + cpumask_andnot(&irqwork_mask, cpu_online_mask, &down_prepare_cpu_mask);
> + cpumask_clear_cpu(smp_processor_id(), &irqwork_mask);
> + atomic_add(cpumask_weight(&irqwork_mask), &cpu_pmu->remaining_irq_work);
AFAICT, this is a hack to avoid get_online_cpus (which can sleep) from irq
context? Is there no way we can do try_get_online_cpus, and just return
IRQ_NONE if that fails? At some point, the hotplug operation will complete
and we'll be able to service the pending interrupt. I think that would allow
us to kill the down_prepare_cpu_lock.
Will
More information about the linux-arm-kernel
mailing list