[PATCH v5 5/5] Documentation: tee subsystem and op-tee driver
Jens Wiklander
jens.wiklander at linaro.org
Wed Aug 19 01:40:29 PDT 2015
Signed-off-by: Jens Wiklander <jens.wiklander at linaro.org>
---
Documentation/00-INDEX | 2 +
Documentation/tee.txt | 117 +++++++++++++++++++++++++++++++++++++++++++++++++
MAINTAINERS | 1 +
3 files changed, 120 insertions(+)
create mode 100644 Documentation/tee.txt
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index cd077ca..bd3f803 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -435,6 +435,8 @@ sysrq.txt
- info on the magic SysRq key.
target/
- directory with info on generating TCM v4 fabric .ko modules
+tee.txt
+ - info on the TEE subsystem and drivers
this_cpu_ops.txt
- List rationale behind and the way to use this_cpu operations.
thermal/
diff --git a/Documentation/tee.txt b/Documentation/tee.txt
new file mode 100644
index 0000000..4ac91d2
--- /dev/null
+++ b/Documentation/tee.txt
@@ -0,0 +1,117 @@
+TEE subsystem
+This document describes the TEE subsystem in Linux
+
+A TEE (Trusted Execution Environment) is a trusted OS running in some
+secure environment, for example, TrustZone on ARM CPUs, or a separate
+secure co-processor etc. A TEE driver handles the details needed to
+communicate with the TEE.
+
+This subsystem deals with:
+
+- Registration of TEE drivers
+
+- Managing shared memory between Linux and the TEE
+
+- Providing a generic API to the TEE
+
+The TEE interface
+=================
+
+include/uapi/linux/tee.h defines the generic interface to a TEE.
+
+User space (the client) connects to the driver by opening /dev/tee[0-9]* or
+/dev/teepriv[0-9]*.
+
+- TEE_IOC_SHM_ALLOC allocates shared memory and returns a file descriptor which
+ user space can mmap. When user space doesn't need the file descriptor anymore
+ it should be closed. When shared memory isn't needed any longer it should be
+ unmapped with munmap() to allow the reuse of memory.
+
+- TEE_IOC_VERSION lets user space know which TEE this driver handles and
+ the its capabilities.
+
+- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application
+
+- TEE_IOC_INVOKE invokes a function in a Trusted Application
+
+- TEE_IOC_CANCEL may cancel an ongoing TEE_IOC_OPEN_SESSION or TEE_IOC_INVOKE
+
+- TEE_IOC_CLOSE_SESSION closes a session to a Trusted Application
+
+There are two classes of clients, normal clients and supplicants. The latter is
+a helper process for the TEE to access resources in Linux, for example file
+system access. A normal client opens /dev/tee[0-9]* and a supplicant opens
+/dev/teepriv[0-9].
+
+Much of the communication between clients and the TEE is opaque to the
+driver. The main job for the driver is to receive requests from the
+clients, forward them to the TEE and send back the results. In the case of
+supplicants the communication goes in the other direction, the TEE sends
+requests to the supplicant which then sends back the result.
+
+OP-TEE driver
+=============
+
+The OP-TEE driver handles OP-TEE [1] based TEEs. Currently it is only the ARM
+TrustZone based OP-TEE solution that is supported.
+
+Lowest level of communication with OP-TEE builds on ARM SMC Calling
+Convention (SMCCC) [2], which is the foundation for OP-TEE's SMC interface
+[3] used internally by the driver. Stacked on top of that is OP-TEE Message
+Protocol [4].
+
+OP-TEE SMC interface provides the basic functions required by SMCCC and some
+additional functions specific for OP-TEE. The most interesting functions are:
+
+- OPTEE_SMC_FUNCID_CALLS_UID (part of SMCCC) returns the version information
+ which is then returned by TEE_IOC_VERSION
+
+- OPTEE_SMC_CALL_GET_OS_UUID returns the particular OP-TEE implementation, used
+ to tell, for instance, a TrustZone OP-TEE apart from an OP-TEE running on a
+ separate secure co-processor.
+
+- OPTEE_SMC_CALL_WITH_ARG drives the OP-TEE message protocol
+
+- OPTEE_SMC_GET_SHM_CONFIG lets the driver and OP-TEE agree on which memory
+ range to used for shared memory between Linux and OP-TEE.
+
+The GlobalPlatform TEE Client API [5] is implemented on top of the generic
+TEE API.
+
+Picture of the relationship between the different components in the
+OP-TEE architecture.
+
+ User space Kernel Secure world
+ ~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~
+ +--------+ +-------------+
+ | Client | | Trusted |
+ +--------+ | Application |
+ /\ +-------------+
+ || +----------+ /\
+ || |tee- | ||
+ || |supplicant| \/
+ || +----------+ +-------------+
+ \/ /\ | TEE Internal|
+ +-------+ || | API |
+ + TEE | || +--------+--------+ +-------------+
+ | Client| || | TEE | OP-TEE | | OP-TEE |
+ | API | \/ | subsys | driver | | Trusted OS |
+ +-------+----------------+----+-------+----+-----------+-------------+
+ | Generic TEE API | | OP-TEE MSG |
+ | IOCTL (TEE_IOC_*) | | SMCCC (OPTEE_SMC_CALL_*) |
+ +-----------------------------+ +------------------------------+
+
+RPC (Remote Procedure Call) are requests from secure world to kernel driver
+or tee-supplicant. An RPC is identified by a special range of SMCCC return
+values from OPTEE_SMC_CALL_WITH_ARG. RPC messages which are intended for the
+kernel are handled by the kernel driver. Other RPC messages will be forwarded to
+tee-supplicant without further involvement of the driver, except switching
+shared memory buffer representation.
+
+References:
+[1] https://github.com/OP-TEE/optee_os
+[2] http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
+[3] drivers/tee/optee/optee_smc.h
+[4] drivers/tee/optee/optee_msg.h
+[5] http://www.globalplatform.org/specificationsdevice.asp look for
+ "TEE Client API Specification v1.0" and click download.
diff --git a/MAINTAINERS b/MAINTAINERS
index 2df3f03..a48d718 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -8646,6 +8646,7 @@ S: Maintained
F: include/linux/tee_drv.h
F: include/uapi/linux/tee.h
F: drivers/tee/
+F: Documentation/tee.txt
THUNDERBOLT DRIVER
M: Andreas Noever <andreas.noever at gmail.com>
--
1.9.1
More information about the linux-arm-kernel
mailing list